石油与天然气地质, 2024, 45(3): 696-709 doi: 10.11743/ogg20240309

油气地质

渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式

蒲秀刚,, 董姜畅,, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录

中国石油 大港油田公司,天津 300280

Enrichment model of high-abundance organic matter in shales in the 2nd member of the Paleogene Kongdian Formation, Cangdong Sag, Bohai Bay Basin

PU Xiugang,, DONG Jiangchang,, CHAI Gongquan, SONG Shunyao, SHI Zhannan, HAN Wenzhong, ZHANG Wei, XIE Delu

Dagang Oilfield Company,PetroChina,Tianjin 300280,China

通讯作者: 董姜畅(1996—),男,工程师,有机地球化学及油气勘探。E-mail:dongjiangchuang@petrochina.com.cn

编辑: 张亚雄

收稿日期: 2023-10-30   修回日期: 2024-05-10  

基金项目: 国家重点研发计划项目.  2022YFF0801204.  2020YFA0710504
中国石油天然气股份有限公司科技重大专项.  2023ZZ15

Received: 2023-10-30   Revised: 2024-05-10  

第一作者简介 About authors

蒲秀刚(1968—),男,博士、教授级高级工程师,沉积储层、油气成藏、页岩油勘探开发。E-mail:puxgang@petrochina.com.cn。 E-mail:puxgang@petrochina.com.cn

摘要

渤海湾盆地沧东凹陷古近系孔店组二段(孔二段)页岩有机质丰度高,具有良好的页岩油勘探潜力,但由于缺乏精细的地球化学研究,有机质富集机理尚不清晰。通过开展全岩X射线衍射、全岩光片显微组分、岩石热解、总有机碳含量(TOC)、饱和烃色谱-质谱、单体烃碳同位素、主量元素与微量元素分析测试,研究了沧东凹陷孔二段页岩有机质富集的影响因素与模式。研究结果表明:孔二段页岩有机质富集受陆源碎屑输入、古生产力、古气候、古水深和古盐度多种因素影响,这些影响因素通过控制湖盆中菌藻类生物的生长、发育,在五级层序T-R旋回转换期形成高丰度有机质富集段。陆源碎屑输入为湖盆带来的丰富营养物质提高了湖盆生产力;古气候、古水深与古盐度主导了湖盆中水生/陆源有机质贡献比例的变化;细菌活动对有机质的改造提高了页岩H/C原子量比与“腐泥化”程度。以C3开发层系T-R旋回转换期为主的⑧号小层页岩形成于温湿气候、低盐度和水体较深的沉积古环境, TOC平均为2.7 %,游离烃含量(S1)为3.7 mg/g,可动油指数(OSI)为215 mg/g,有机质丰度高、有机质类型较好,是页岩油有利靶窗。

关键词: 生烃母质 ; 沉积环境 ; 有机质富集 ; 页岩油 ; 孔店组 ; 古近系 ; 沧东凹陷 ; 渤海湾盆地

Abstract

Shales in the 2nd member of the Paleogene Kongdian Formation (also referred to as the Kong 2 Member) in the Cangdong Sag contain high-abundance organic matter, showing great potential for shale oil exploration. However, the mechanisms underlying the organic matter enrichment are yet to be clarified due to the lack of fine geochemical research. Given this, we investigate the factors influencing of organic matter enrichment and the enrichment model in the Kong 2 Member shale using whole-rock X-ray diffraction, maceral identification on polished surfaces of whole-rock shale samples, rock pyrolysis, measurement of the total organic carbon (TOC) content, chromatography-mass spectrometry of saturated hydrocarbons, carbon isotopic analysis of monomer hydrocarbons, and the analyses and tests of major and trace elements. The results indicate that the organic matter enrichment inthe Kong 2 Member shale is influenced by multiple factors including terrigenous clastic input, paleoproductivity, paleoclimate, paleo-water depth, and paleosalinity. These factors govern the growth and development of algae and bacteria in the lacustrine basin of the Cangdong Sag, contributing to the formation of organic matter enrichment horizons with high TOC content during the T-R cycle transition period of the fifth-order sequence. Specifically, the terrigenous clastic input introducing abundant nutrients enhanced the biological productivity of the lacustrine basin. The paleoclimate, paleo-water depth, and paleosalinity largely determined the terrigenous/aquatic ratio (TAR) of the lacustrine basin. Furthermore, bacterial activity transformed organic matter, increasing the H/C atomic ratio and the saprofication degree of the shale. Shales in sublayer ⑧, primarily taking shape during the T-R cycle transition, of the C3 layer under development are formed under paleoenvironmental conditions of a warm and humid climate, low salinity, and deep water. This sublayer, with an average TOC content of 2.7 %, S1 of 3.7 mg/g, and producible oil index (POI) of 215 mg/g, boasts high abundance and favorable organic matter types, proving to be favorable landing zone for horizontal wells.

Keywords: hydrocarbon-generating parent material ; sedimentary environment ; organic matter enrichment ; shale oil ; Kongdian Formation ; Paleogene ; Cangdong Sag ; Bohai Bay Basin

PDF (9865KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

蒲秀刚, 董姜畅, 柴公权等. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709 doi:10.11743/ogg20240309

PU Xiugang, DONG Jiangchang, CHAI Gongquan, et al. Enrichment model of high-abundance organic matter in shales in the 2nd member of the Paleogene Kongdian Formation, Cangdong Sag, Bohai Bay Basin. Oil & Gas Geology[J], 2024, 45(3): 696-709 doi:10.11743/ogg20240309

近年来,多个领域页岩油勘探获得重要发现,陆相页岩受到国内外众多学者的关注1-6。陆相页岩在中国鄂尔多斯盆地延长组、准噶尔盆地芦草沟组、渤海湾盆地沙河街组及孔店组均广泛分布4-6,其中渤海湾盆地沧东凹陷古近系孔店组二段(孔二段)发育“纹层型”页岩油6,是目前中国陆相页岩油勘探开发的重要层位之一。

沧东凹陷孔二段沉积时期为拗陷型封闭湖盆,周围发育十大物源体系,具有短物源供给、相变快的特点,这导致纵向上页岩岩相组合与有机质丰度表现出较强的非均质性7-8。前人使用层序地层学、岩石学对孔二段不同岩相、沉积旋回有机质的分布特征开展了大量研究。其中赵贤正9-11等认为五级R旋回与T旋回不同的沉积环境、矿物含量、母质组成控制了有机质的丰度与类型;蒲秀刚等12认为孔二段具有韵律性有机质富集特征,有机质富集受陆源输入的影响。陆相页岩分布不同于海相,古环境变化频繁10-11,有机质富集更易受多种因素制约13-17。目前沧东凹陷孔二段页岩缺乏系统的地球化学精细研究,控制有机质分布的影响因素与富集的机理尚不清晰。为此,本文主要通过有机地球化学与元素地球化学方法,探讨了沧东凹陷孔二段页岩高丰度有机质的富集机理与模式,为页岩油甜点的精准预测提供理论依据。

1 区域地质背景

沧东凹陷位于渤海湾盆地南部,夹持于沧县隆起、徐黑凸起及孔店凸起之间,面积约1 800 km2图1a)。沧东凹陷经历了古近纪同裂谷期和新近纪以来的后裂谷期,在中生界基底自下而上沉积了孔店组、沙河街组和东营组18-19。其中,孔二段是在半干旱-潮湿、咸化沉积环境下沉积的一套以暗色泥页岩为主,夹薄层粉砂岩、中-细砂岩与泥质白云岩的地层,厚度为400 ~ 600 m,分布稳定,面积约500 km2,是目前沧东凹陷页岩油的主要勘探层位。孔二段可分为4个亚段:①孔二四亚段[Ek2(4)],湖泛初期,水体开始加深,沉积物粒度较粗,各物源口发育辫状河三角洲-滨浅湖沉积,半深湖-深湖及湖底扇沉积不发育;②孔二三亚段[Ek2(3)],进入湖侵期,水体变深、湖盆面积扩大,以辫状河三角洲-半深湖沉积为主,局部可见湖底扇;③孔二二亚段[Ek2(2)],湖盆可容空间进一步扩大、后期达到最大,以深湖-半深湖沉积为主,局部可见辫状河三角洲和湖底扇沉积;④孔二一亚段[Ek2(1)],湖盆进入萎缩期,物源供给减缓,以辫状河三角洲-滨浅湖沉积为主20。赵贤正、蒲秀刚等21-22依据岩性组合、测井特征和小波分析等建立了孔二段页岩高频层序地层格架,将孔二段页岩进一步划分为C1—C7共7个页岩油开发层系和21个开发小层(图1b)。

图1

图1   沧东凹陷构造单元划分(a)与孔二段层序地层划分柱状图(b)

Fig. 1   Map showing the structural units in the Cangdong Sag (a) and stratigraphic column of the Kong 2 Member within the sag (b)


2 样品与方法

针对G108-8井孔二段2 915 ~ 3 415 m深度的低熟页岩进行了500 m连续取心,由于低热演化程度对页岩的有机地球化学参数影响较小,为本次研究提供了良好样本。选取1 096个样品开展全岩X射线衍射与烃源岩热解测试,对孔二段页岩进行含油性与甜点评价。从Ek2(2)与Ek2(3)页岩中挑选出32个样品开展全岩X射线衍射、有机碳含量、主量元素、微量元素、饱和烃色谱-质谱分析化验联测确定页岩矿物特征、有机碳含量和沉积环境。由于孔二段页岩生物标志化合物中具有丰富的C30藿烷(C30H),为此挑选8块样品开展饱和烃单体化合物碳同位素分析确定C30藿烷来源。此外,对27个样品进行干酪根元素分析确定页岩有机质类型;对19个样品进行全岩光片显微组分鉴定确定页岩母质特征。所有测试均在长江大学油气资源与勘探技术教育部重点实验室完成。

3 结果

3.1 岩石学特征

全岩X射线衍射(XRD)实验结果显示(图2a),孔二段页岩矿物组成含量以长石(9.0 % ~ 29.0 %,平均14.8 %)、石英(11.0 % ~ 24.0 %,平均15.3 %)为主,铁白云石(0 ~ 49 %,平均18.3 %)、方解石(0.0 ~ 23.0 %,平均9.5 %)次之,黏土矿物含量较低(8.0 % ~ 31.0 %,平均16.3 %)。此外,孔二段还存在方沸石(平均22.0 %)及少量菱铁矿(平均1.5 %)。依据细粒沉积岩长英质矿物含量、碳酸盐矿物含量和黏土矿物含量三端元命名法,可以识别出孔二段发育长英质页岩、混合质页岩和灰质/白云质页岩3种岩石类型(图2b)。

图2

图2   沧东凹陷孔二段页岩矿物组成(a)与矿物组分含量三端元图(b)

Fig.2   Diagram showing the mineral composition (a) and ternary plot of the mineral content (b) of the Kong 2 Member shales within the Cangdong Sag


3.2 有机碳含量与干酪根元素特征

沧东凹陷孔二段页岩总有机碳含量(TOC)介于0.13 % ~ 13.09 %,平均3.40 %。其中TOC <1 %的样品占比仅为23.8 %,TOC >4 %样品占比可达38.8 %(图3a)。孔二段页岩干酪根H/C与O/C原子比值分别介于1.06 ~ 1.91和0.01 ~ 0.12,以Ⅰ型与Ⅱ1型干酪根为主(图3b)。

图3

图3   沧东凹陷孔二段页岩有机碳含量分布频率直方图(a)与干酪根类型划分(b)

Fig.3   Frequency histogram of the TOC content (a) and diagram showing kerogen types (b) for the Kong 2 Member shales within the Cangdong Sag


3.3 有机显微组分特征

本次采用石油行业标准(SY/T6414—2014)中的有机显微组分的分类方法23,将孔二段页岩显微组分划分为腐泥组、壳质组、镜质组、惰质组、次生有机组、动物有机碎屑组和矿物沥青基质。结果显示,腐泥组在有机显微组分中占比最高,多以结构藻类体与层状藻类体的形式产出(图4b,d,h),含量介于15.5 % ~ 57.0 %,平均38.1 %;矿物沥青基质含量仅次于腐泥组,平均22.1 %,以细小有机质与细小黏土矿物相伴生的形式存在(图4a,c),为高等植物孢粉、表皮蜡质与低等植物、藻类中不稳定内含物与原生烃类经过细菌微生物改造后产物24-25;陆源有机质组分(壳质组+镜质组+惰质组)中主要为镜质体与丝质体(图4e—g),平均含量为21.6 %;沥青体与烃类体等次生组分平均含量为18.3 %。综合表明,孔二段页岩母质来源以菌藻类低等生物为主,同时存在部分陆源有机质的输入,且细菌对有机质改造强烈。

图4

图4   沧东凹陷G108-8井孔二段页岩典型有机显微组分镜下特征照片

a.埋深3 050.26 m,矿物沥青基质,白光;b.埋深3 050.26 m,结构藻类体、矿物沥青基质,荧光;c.埋深3 092.76 m,矿物沥青基质,白光;d.埋深3 092.76 m,结构藻类体、矿物沥青基质,荧光;e. 埋深3 162.57m,镜质体、矿物沥青基质,白光;f.埋深3 162.57m,镜质体、层状藻、矿物沥青基质,荧光;g.埋深3 248.82 m,丝质体、层状藻类体,白光;h.埋深3 248.82 m,丝质体、层状藻类体,荧光

Fig. 4   Photomicrographs showing typical macerals in the Kong 2 Member shales in well G108-8 in the Cangdong Sag


3.4 分子地球化学特征

3.4.1 正构烷烃

陆生/水生有机质比值(TAR),定义为(nC27+nC29+nC31)/(nC15+nC17+nC19),可以表征页岩陆生与水生有机质的相对输入,TAR值随水生生物贡献增多而降低26-28。生烃母质、成熟度与生物降解等因素均会影响正构烷烃的分布,从而导致TAR值变化29。生物降解会导致正构烷烃和多环芳烃化合物缺失引起基线漂移,出现一个明显的由不可分辨化合物(unresolved complex mixture,UCM)组成的鼓包,孔二段页岩正构烷烃分布完整,无UCM鼓包30,表明样品未遭受生物降解(图5a,b),且样品热演化程度较低。这表明,TAR值差异主要为生烃母质差异导致,可以有效指示页岩陆生与水生有机质的相对输入。

图5

图5   沧东凹陷G108-8井孔二段页岩正构烷烃与生物标志化合物特征

a. 埋深3 020.09 m,页岩抽提物饱和烃正构烷烃质量色谱图;b. 埋深3 162.57 m,页岩抽提物饱和烃正构烷烃质量色谱图;c. 埋深3 020.09 m,页岩抽提物藿烷和伽马蜡烷质量色谱图;d. 埋深3 020.09 m,页岩抽提物甾烷质量色谱图;e. 埋深3 020.09 m,页岩抽提物饱和烃色谱—质谱总离子流图(TIC);f. 埋深3 020.09 m,页岩抽提物饱和烃藿烷与甾烷质量色谱叠合图

Fig. 5   Characteristics of n-alkanes and biomarkers in shales in the Kong 2 Member in well G108-8 in the Cangdong Sag


孔二段页岩TAR值分布范围较广(0.44 ~ 2.00),正构烷烃的分布具有明显差异。高TAR值样品,正构烷烃奇碳优势,主峰碳数为nC23nC24,高碳数正构烷烃含量相对较高(图5a);低TAR值样品,nC13nC20正构烷烃奇偶优势不明显,nC22+正构烷烃呈现明显奇碳数优势,主峰碳数为nC18nC19图5b)。纵向上,正构烷烃的分布规律与五级沉积旋回具有高度相关性,低TAR值位于五级层序每个水进旋回(T旋回)-水退旋回(R旋回)转换期,高TAR值则位于五级层序R-T旋回转换期(图6)。

图6

图6   沧东凹陷孔二段页岩微量元素指标与生物标志化合物参数纵向变化特征

Fig. 6   Vertical variations in the trace element indices and biomarker parameters of shales in the Kong 2 Member, Cangdong Sag


3.4.2 生物标志化合物

生物标志化合物记录了生油母质生物骨架,是指示沉积环境与生烃母质的可靠手段31-32。伽马蜡烷(Ca)指数(Ga/C30H)常用于表征高盐度沉积环境33。沧东凹陷孔二段页岩伽马蜡烷发育(图5c),伽玛蜡烷指数介于0.07 ~ 0.37,均值为0.22。

生烃母质方面,孔二段页岩饱和烃色谱—质谱总离子流图(TIC)普遍存在C30藿烷为最高峰的特征(图5e)。离子m/z 191与m/z 217质量色谱叠合图表明:孔二段页岩具有高C30藿烷含量、低甾烷(S)含量的特征(图5f)。通常认为C30藿烷主要来自于细菌,包括蓝细菌、异养细菌、甲烷营养菌和化学自养菌等,而甾烷主要来自藻类和高等植物。因此,甾烷/C30藿烷(C30H)常用于指示有机质来源中藻类和陆源有机质与细菌的相对贡献34-35。孔二段S/C30H值介于0.045 ~ 1.200,均值为0.420,指示了细菌对沉积有机质的强烈改造。这与显微镜下观察到大量矿物沥青基质反映的结果相吻合。

孔二段页岩中C27,C28和C29规则甾烷中C29规则甾烷占明显优势(图4d)。一般认为C27和C28甾烷主要来源于低等水生藻类36-37,而C29甾烷既可来源于绿藻、也可来源于高等植物38-40。干酪根元素与全岩光片显微组分分析表明,孔二段页岩有机质类型好且母质输入以水生生物为主,因此认为C29规则甾烷可能存在绿藻的贡献。

3.4.3 单体化合物碳同位素特征

孔二段检出的藿烷类单体化合物碳同位素均偏轻,其中C30藿烷碳同位素值为-84.08 ‰ ~ -65.53 ‰。前人认为41-44起源于化学自养菌的C30藿烷碳同位素值为-51.40 ‰ ~ -37.70 ‰,来源于甲烷营养菌的C30藿烷碳同位素更加偏轻,碳同位素值为-69.00 ‰ ~ -51.90 ‰。由于成熟度对同位素值的影响在2 ‰ ~ 3 ‰,推断孔二段藿烷化合物的形成与甲烷营养菌的活动有关。

3.5 页岩元素地球化学特征

页岩元素地球化学保存了丰富的古环境信息,是分析有机质富集的重要手段之一,主量元素Al,Ti,Mn与微量元素V,U,Th,Sr,Ba,Cu,Zn,Zr在不同沉积环境中富集程度不同,可以作为恢复古沉积环境的参数45-46。沧东凹陷孔二段页岩岩心样品X射线荧光光谱显示,常量元素Al,Ti和Mn元素含量分别为3.10 % ~ 8.10 %,0.20 % ~ 0.50 %和0.04 % ~ 0.20 %;微量元素V,Sr,Ba,Zr和Ni含量分别为(7.49 ~ 107.14)×10-6,(189.85 ~ 2 392.44)×10-6,(172.26 ~ 673.03)×10-6,(86.50 ~ 412.30)×10-6和(8.00 ~ 429.00)×10-6;营养元素Zn含量为(76.50 ~ 186.70)×10-6。盐度指标Sr/Ba元素含量比值介于0.45 ~ 5.25,均值为1.80;氧化还原指标V/(V+Ni)元素含量比值介于0.19 ~ 0.83,均值为0.56;陆源碎屑输入指标Ti/Al元素含量比值介于0.04 ~ 0.07,平均0.05;气候指标Sr/Cu元素含量比值介于1.80 ~ 12.10,平均6.10;古水深参数Zr/Al元素含量比值介于0.70 ~ 1.90,平均1.10(图6)。

纵向上地化参数与TOC在8个完整五级旋回上呈现规律性频繁的高—低变化。其中,营养元素Zn含量与TOC的变化趋势一致,水深参数Zr/Al、气候参数Sr/Cu、盐度参数Sr/Ba与TOC的变化趋势则完全相反。T旋回TOC增大,Cu和Zn含量增高,Zr/Al,Sr/Cu和Sr/Ba比值降低(图6)。

4 讨论

4.1 有机质富集影响因素

4.1.1 陆源碎屑输入与古生产力

陆源碎屑输入对有机质富集主要存在两个方面的影响:① 陆源碎屑输入对有机质具有稀释作用;② 陆源碎屑输入携带生物必要的营养物质,提高了湖盆的生产力进而促进生物勃发。Ti和Al两种元素可以有效反映沉积碎屑流入,Ti/Al元素含量比值用于指示沉积物输入能量的大小与沉积物来自非铝硅酸盐来源的程度47-50,且通常高的Ti/Al比值可能反映了沉积环境为沉积物提供了更高的运输能量51。Ti/Al比值与TOC弱相关,表明了陆源碎屑输入对孔二段有机质的稀释作用影响有限(图7a)。

图7

图7   沧东凹陷G108-8井孔二段页岩TOC与陆源碎屑输入(a)、氧化还原条件(b)、盐度(c)、古气候(d)、古水深(e)相关性及长英质矿物含量与Zn元素含量关系(f)

a.埋深3 019 ~ 3 300 m,陆源碎屑输入参数Ti/Al和TOC关系;b.埋深3 019 ~ 3 300 m,氧化还原参数V/(V+Ni)和TOC关系;c.埋深3 019 ~ 3 300 m,古盐度参数Sr/Ba和TOC关系;d.埋深3 019 ~ 3 300 m,古气候参数Sr/Cu和TOC关系;e.埋深3 019 ~ 3 300 m,古水深参数Zr/Al和TOC关系;f.埋深3 019 ~ 3 300 m,长英质矿物含量和Zn元素含量关系

Fig. 7   TOC content vs. terrigenous clastic input (a), redox conditions (c), salinity (d), paleoclimate (e), and paleo-water depth (f) and felsic mineral content vs. Zn content (b) for shales in the Kong 2 Member in well G108-8 in the Cangdong Sag


古生产力即为湖盆的初级生产力,是为生物繁衍提供能量、营养物质的能力。Zn元素被认为是主要的营养元素,是生物繁衍的物质基础,高Zn含量往往代表湖盆具有较高的初级生产力52-54。孔二段页岩陆源碎屑长英质矿物含量与Zn元素相关性分析表明(图7f),湖盆的古生产力受陆源碎屑输入控制。陆源碎屑的输入为湖盆带来了丰富的营养元素,从而提高了湖盆的生产力,这为藻类等水生生物繁盛提供了物质基础,有利于有机质富集。

4.1.2 氧化还原条件

微量元素含量比值V/(V+Ni)可以用于识别古氧化还原条件,当V/(V+Ni) < 0.45时为富氧环境55-58。孔二段V/(V+Ni)平均0.56,指示其以贫氧还原环境为主。TOC与V/(V+Ni)无相关性(图7b),且在氧化与还原条件下均存在高TOC样品,这表明氧化还原条件不是孔二段有机质富集的主控因素,有机质富集受其他因素控制。

4.1.3 古盐度

伽马蜡烷含量与Sr/Ba元素含量比值可以表征页岩沉积环境中的分层水体,Sr/Ba比值小于0.6、介于0.6 ~ 1.0和大于1.0分别指示淡水、半咸水和咸水沉积环境59-60。沧东凹陷孔二段页岩伽马蜡烷发育且样品Sr/Ba比值介于0.32 ~ 5.25,仅有5个样品Sr/Ba比值介于0.60 ~ 1.00,表明孔二段页岩为半咸水-咸水沉积环境。TOC与Sr/Ba比值呈现明显的负相关,在淡水与半咸水条件下TOC较高(> 4 %),随着湖水盐度升高TOC逐渐降低(图7c)。

4.1.4 古气候与古水深

沉积物中因古气候与水深变化,不同微量元素丰度会出现迁移和富集,因此微量元素含量及其比值是恢复古气候与水深的有效手段61-63。Sr/Cu元素含量比值是重要的古气候判识参数之一,当Sr/Cu比值介于1 ~ 10指示温湿气候,大于10指示干热气候61。Zr是典型的亲陆性元素,通常存在于浅水沉积区域,而Al元素含量随着水深增加而增加,因此Zr/Al元素含量比值增大,指示水体变浅62-63

孔二段页岩Sr/Cu比值介于1.8 ~ 12.1,平均为6.1,表明孔二段沉积时期为温暖湿润气候,半深水-深水沉积环境。TOC与古气候、古水深参数交会图表明(图7d,e),温湿气候下,湖水深度增加,TOC较高;干旱气候下,湖水深度降低,页岩中TOC较低。因此,古气候与古水深是孔二段有机质富集的主控因素,且温湿气候、水体深度增加有利于有机质富集。

4.1.5 生烃母质构成

上述可知,孔二段页岩有机质富集影响因素包括:陆源碎屑输入、古生产力、古盐度、古气候与古水深。这些因素通过影响湖盆中菌藻类等水生生物的数量进而控制了有机质的富集。

水生、陆源有机质贡献比例不同,其有机碳含量具有明显差异,高有机碳含量页岩因具有较高的水生生物贡献而呈现出低TAR值的特征,而随着水生有机质贡献降低,TAR值增大,页岩有机碳含量降低(图8a)。温湿气候、深水环境下,水动力条件充足,丰富的地表水携带的营养元素注入湖泊提高了其生产力,同时低盐度水体有利于多种生物的繁衍,此地质背景下有利于形成高丰度有机质页岩(图8b,c)。随着气候干旱,水体深度降低,盐度升高,仅有少量的水生生物可以适应高盐度环境,不利于水生生物的繁衍,故页岩有机碳含量较低。

图8

图8   沧东凹陷G108-8井孔二段页岩陆源/水生比参数TARTOC(a)、水深变化参数Zr/Al与TAR(b)、盐度参数Ga/C30H与TAR(c)及干酪根C/H原子比与甾/藿比(S/C30H)(d)关系

Fig. 8   TARvs. TOC content (a), the Zr/Al ratio denoting water depth variation (b), and salinity parameter Ga/C30H (c) and the H/C atomic ratio of kerogen vs. the sterane/hopane (S/C30H) ratio (d) for shales in the Kong 2 Member in well G108-8 in the Cangdong Sag


孔二段强烈的甲烷营养菌活动对有机质富集影响较小,但细菌对藻类、陆源有机质的再加工,提高了页岩H/C原子比(图8d)和“腐泥化”程度,改善了页岩的品质。这与前人总结的细菌微生物活动对生烃的认识64-66相吻合,细菌类脂物成分代谢产物加入改变了有机质的结构使有机质热降解、脱官能团以及加氢生烃反应所需的活化能降低,这可能是孔二段页岩有机质类型好的原因之一。

4.2 有机质富集模式

在陆源碎屑输入、古生产力、古气候、古盐度等多种因素周期性变化的共同影响下,沧东凹陷孔二段页岩呈现出高TOC集中段与低TOC集中段交替变化的特征(图9)。五级层序尺度上不同沉积阶段地化参数具有明显的差异,在T-R旋回转换期,地化参数呈现出低TAR、低Sr/Cu、低Zr/Al、低Sr/Ba和高Zn含量的特征(图9)。深水、低盐度、温湿环境和高生产力导致湖盆中水生生物大量繁衍,有机质含量高。与之相反,R-T旋回转换期,地化参数呈现出高TAR、高Sr/Cu、高Zr/Al、高Sr/Ba和低Zn含量的特征,此时页岩有机碳含量较低。这表明,高丰度有机质页岩主要形成于温湿气候、低盐度、较高水体深度、高生产力的T-R转换期。为此,总结出沧东凹陷孔二段五级沉积旋回T-R旋回转换期与R-T旋回转换期两种页岩有机质富集模式(图9b,c)。

图9

图9   沧东凹陷孔二段页岩有机质富集段纵向分布特征(a)、T-R旋回转换期页岩有机质富集模式(b)和 R-T旋回转换期页岩有机质富集模式(c)

Fig. 9   Vertical distribution of organic matter enrichment horizons (a) and organic matter enrichment model during the T-R and R-T cycle transition periods (b, c) for shales in the Kong 2 Member within the Cangdong Sag


T-R旋回转换期气候温湿,水动力条件强,充沛的陆源碎屑输入为湖盆带来Cu和Zn等营养物质,提高了湖盆生产力;较弱蒸发作用及充足的地表水、河流注入导致水体变深,盐度降低,湖盆中大量的菌藻类生物繁衍,此时页岩有机质含量较高,生烃母质中水生有机质比例升高(图9b)。R-T旋回转换期气候干热,水动力条件弱,陆源碎屑供给减少导致对湖盆营养物质输入减弱,降低了湖盆生产力,同时强烈的蒸发作用导致水体变浅,盐度升高,只有少量水生生物能适应高盐度环境,导致湖盆中菌藻类生物较少,此时页岩有机碳含量较低且生烃母质中陆源有机质比例升高(图9c)。

5 应用成效

孔二段页岩TOC是评价页岩甜点的关键指标之一。国内外已经证实,S1/TOC(即可动油指数,OSI)可反应页岩中滞留烃可动性的大小,在含油性评价中具有良好的应用效果。按照沧东凹陷古近系页岩油甜点分类评价标准11,优选出C1-②,C2-⑤,C3-⑧,C4-⑪,C5-⑬,C6-⑰和C7-⑲7个小层为Ⅰ类甜点靶层。本研究以C3开发层系为例,以T-R旋回转换期为主的⑧号小层页岩形成于温湿气候、低盐度和水体较深古环境条件, TOC平均为2.7 %,S1为3.7 mg/g,OSI为215 mg/g,且黏土矿物含量较低,是页岩油有利靶窗(图10a)。

图10

图10   沧东凹陷孔二段C3页岩甜点层评价(a)与⑧号开发小层页岩厚度等值线图(b)

Fig.10   Evaluation of shale sweet spots in layer C3 (a) and isopach map of shales in sublayer ⑧ (b) in the Kong 2 Member within the Cangdong Sag


沧东凹陷官东地区2021年对C3-⑧号开发小层钻探的GY5-3-1L井(图10b),3 mm油嘴直径测试单井峰值日产56 t,目前稳定生产962 d,稳产油16 785 t。2022年在GY5-3-1L井取得良好勘探开发的基础上,钻探GY5-3-6H和GY5-3-7H两口页岩油水平井(图10b),3 ~ 4 mm油嘴直径测试单井峰值日产70.2 ~ 96.5 t,预测单井最终可采储量(EUR)可达(4.34 ~ 4.47)×104 t。目前,官东5号平台投产的5口先导试验水平井已连续稳定生产393 ~ 422 d,累产油达7×104 t,并实现单井首年累产油平均超1×104 t,达到了油价50美元/bbl下的效益开发条件,展现了中国东部断陷盆地页岩油的良好发展前景。

6 结论

1) 沧东凹陷孔二段页岩有机质丰度高,干酪根以Ⅰ型与Ⅱ1型为主,生烃母质来源以菌藻类低等生物为主,同时存在部分陆源有机质输入。

2) 五级层序T-R转换期充沛的陆源碎屑输入提高了湖盆生产力;温湿气候和低盐度为菌藻类生物大量繁衍提供了良好的生存条件,是高丰度页岩有机质富集的主要部位。

3) 页岩有机质富集机理有效指导了官东地区孔二段5号平台页岩油水平井的部署,并取得了良好勘探效果,实现了油价50美元/bbl下的效益开发,展现了孔二段良好的页岩油勘探前景。

参考文献

张瑞金之钧朱如凯.

中国陆相富有机质页岩沉积速率研究及其页岩油勘探意义

[J]. 石油与天然气地质, 2023444): 829-845.

[本文引用: 1]

ZHANG RuiJIN ZhijunZHU Rukaiet al.

Investigation of deposition rate of terrestrial organic-rich shales in China and its implications for shale oil exploration

[J]. Oil & Gas Geology, 2023444): 829-845.

[本文引用: 1]

白斌戴朝成侯秀林.

松辽盆地白垩系青山口组页岩层系非均质地质特征与页岩油甜点评价

[J]. 石油与天然气地质, 2023444): 846-856.

BAI BinDAI ChaochengHOU Xiulinet al.

Geological heterogeneity of shale sequence and evaluation of shale oil sweet spots in the Qingshankou Formation, Songliao Basin

[J]. Oil & Gas Geology, 2023444): 846-856.

郭旭升马晓潇黎茂稳.

陆相页岩油富集机理探讨

[J]. 石油与天然气地质, 2023446): 1333-1349.

GUO XushengMA XiaoxiaoLI Maowenet al.

Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins

[J]. Oil & Gas Geology, 2023446): 1333-1349.

孙龙德王小军冯子辉.

松辽盆地古龙页岩纳米孔缝形成机制与页岩油富集特征

[J]. 石油与天然气地质, 2023446): 1350-1365.

[本文引用: 1]

SUN LongdeWANG XiaojunFENG Zihuiet al.

Formation mechanisms of nano-scale pores/fissures and shale oil enrichment characteristics for Gulong shale, Songliao Basin

[J]. Oil & Gas Geology, 2023446): 1350-1365.

[本文引用: 1]

米立军徐建永李威.

渤海海域页岩油资源潜力

[J]. 石油与天然气地质, 2023446): 1366-1377.

MI LijunXU JianyongLI Wei.

Shale oil resource potential in the Bohai Sea area

[J]. Oil & Gas Geology, 2023446): 1366-1377.

赵贤正蒲秀刚金凤鸣.

黄骅坳陷页岩型页岩油富集规律及勘探有利区

[J]. 石油学报, 2023441): 158-175.

[本文引用: 3]

ZHAO XianzhengPU XiugangJIN Fengminget al.

Enrichment law and favorable exploration area of shale-type shale oil in Huanghua Depression

[J]. Acta Petrolei Sinica, 2023441): 158-175.

[本文引用: 3]

邓远陈世悦蒲秀刚.

渤海湾盆地沧东凹陷孔店组二段细粒沉积岩形成机理与环境演化

[J]. 石油与天然气地质, 2020414): 811-823 890.

[本文引用: 1]

DENG YuanCHEN ShiyuePU Xiuganget al.

Formation mechanism and environmental evolution of fine-grained sedimentary rocks from the second member of Kongdian Formation in the Cangdong Sag, Bohai Bay Basin

[J]. Oil & Gas Geology, 2020414): 811-823 890.

[本文引用: 1]

HARRIS N BFREEMAN K HPANCOST R Det al.

The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section, Congo Basin, west Africa

[J]. AAPG Bulletin, 2004888): 1163-1184.

[本文引用: 1]

赵贤正周立宏蒲秀刚.

陆相湖盆页岩层系基本地质特征与页岩油勘探突破——以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例

[J]. 石油勘探与开发, 2018453): 361-372.

[本文引用: 1]

ZHAO XianzhengZHOU LihongPU Xiuganget al.

Geological characteristics of shale rock system and shale oil exploration in a lacustrine basin: A case study from the Paleogene 1st sub-member of Kong 2 Member in Cangdong Sag, Bohai Bay Basin, China

[J]. Petroleum Exploration and Development, 2018453): 361-372.

[本文引用: 1]

赵贤正周立宏蒲秀刚.

断陷湖盆湖相页岩油形成有利条件及富集特征——以渤海湾盆地沧东凹陷孔店组二段为例

[J]. 石油学报, 2019409): 1013-1029.

[本文引用: 1]

ZHAO XianzhengZHOU LihongPU Xiuganget al.

Favorable formation conditions and enrichment characteristics of lacustrine facies shale oil in faulted lake basin: A case study of Member 2 of Kongdian Formation in Cangdong Sag, Bohai Bay Basin

[J]. Acta Petrolei Sinica, 2019409): 1013-1029.

[本文引用: 1]

赵贤正蒲秀刚鄢继华.

渤海湾盆地沧东凹陷孔二段细粒沉积旋回及其对有机质分布的影响

[J]. 石油勘探与开发, 2023503): 468-480.

[本文引用: 3]

ZHAO XianzhengPU XiugangYAN Jihuaet al.

Cycles of fine-grained sedimentation and their influences on organic matter distribution in the second member of Paleogene Kongdian Formation in Cangdong Sag, Bohai Bay Basin, East China

[J]. Petroleum Exploration and Development, 2023503): 468-480.

[本文引用: 3]

方正蒲秀刚陈世悦.

沧东凹陷孔二段页岩有机质富集特征研究

[J]. 中国矿业大学学报, 2021502): 304-317.

[本文引用: 1]

FANG ZhengPU XiugangCHEN Shiyueet al.

Investigation of enrichment characteristics of organic matter in shale of the 2nd member of Kongdian Formation in Cangdong Sag

[J]. Journal of China University of Mining & Technology, 2021502): 304-317.

[本文引用: 1]

陈践发许锦王杰.

塔里木盆地西北缘玉尔吐斯组黑色岩系沉积环境演化及其对有机质富集的控制作用

[J]. 地学前缘, 2023306): 150-161.

[本文引用: 1]

CHEN JianfaXU JinWANG Jieet al.

Paleo-environmental variation and its control on organic enrichment in the black rock series, Cambrian Yuertusi Formation in northwestern Tarim Basin

[J]. Earth Science Frontiers, 2023306): 150-161.

[本文引用: 1]

连梦利刘达东林瑞钦.

黔北地区五峰组—龙马溪组页岩沉积环境及有机质富集机理

[J]. 中南大学学报(自然科学版), 2022539): 3756-3772.

LIAN MengliLIU DadongLIN Ruiqinet al.

Sedimentary environment and organic matter enrichment mechanism of Wufeng—Longmaxi shale in the northern Guizhou area

[J]. Journal of Central South University(Science and Technology), 2022539): 3756-3772.

王波吴志雄周飞.

柴达木盆地西北区新近系咸化湖盆生烃母质类型与有机质富集机理

[J]. 天然气地球科学, 2023343): 496-509.

WANG BoWU ZhixiongZHOU Feiet al.

The types of hydrocarbon source rocks and the mechanism of organic matter enrichment in the saline lacustrine basin of the Neogene in the northwestern of Qaidam Basin

[J]. Natural Gas Geoscience, 2023343): 496-509.

张天舒朱如凯蔡毅.

松辽盆地古龙凹陷白垩系青山口组页岩层序等时格架下的有机质分布规律

[J]. 石油与天然气地质, 2023444): 869-886.

ZHANG TianshuZHU RukaiCAI Yiet al.

Distribution of organic matter in the Qingshankou Formation Shale, Gulong Sag, Songliao Basin observed within an isochronous sequence stratigraphic framework

[J]. Oil & Gas Geology, 2023444): 869-886.

XIN BixiaoHAO FangHAN Wenzhonget al.

Paleoenvironment evolution of the lacustrine organic-rich shales in the second member of Kongdian Formation of Cangdong Sag, Bohai Bay Basin, China: Implications for organic matter accumulation

[J]. Marine and Petroleum Geology, 2021133105244.

[本文引用: 1]

李三忠索艳慧周立宏.

华北克拉通内部的拉分盆地: 渤海湾盆地黄骅坳陷结构构造与演化

[J]. 吉林大学学报(地球科学版), 2011415): 1362-1379.

[本文引用: 1]

LI SanzhongSUO YanhuiZHOU Lihonget al.

Pull-apart basins within the north China Craton: Structural pattern and evolution of Huanghua Depression in Bohai Bay Basin

[J]. Journal of Jilin University(Earth Science Edition), 2011415): 1362-1379.

[本文引用: 1]

任建业廖前进卢刚臣.

黄骅坳陷构造变形格局与演化过程分析

[J]. 大地构造与成矿学, 2010344): 461-472.

[本文引用: 1]

REN JianyeLIAO QianjinLU Gangchenet al.

Deformation framework and evolution of the Huanghua Depression, Bohai gulf

[J]. Geotectonica et Metallogenia, 2010344): 461-472.

[本文引用: 1]

蒲秀刚周立宏韩文中.

细粒相沉积地质特征与致密油勘探——以渤海湾盆地沧东凹陷孔店组二段为例

[J]. 石油勘探与开发, 2016431): 24-33.

[本文引用: 1]

PU XiugangZHOU LihongHAN Wenzhonget al.

Geologic features of fine-grained facies sedimentation and tight oil exploration: A case from the second member of Paleogene Kongdian Formation of Cangdong Sag, Bohai Bay Basin

[J]. Petroleum Exploration and Development, 2016431): 24-33.

[本文引用: 1]

蒲秀刚韩文中周立宏.

黄骅坳陷沧东凹陷孔二段高位体系域细粒相区岩性特征及地质意义

[J]. 中国石油勘探, 2015205): 30-40.

[本文引用: 1]

PU XiugangHAN WenzhongZHOU Lihonget al.

Lithologic characteristics and geological implication of fine-grained sedimentation in Ek2 high stand system tract of Cangdong Sag, Huanghua Depression

[J]. China Petroleum Exploration, 2015205): 30-40.

[本文引用: 1]

韩文中赵贤正金凤鸣.

渤海湾盆地沧东凹陷孔二段湖相页岩油甜点评价与勘探实践

[J]. 石油勘探与开发, 2021484): 777-786.

[本文引用: 1]

HAN WenzhongZHAO XianzhengJIN Fengminget al.

Sweet spots evaluation and exploration of lacustrine shale oil of the second member of Paleogene Kongdian Formation in Cangdong Sag, Bohai Bay Basin

[J]. Petroleum Exploration and Development, 2021484): 777-786.

[本文引用: 1]

国家能源局. 全岩光片显微组分鉴定及统计方法: [S]. 北京石油工业出版社2015.

[本文引用: 1]

National Energy Administration. Maceral identification and statistical methods on polished surfaces of whole rocks: [S]. BeijingPetroleum Industry Press2015.

[本文引用: 1]

李贤庆熊波黄光辉.

低熟源岩中矿物沥青基质的特征与成因

[J]. 江汉石油学院学报, 1997192): 29-35.

[本文引用: 1]

LI XianqingXIONG BoHUANG Guanghuiet al.

Characteristics and origins of mineral-bituminous groundmass in immature and low matural source rocks

[J]. Journal of Jianghan Petroleum Institute, 1997192): 29-35.

[本文引用: 1]

王铁冠钟宁宁侯读杰.

细菌在板桥凹陷生烃机制中的作用

[J]. 中国科学:化学, 1995258): 882-889 898.

[本文引用: 1]

WANG TieguanZHONG NingningHOU Dujieet al.

The role of bacteria in the hydrocarbon generation mechanism of Banqiao Depression

[J]. Scientia Sinica(Chimica), 1995258): 882-889 898.

[本文引用: 1]

汪素风陈云伊海生.

西藏尼玛盆地古近纪湖相油页岩正构烷烃特征及其古环境与古气候意义

[J]. 沉积与特提斯地质, 2023433): 542-554.

[本文引用: 1]

WANG SufengCHEN YunYI Haishenget al.

The characteristics of n-alkanes from the Palaeogene lacustrine oil shale in the Kanggale area, Nyima Basin, and their paleoenvironment and Paleoclimate significance

[J]. Sedimentary Geology and Tethyan Geology, 2023433): 542-554.

[本文引用: 1]

CRANWELL P AEGLINTON GROBINSON N.

Lipids of aquatic organisms as potential contributors to lacustrine sediments—Ⅱ

[J]. Organic Geochemistry, 1987116): 513-527.

李志强杨波王军.

南黄海盆地中-新生界湖相烃源岩地球化学特征及生烃史

[J]. 石油与天然气地质, 2022432): 419-431.

[本文引用: 1]

LI ZhiqiangYANG BoWANG Junet al.

Geochemical characteristics and hydrocarbon generation history of Mesozoic-Cenozoic lacustrine source rocks in the South Yellow Sea Basin, offshore eastern China

[J]. Oil & Gas Geology, 2022432): 419-431.

[本文引用: 1]

刘舵谢春勤陈治军.

正构烷烃分布在确定烃源岩生源构成中的有效性

[J]. 断块油气田, 2019261): 42-47.

[本文引用: 1]

LIU DuoXIE ChunqinCHEN Zhijunet al.

Effectiveness of n-alkanes distribution on determining parent material composition of hydrocarbon source rock

[J]. Fault-Block Oil and Gas Field, 2019261): 42-47.

[本文引用: 1]

VOLKMAN J KALEXANDER RKAGI R Iet al.

Biodegradation of aromatic hydrocarbons in crude oils from the Barrow Sub-basin of Western Australia

[J]. Organic Geochemistry, 19846619-632.

[本文引用: 1]

MOLDOWAN J MSEIFERT W KGALLEGOS E J.

Relationship between petroleum composition and depositional environment of petroleum source rocks

[J]. AAPG Bulletin, 1985698): 1255-1268.

[本文引用: 1]

FILDANI AHANSON A DCHEN Zhengzhenget al.

Geochemical characteristics of oil and source rocks and implications for petroleum systems, Talara Basin, northwest Peru

[J]. AAPG Bulletin, 20058911): 1519-1545.

[本文引用: 1]

FU JiamoSHENG GuoyingPENG Pinganet al.

Pecuilarities of salt lake sediments as potential source rocks in china

[J].Organic Geochemistry, 1986101-3): 119-126.

[本文引用: 1]

PETERS K EWALTERS C CMOLDOWAN J M. The biomarker guide[M]. 2nd ed. CambridgeCambridge University Press2004.

[本文引用: 1]

ROHRSSEN MLOVE G DFISCHER Wet al.

Lipid biomarkers record fundamental changes in the microbial community structure of tropical seas during the Late Ordovician Hirnantian glaciation

[J]. Geology, 2013412): 127-130.

[本文引用: 1]

SHI JiyangMACKENZIE A SALEXANDER Ret al.

A biological marker investigation of petroleums and shales from the Shengli Oilfield, the People’s Republic of China

[J]. Chemical Geology, 1982351/2): 1-31.

[本文引用: 1]

VOLKMAN J K.

A review of sterol markers for marine and terrigenous organic matter

[J]. Organic Geochemistry, 198692): 83-99.

[本文引用: 1]

HUANG W YMEINSCHEIN W G.

Sterols as ecological indicators

[J]. Geochimica et Cosmochimica Acta, 1979435): 739-745.

[本文引用: 1]

BROCKS J JJARRETT A J MSIRANTOINE Eet al.

The rise of algae in Cryogenian oceans and the emergence of animals

[J]. Nature, 20175487669): 578-581.

夏刘文曹剑边立曾.

准噶尔盆地玛湖大油区二叠纪碱湖生物-环境协同演化及油源差异性

[J]. 中国科学(地球科学), 2022524): 732-746.

[本文引用: 1]

XIA LiuwenCAO JianBIAN Lizenget al.

Co-evolution of paleo-environment and bio-precursors in a Permian alkaline lake, Mahu mega-oil province, Junggar Basin: Implications for oil sources

[J]. Science China Earth Sciences, 2022524): 732-746.

[本文引用: 1]

段毅吴保祥郑国东.

沉积物的单体异构和环烷烃碳同位素研究

[J]. 科学通报, 2004492): 199-202.

[本文引用: 1]

DUAN YiWU BaoxiangZHENG Guodonget al.

Monomer isomerization of sediments and carbon isotopes of cycloalkanes

[J]. Chinese Science Bulletin, 2004492): 199-202.

[本文引用: 1]

FREEMAN K HWAKEHAM S GHAYES J M.

Predictive isotopic biogeochemistry: Hydrocarbons from anoxic marine basins

[J]. Organic Geochemistry, 1994216/7): 629-644.

WILHELMS ALARTER S RHALL K.

A comparative study of the stable carbon isotopic composition of crude oil alkanes and associated crude oil asphaltene pyrolysate alkanes

[J]. Organic Geochemistry, 1994216/7): 751-760.

鲁中灯刘岩陈祖林.

烃源岩抽提物中藿烷分子碳同位素分析新方法及指示意义

[J]. 石油实验地质, 2022442): 288-294.

[本文引用: 1]

LU ZhongdengLIU YanCHEN Zulinet al.

An improved method and indications for the compound specific isotopic analysis of hopanes in source rock extracts

[J]. Petroleum Geology and Experiment, 2022442): 288-294.

[本文引用: 1]

FLOYD P ALEVERIDGE B EFRANKE Wet al.

Provenance and depositional environment of Rhenohercynian synorogenic greywackes from the Giessen Nappe, Germany

[J]. Geologische Rundschau, 1990793): 611-626.

[本文引用: 1]

LI QingWU ShengheXIA Donglinget al.

Major and trace element geochemistry of the lacustrine organic-rich shales from the Upper Triassic Chang 7 Member in the southwestern Ordos Basin, China: Implications for paleoenvironment and organic matter accumulation

[J]. Marine and Petroleum Geology, 2020111852-867.

[本文引用: 1]

HATCH J RLEVENTHAL J S.

Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A

[J]. Chemical Geology, 1992991/3): 65-82.

[本文引用: 1]

ALGEO T JMAYNARD J B.

Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems

[J]. Chemical Geology, 20042063/4): 289-318.

KIDDER D LERWIN D H.

Secular distribution of biogenic silica through the Phanerozoic: Comparison of silica-replaced fossils and bedded cherts at the series level

[J]. The Journal of Geology, 20011094): 509-522.

RIMMER S M.

Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA)

[J]. Chemical Geology, 20042063/4): 373-391.

[本文引用: 1]

LIANG ChaoWU JingJIANG Zaixinget al.

Sedimentary environmental controls on petrology and organic matter accumulation in the upper fourth member of the Shahejie Formation (Paleogene, Dongying Depression, Bohai Bay Basin, China)

[J]. International Journal of Coal Geology, 20181861-13.

[本文引用: 1]

HASKIN M AHASKIN L A.

Rare earths in European shales: A redetermination

[J]. Science, 19661543748): 507-509.

[本文引用: 1]

刘佳宜刘全有朱东亚.

深部流体对有机质生烃演化过程的影响

[J]. 天然气地球科学, 2019304): 478-492.

LIU JiayiLIU QuanyouZHU Dongyaet al.

Influences of the deep fluid on organic matter during the hydrocarbon generation and evolution process

[J]. Natural Gas Geoscience, 2019304): 478-492.

丁江辉张金川石刚.

皖南地区上二叠统大隆组页岩沉积环境与有机质富集机理

[J]. 石油与天然气地质, 2021421): 158-172.

[本文引用: 1]

DING JianghuiZHANG JinchuanSHI Ganget al.

Sedimentary environment and organic matter enrichment mechanisms of the Upper Permian Dalong Formation shale, southern Anhui Province, China

[J]. Oil & Gas Geology, 2021421): 158-172.

[本文引用: 1]

腾格尔刘文汇徐永昌.

缺氧环境及地球化学判识标志的探讨——以鄂尔多斯盆地为例

[J]. 沉积学报, 2004222): 365-372.

[本文引用: 1]

TengerLIU WenhuiXU Yongchanget al.

The discussion on anoxic environments and its geochemical identifying indices

[J]. Acta Sedimentologica Sinica, 2004222): 365-372.

[本文引用: 1]

施春华胡瑞忠颜佳新.

栖霞组沉积地球化学特征及其环境意义

[J]. 矿物岩石地球化学通报, 2004232): 144-148.

SHI ChunhuaHU RuizhongYAN Jiaxin.

Sedimentary geochemistry of the Qixia Formation and its environmental implication

[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2004232): 144-148.

乔锦琪刘洛夫尚晓庆.

泥页岩中微量元素V、Ni、V/Ni与有机质丰度及成岩演化关系研究——以准噶尔盆地阜康凹陷为例

[J]. 矿物岩石地球化学通报, 2016354): 756-768.

QIAO JinqiLIU LuofuSHANG Xiaoqinget al.

The relationship between V, Ni or V/Ni ration and each of organic matter abundance and diagenetic evolution stages in shales: Taking the shales in Fukang Sag of Junggar Basin for example

[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016354): 756-768.

韦恒叶.

古海洋生产力与氧化还原指标——元素地球化学综述

[J]. 沉积与特提斯地质, 2012322): 76-88.

[本文引用: 1]

WEI Hengye.

Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry

[J]. Sedimentary Geology and Tethyan Geology, 2012322): 76-88.

[本文引用: 1]

HAVEN H L TROHMER MRULLKÖTTER Jet al.

Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments

[J]. Geochimica et Cosmochimica Acta, 19895311): 3073-3079.

[本文引用: 1]

李进龙陈东敬.

古盐度定量研究方法综述

[J]. 油气地质与采收率, 2003105): 1-3 5.

[本文引用: 1]

LI JinlongCHEN Dongjing.

Summary of quantified research method on paleosalinity

[J]. Petroleum Geology and Recovery Efficiency, 2003105): 1-3 5.

[本文引用: 1]

曹婷婷姚威李志明.

渤海湾盆地沾化凹陷湖相泥页岩地球化学特征及有机质富集规律

[J]. 石油实验地质, 2020424): 558-564.

[本文引用: 2]

CAO TingtingYAO WeiLI Zhiminget al.

Geochemical characteristics of lacustrine shale and enrichment mechanism of organic matter in Zhanhua Sag, Bohai Bay Basin

[J]. Petroleum Geology and Experiment, 2020424): 558-564.

[本文引用: 2]

刘新宇邵磊史德锋.

西沙西科1井元素地球化学特征与海平面升降的关系

[J]. 海洋地质前沿, 2021376): 8-17.

[本文引用: 1]

LIU XinyuSHAO LeiSHI Defenget al.

Element geochemistry of Well Xike 1 on the Xisha islands and its bearing on sea level fluctuation

[J]. Marine Geology Frontiers, 2021376): 8-17.

[本文引用: 1]

何雁兵雷永昌邱欣卫.

珠江口盆地陆丰南地区文昌组沉积古环境恢复及烃源岩有机质富集主控因素研究

[J]. 地学前缘, 2024312): 359-376.

[本文引用: 2]

HE YanbingLEI YongchangQIU Xinweiet al.

Sedimentary paleoenvironment and main controlling factors of organic enrichment in source rocks of the Wenchang Formation in southern Lufeng, Pearl River Mouth Basin

[J]. Earth Science Frontiers, 2024312): 359-376.

[本文引用: 2]

卢双舫张敏. 油气地球化学[M]. 北京石油工业出版社2008.

[本文引用: 1]

LU ShuangfangZHANG Min. Petroleum geochemistry[M]. BeijingPetroleum Industry Press2008.

[本文引用: 1]

宋桂侠惠荣耀丁安娜.

松辽盆地滨北地区生物气源岩中醇、酮含氧化合物的地球化学特征

[J]. 天然气地球科学, 2004154): 360-366.

SONG GuixiaHUI RongyaoDING Annaet al.

Geochemical characteristics of neutral bearing-oxygen compounds in source rocks of biogas, Binbei area, Songliao Basin

[J]. Natural Gas Geoscience, 2004154): 360-366.

张水昌张斌王晓梅.

松辽盆地古龙页岩油富集机制与常规——非常规油有序分布

[J]. 石油勘探与开发, 2023505): 911-923.

[本文引用: 1]

ZHANG ShuichangZHANG BinWANG Xiaomeiet al.

Gulong shale oil enrichment mechanism and orderly distribution of conventional-unconventional oils in the Cretaceous Qingshankou Formation, Songliao Basin, NE China

[J]. Petroleum Exploration and Development, 2023505): 911-923.

[本文引用: 1]

/