石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (6): 1423-1434.doi: 10.11743/ogg20210616
收稿日期:
2020-04-20
出版日期:
2021-12-28
发布日期:
2021-12-16
通讯作者:
郭佩
E-mail:nwulcz@126.com;guopei18@cdut.edu.cn
第一作者简介:
李长志(1991—), 男, 博士, 陆相蒸发岩与烃源岩。E-mail: 基金项目:
Changzhi Li1(), Pei Guo1,*(), Xianqi Ke2, Yan Ma3
Received:
2020-04-20
Online:
2021-12-28
Published:
2021-12-16
Contact:
Pei Guo
E-mail:nwulcz@126.com;guopei18@cdut.edu.cn
摘要:
为明确火山活动控制陆相含油气盆地优质烃源岩发育的作用机制,对古今火山、碱湖以及优质烃源岩这三者的相互联系进行广泛的文献调研,认为碱湖是联系火山活动与优质烃源岩发育的中间场所。火山活动喷发的CO2进入热液、地下水或河流中,加速硅酸盐水解,产生大量HCO3-,输入湖泊中导致水体pH值升高,形成碱湖。而碱湖中高pH值可以活化Mo、磷酸盐和硅酸盐等多种营养元素和化合物,提高水体的初级生产力;同时也可以使硅质在水体中的溶解度呈指数增大,这种溶解的硅质在有机质初始降解等pH值降低过程中易发生沉淀,形成硅质保护层,避免有机质的进一步降解。由此提出火山活动-碱湖-优质烃源岩的成因链模式,该模式形成的页岩油气储集层微晶白云石等矿物含量高,凝灰物质易发生蒙脱石-沸石-钾长石-钠长石转变,可以有效增加页岩油气储集层的脆性和微孔隙。
中图分类号:
表1
古老碱湖中常见的富钠碳酸盐矿物"
矿物类型 | 化学式 | 现代碱湖是否存在 | 成因 | 文献 |
天然碱(trona) | Na3(HCO3)(CO3)·2H2O | 是 | 水体蒸发浓缩,浅水 | [ |
苏打石(nahcolite) | Na(HCO3) | 是 | 原生或成岩转化 | [ |
泡碱(natron) | Na2CO3·10H2O | 是 | 原生或成岩转化 | [ |
碳酸钠钙石(shortite) | Na2Ca2(CO3)3·H2O | 否 | 钙水碱失水转化 | [ |
钙水碱(pirssonite) | Na2Ca(CO3)2 ·2H2O | 否 | 斜碳钠钙石成岩转化 | [ |
单斜钠钙石(gaylussite) | Na2Ca(CO3)2 ·5H2O | 是 | 水体蒸发浓缩 | [ |
磷钠镁石(bradleyite) | Na3Mg(PO4)(CO3) | — | 成岩作用 | [ |
氯碳酸钠镁石(northupite) | Na3MgCl(CO3)2 | 是 | 原生或碳酸钠钙石与石盐接触 | [ |
碳镁钠石(eitelite) | Na2Mg(CO3)2 | — | 原生或成岩转化 | [ |
表2
国内外典型碱湖发育背景及岩矿信息"
湖泊或古老 含碱地层 | 国家 | 时代 | 主要碱性矿物 | 气候背景 | 火山碎屑 | 火山岩石类型 | 热液影响 | 文献来源 |
Lake Van | 土耳其 | 现代 | Calcite(碱湖早期) | 河流径流2km3/a; 蒸发量3.8 km3/a | 有,12层 | Nemrut和Süphan两个火山口,岩石类型为过碱性流纹岩 | 较少 | [ |
Specchio di Venere Lake | 意大利 | 更新世—现代 | aragonite,calcite,dolomite | 半干旱 | 有 | 位于火山岛上,富钠超碱性流纹岩 | 第二来源 | [ |
Lake Natron | 坦桑尼亚 | 现代 | Trona,gaylussite | 年降雨量600 ~ 900 mm,年蒸发量2800 mm | 有 | Oldoinyo Lengai火山口:碱性硅酸盐岩浆,碳酸盐熔岩 | 主要 | [ |
Lake Bogaria | 肯尼亚 | 全新世—现代 | Trona,nahcolite,gaylussite | 有 | — | 发育200多个Na-HCO3型热泉 | [ | |
Lake Magadi | 肯尼亚 | 全新世—现代 | Trona,nahcolite, | 有 | 玄武岩和碱性粗面岩 | 主要来源 | [ | |
Lake Searles | 美国加利福利亚 | 更新世—现代 | Trona,nahcolite,halite,burkeite,shortite | 干旱气候 | 有 | 硅质火山岩 | 第二来源 | [ |
青藏高原羌南碳酸盐型盐湖带 | 中国西藏 | 现代 | 多种 | 干旱气候 | 下部地层含有 | 钙碱性火山岩 | 主要 | [ |
Beypazari盆地中新统 | 土耳其 | 中、晚 中新世 | Trona,nahcolite,pirssonite | 研究薄弱 | 有 | Teke火山口,安山和玄武岩熔岩 | 研究薄弱 | [ |
Bridger盆地绿河组Wilkins Peak Member | 美国怀俄明州 | 始新世 | Trona,nahcolite,shortite | 早始新世温室气候 | 有 | Absaroka火山岩省和Lowland Creek火山口 | 争议较大,直接证据少 | [ |
Piceance Greek盆地绿河组Parachute Greek Member | 美国科罗拉多高原 | 始新世 | Nahcolite,trona,dawsonit,halite | 早始新世温室气候 | 有 | 研究薄弱 | [ | |
南襄盆地泌阳凹陷核桃园组 | 中国河南 | 始新世 | Trona,nahcolite,halite | 争议较大 | — | 研究薄弱 | 研究程度低 | [ |
南大西洋下白垩统盐下碳酸盐地层 | 巴西和安哥拉 | 早白垩世Aptian | Stevensite | 干旱气候 | 有 | 粗面岩 | 影响较大 | [ |
准噶尔盆地玛湖凹陷风城组 | 中国新疆 | 早二叠世 | Trona,shortite,searlesite | 研究薄弱 | 有 | 研究薄弱 | 研究程度低 | [ |
表3
古老碱湖沉积物中常见的自生硅酸盐矿物"
矿物类型 | 化学式 | 成因 | 文献 |
钙十字沸石(phillipsite) | (Ca,Na2,K2)3Al6Si10O32·12H2O | 硅质火山灰与高盐度、高碱性的孔隙流体接触,按火山灰→钙十字沸石→钾长石→硅硼钠石的成岩序列演化 | [ |
钾长石(k-feldspar) | KAlSi3O8 | ||
水硅硼钠石(searlesite) | NaBSi2O·H2O | ||
富镁蒙脱石(mg-rich smectites) | (Na,Ca)0.33(Al,Mg)2[Si4O10](OH)2·nH2O | 火山灰与中等盐度、略碱性的地层水接触,按火山灰→富镁蒙脱石→方沸石→斜发沸石→蛋白石的成岩序列演化 | [ |
方沸石(analcime) | NaA1Si2O6·H2O | ||
斜发沸石(clinoptilolite) | (Na,K,Ca)2-3Al3(Al,Si)2Si13O36·12H2O | ||
蛋白石(opal c-t) | SiO2 | ||
钠长石(albite) | NaAlSi3O8 | 钾长石转化,代表高温成岩产物 | [ |
丝硅镁石(loughlinite) | Na2Mg3Si6O16·8H2O | 原生;含硅溶液与天然碱和白云石接触;碳酸钠钙石与含硅溶液接触,Mg2+来源于有机物质的释放 | [ |
片钠铝石(dawsonite) | NaAl(OH)2CO3 | 一般与白云石共生 | [ |
1 |
Sarmiento J L . Atmospheric CO2 stalled[J]. Nature, 1993, 365, 697- 698.
doi: 10.1038/365697a0 |
2 | Watson A . Volcanic Fe, CO2, ocean productivity and climate[J]. Nature, 1997, 385, 587- 588. |
3 |
Frogner P , Gislason S R , Oskarsson N . Fertilizing potential of volcanic ash in ocean surface water[J]. Geology, 2001, 29, 487- 490.
doi: 10.1130/0091-7613(2001)029<0487:FPOVAI>2.0.CO;2 |
4 | Duggen S , Croot P , Schacht U , et al. Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: evidence from biogeochemical experiments and satellite data[J]. Geophysical. Research Letters, 2007, 34, L01612. |
5 | Smith M A , White M J . Observations on Lakes near Mount St. Helens: phytoplankton[J]. Archiv fur Hydrobiologie, 2007, 104, 345- 362. |
6 | 刘池洋, 黄雷, 张东东, 等. 石油贫富悬殊的成因: 来自华北克拉通东部南北新生代盆地的启示[J]. 中国科学: 地球科学, 2018, 48, 1506- 1526. |
Liu Chiyang , Huang Lei , Zhang Dongdong , et al. Genetic causes of oil-rich and-poor reservoirs: Implications from two Cenozoic basins in the eastern North China Craton[J]. Science China: Earth Science, 2018, 48, 1506- 1526. | |
7 | 刘池洋, 赵俊峰, 马艳萍, 等. 富烃凹陷特征及其形成研究现状与问题[J]. 地学前缘, 2014, 21 (1): 75- 88. |
Liu Chiyang , Zhao Junfeng , Ma Yanping , et al. The advances and problems in the study of the characteristics and formation of hydrocarbon-rich sag[J]. Earth Science Frontiers, 2014, 21 (1): 75- 88. | |
8 | Gooowin J H . Analcime and K-Feldspar in tuffs of the Green River Formation, Wyoming[J]. American Mineralogist, 1973, 58, 93- 105. |
9 | Grant W D, Tindall B J. The alkaline, saline environment[C]//Herbert R A, Codd G A, eds. Microbes in Extreme Environments, Dundee, 1984. London: Academic Press, 1986: 22-54. |
10 | Grant W D. Introductory chapter: half a lifetime in soda lakes[M]//Ventosa A. Halophilic Microorganisms. Berlin, Heidelberg: Springer-Verlag, 2004: 17-32. |
11 |
Melack J M . Primary producer dynamics associated with evaporative concentration in a shallow, equatorial soda lake(Lake Elmenteita, Kenya)[J]. Hydrobiologia, 1988, 158 (1): 1- 14.
doi: 10.1007/BF00026264 |
12 |
Jones B E , Grant W D , Duckworth A W , et al. Microbial diversity of soda lakes[J]. Extremophiles, 1998, 2 (3): 191- 200.
doi: 10.1007/s007920050060 |
13 | Sorokin D Y , Kuenen J G , Muyzer G . The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes[J]. Frontiers in Microbiology, 2011, 2 (1): 1- 16. |
14 |
Talling J F , Wood R B , Prosser M V , et al. The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes[J]. Freshwater Biology, 1973, 3 (1): 53- 76.
doi: 10.1111/j.1365-2427.1973.tb00062.x |
15 |
Melack J M , Kilham P . Photosynthetic rates of phytoplankon in East African alkaline, saline lakes[J]. Limnology and Oceanography, 1974, 19, 743- 755.
doi: 10.4319/lo.1974.19.5.0743 |
16 | Carroll A R , Bohacs K M . Lake-type controls on petroleum source rock potential in nonmarine basins[J]. AAPG Bulletin, 2001, 85, 1033- 1053. |
17 | 妥进才, 曾凡刚, 黄杏珍, 等. 泌阳凹陷-湖相碳酸盐岩生油的一个实例[J]. 沉积学报, 1997, 15 (S): 64- 69. |
Tuo Jincai , Zeng Fangang , Huang Xingzhen , et al. Biyang Depression-An Example of Lacustrine Carbonate As Source Rocks of Petroleum[J]. Acta Sedmentologica Sinica, 1997, 15 (S): 64- 69. | |
18 | 曹剑, 雷德文, 李玉文, 等. 古老碱湖优质烃源岩: 准噶尔盆地下二叠统风城组[J]. 石油学报, 2015, 36 (7): 781- 790. |
Cao Jian , Lei Dewen , Li Yuwen , et al. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar Basin[J]. Acta Petrolei Sinica, 2015, 36 (7): 781- 790. | |
19 | Smoot J P, Lowenstein T K. Depositional environments of non-marine evaporates[M]//Melvin J L. Evaporites, Petroleum and Mineral Resources. Amsterdam: Elsevier Science Publishers, 1991: 189-347. |
20 | Suner F. Shortite formation in Turkey: its geochemical properties[C]//Nishiyama T, Fisher G W, eds. Proceedings of the 29th International Geological Congress, Kyoto, 1992. Zeist, Netherlands: VSP International Science Publishers, 1994: 237-244. |
21 | Bradley W H , Eugster H P . Geochemistry and paleolimnology of the trona deposits and associated authigenic minerals of the Green River Formation of Wyoming[J]. USGS Professional Paper, 1969, 496-B, 71- 86. |
22 | Smith J W. The chemistry which created Green River Formation oil shale[C]//Miknis, Francis P, eds. ACS Symposium Series, Washington DC, 1983. Seattle: American Chemical Society, Division of Petroleum Chemistry, 1983: 76-84. |
23 |
Lowenstein T K , Demicco R V . Elevated Eocene Atmospheric CO₂ and Its Subsequent Decline[J]. Science, 2006, 313 (5795): 1928.
doi: 10.1126/science.1129555 |
24 | Jagniecki E A , Jenkins D M , Lowenstein T K , et al. Experimental study of shortite (Na2Ca2(CO3)3)formation and application to the burial history of the Wilkins Peak Member, Green River Basin, Wyoming, USA[J]. Geochimica et Cosmochimica Acta, 2013, 115 (5): 31- 45. |
25 | 郑喜玉. 内蒙古盐湖[M]. 北京: 科学出版社, 1992: 196- 247. |
Zheng Xiyu . Salt lake in Inner Mongolia[M]. Beijing: Science Press, 1992: 196- 247. | |
26 | García Veigas J , İbrahim G , Helvacı C , et al. A genetic model for Na-carbonate mineral precipitation in the Miocene Beypazarı trona deposit, Ankara province, Turkey[J]. Sedimentary Geology, 2013, 294 (3): 315- 327. |
27 | Dyni J R . Sodium Carbonate Resources of the Green River Formation[J]. US Geology Survey US Geological, 1996, 1- 42. |
28 | Tosca N J , Wright V P . Diagenetic pathways linked to labile Mg-clays in lacustrine carbonate reservoirs: A model for the origin of secondary porosity in the Cretaceous pre-salt Barra Velha Formation, offshore Brazil[J]. Geological Society Special Publication, 2015, 435 (1): 33- 46. |
29 |
Wright V P , Barnett A J . An abiotic model for the development of textures in some South Atlantic early Cretaceous lacustrine carbo-nates[J]. Geological Society Special Publications, 2015, 418, 209- 219.
doi: 10.1144/SP418.3 |
30 | Pecoraino G , D'Alessandro W , Inguaggiato S . The Other Side of the Coin Geochemistry of Alkaline Lakes in Volcanic Areas[M]. Berlin, Heidelberg: SpringerVerlag, 2015: 219- 237. |
31 | Renaut R W, Tiercelin J J. Alimentation, hydrologie[M]//Tiercelin J J, Vincens A. Le demi-graben de Baringo-Bogoria, Rift Gregory, Kenya. Pau: Centres Recherches Exploration-Production Elf-Aquitaine, Bulletin, 1987: 284-309. |
32 |
Renaut R W , Bernhart Owen R . Opaline cherts associated with sublacustrine hydrothermal springs at Lake Bogoria, Kenya Rift valley[J]. Geology, 1988, 16 (8): 699- 702.
doi: 10.1130/0091-7613(1988)016<0699:OCAWSH>2.3.CO;2 |
33 | Schagerl M, Renaut R W. Dipping into the Soda Lakes of East Africa[M]//Schagerl M. Soda Lakes of East Africa. Berlin, Heidelberg: Springer, 2016: 9-14. |
34 | 郑绵平, 刘喜方. 青藏高原盐湖水化学及其矿物组合特征[J]. 地质学报, 2010, 84 (11): 1585- 1600. |
Zheng Jinping , Liu Xifang . Hydrochemistry and Minerals Assemblages of Salt Lakes in the Qinghai-Tibet Plateau, China[J]. Acta Geologica Sinica, 2010, 84 (11): 1585- 1600. | |
35 | 郑绵平, 陈文西, 齐文. 青藏高原火山-沉积硼矿找矿的新发现与远景分析[J]. 地球学报, 2016, 37 (4): 407- 418. |
Zheng Jinping , Chen Wenxi , Qi Wen . New Findings and Perspective Analysis of Prospecting for Volcanic Sedimentary Boron Deposits in the Tibetan Plateau[J]. Acta Geoscientica Sinica, 2016, 37 (4): 407- 418. | |
36 |
Reimer A , Landmann G , Kempe S . Lake Van, Eastern Anatolia, Hydrochemistry and History[J]. Aquatic Geochemistry, 2009, 15 (1-2): 195- 222.
doi: 10.1007/s10498-008-9049-9 |
37 | Huguet C , Fietz S , Stockhecke M , et al. Biomarker seasonality study in Lake Van, Turkey[J]. Organic Geochemistry, 2012, 42 (11): 1289- 1298. |
38 |
Sumita M , Schmincke H U . Impact of volcanism on the evolution of Lake Van I: evolution of explosive volcanism of Nemrut Volcano (eastern Anatolia)during the past ca. 0.4 Ma[J]. Bulletin of Volcanology, 2013, 75 (5): 1- 32.
doi: 10.1007%2Fs00445-013-0714-5 |
39 | Sumita M , Schmincke H U . Impact of volcanism on the evolution of Lake Van II: Temporal evolution of explosive volcanism of Nemrut Volcano(eastern Anatolia)during the past ca. 0.4 Ma[J]. Journal of Volcanology & Geothermal Research, 2013, 253, 15- 34. |
40 |
Cukur D , Krastel S , Schmincke H U , et al. Water level changes in Lake Van, Turkey, during the past ca. 600 ka: climatic, volcanic and tectonic controls[J]. Journal of Paleolimnology, 2014, 52 (3): 201- 214.
doi: 10.1007/s10933-014-9788-0 |
41 |
Landmann G , Kempe S . Annual deposition signal versus lake dynamics: Microprobe analysis of Lake Van(Turkey)sediments reveals missing varves in the period 11.2-10.2 ka BP[J]. Facies, 2005, 51, 135- 145.
doi: 10.1007/s10347-005-0062-9 |
42 |
Schmincke H U , Sumita M . Impact of volcanism on the evolution of Lake Van(eastern Anatolia)III: Periodic (Nemrut)vs. episodic(Süphan)explosive eruptions and climate forcing reflected in a tephra gap between ca. 14 ka and ca. 30 ka[J]. Journal of Volcanology and Geothermal Research, 2014, 285, 195- 213.
doi: 10.1016/j.jvolgeores.2014.08.015 |
43 | Scoon R N. Lake Natron and the Oldoinyo Lengai Volcano[M]//Scoon R N. Geology of National Parks of Central/Southern Kenya and Northern Tanzania. Berlin, Heidelberg: Springer, Cham, 2018: 193-206. |
44 | Cioni R , Fanelli G , Guidi M , et al. Lake Bogoria hot springs(Kenya): geochemical features and geothermal implications[J]. Journal of Volcanology & Geothermal Research, 1992, 50 (3): 231- 246. |
45 |
Renaut R W . Zeolitic diagenesis of late Quaternary fluviolacustrine sediments and associated calcrete formation in the Lake Bogoria Basin, Kenya Rift Valley[J]. Sedimentology, 1993, 40 (2): 271- 301.
doi: 10.1111/j.1365-3091.1993.tb01764.x |
46 | Jones B , Renaut R W . Noncrystallographic calcite dendrites from hot-spring deposits at Lake Bogoria, Kenya[J]. Journal of Sedimentary Research, 1995, 65 (1): 154- 169. |
47 | McCall J . Lake Bogoria, Kenya: Hot and warm springs, geysers and Holocene stromatolites[J]. Earth Science Reviews, 2010, 103 (1): 71- 79. |
48 | Nikonova E L. Authigenic Clay Formation and Diagenetic Reactions, Lake Magadi, Kenya[D]. Atlanta: Georgia State University, 2016. |
49 |
Hay R L , Guldman S G . Diagenetic alteration of silicic ash in Searles Lake, California[J]. Clays and Clay Minerals, 1987, 35 (6): 449- 457.
doi: 10.1346/CCMN.1987.0350605 |
50 | Savage D , Benbow S , Watson C , et al. Natural systems evidence for the alteration of clay under alkaline conditions: an example from Searles Lake, California[J]. Applied Clay Science, 2010, 47 (1): 72- 81. |
51 |
Guo X , Chafetz H S . Large tufa mounds, Searles Lake, California[J]. Sedimentology, 2012, 59 (5): 1509- 1535.
doi: 10.1111/j.1365-3091.2011.01315.x |
52 | Lowenstein T K , Dolginko L A C , García Veigas J . Influence of magmatic-hydrothermal activity on brine evolution in closed basins: Searles Lake, California[J]. Geological Society of America Bulletin, 2016, 128 (9): 1555- 1568. |
53 | Helvaci C . The Beypazari trona deposit, Ankara Province, Turkey[M]. Wyoming: Wyoming State Geological Survey Public Information Circular, 1998: 67- 104. |
54 |
Lowenstein T K , Jagniecki E A , Carroll A R , et al. The Green River salt mystery: What was the source of the hyperalkaline lake waters?[J]. Earth-Science Reviews, 2017, 173, 295- 306.
doi: 10.1016/j.earscirev.2017.07.014 |
55 | Jagniecki E A , Lowenstein T K , Jenkins D M , et al. Eocene atmospheric CO2 from the nahcolite proxy[J]. Geology, 2015, 43 (12): 1075- 1078. |
56 | Zhang C. The natural soda deposits of China[C]//Dyni J R, Jones R W, eds. Proceedings of the First International Soda Ash Conference, Laramie, 1997. Wyoming: Public Information Circular, 1998: 57-66. |
57 | Ma L , Liu C , Zhao Y , et al. Depositional facies and environments of Eocene evaporites of the Hetaoyuan Formation(the Anpeng Deposits), Biyang Depression, Nanyang Basin, China[J]. Geological Society of America Abstracts with Programs, 2013, 45, 817. |
58 |
Yang J H , Yi C L , Du Y S , et al. Geochemical significance of the Paleogene soda-deposits bearing strata in Biyang Depression, Henan Province[J]. Science China Earth Sciences, 2015, 58 (1): 129- 137.
doi: 10.1007/s11430-014-4963-8 |
59 |
Teboul P A , Kluska J M , Marty N C M , et al. Volcanic rock alterations of the Kwanza Basin, offshore Angola-Insights from an integrated petrological, geochemical and numerical approach[J]. Marine Petroleum Geology, 2017, 80, 394- 411.
doi: 10.1016/j.marpetgeo.2016.12.020 |
60 | Mercedes Martín R , Ayora C , Tritlla J . The hydrochemical evolution of alkaline volcanis lakes: A model to understand the South Atlantic Pre-salt mineral assemblages[J]. Earth-Science Review, 2019, 198, 1- 19. |
61 | 余宽宏, 操应长, 邱隆伟, 等. 准噶尔盆地玛湖凹陷早二叠世风城组沉积时期古湖盆卤水演化及碳酸盐矿物形成机理[J]. 天然气地球科学, 2016, 27 (7): 1248- 1263. |
Yu Kuanhong , Cao Yingchang , Qiu Longwei , et al. Brine evolution of ancient lake and mechanismof carbonate minerals during the sedimentation of Early Permian Fengcheng Formation in Mahu Depression, Junggar Basin, China[J]. Natural Gas Geoscience, 2016, 27 (7): 1248- 1263. | |
62 | 余宽宏, 操应长, 邱隆伟, 等. 准噶尔盆地玛湖凹陷下二叠统风城组含碱层段韵律特征及成因[J]. 古地理学报, 2016, 18 (6): 1012- 1029. |
Yu Kuanhong , Cao Yingchang , Qiu Longwei , et al. Characteristics of alkaline layer cycles and origin of the Lower Permian Fengcheng Formation in Mahu sag, Junggar Basin[J]. Journal of Palaeogeography, 2016, 18 (6): 1012- 1029. | |
63 |
Hammond A P , Carroll A R , Smith M E , et al. Bicarbonate Rivers: Connecting Eocene Magmatism to the World's Largest Na-Carbona-te Evaporite[J]. Geology, 2019, 47, 1020- 1024.
doi: 10.1130/G46419.1 |
64 | 朱世发, 朱筱敏, 刘学超, 等. 油气储层火山物质蚀变产物及其对储集空间的影响-以准噶尔盆地克-夏地区下二叠统为例[J]. 石油学报, 2014, 35 (2): 276- 285. |
Zhu Shifa , Zhu Xiaomin , Liu Xuechao , et al. Alteration products of volcanic materials and their influence on reservoir space in hydrocarbon reservoirs: evidence from Lower Permian strata in Ke-Xia region, Junggar Basin[J]. Acta Petrolei Sinica, 2014, 35 (2): 276- 285. | |
65 | 朱世发, 朱筱敏, 吴冬, 等. 准噶尔盆地西北缘下二叠统油气储层中火山物质蚀变及控制因素[J]. 石油与天然气地质, 2014, 35 (1): 77- 85. |
Zhu Shifa , Zhu Xiaomin , Wu Dong , et al. Alteration of volcanics and its controlling factors in the Lower Permian reservoirs at northwestern margin of Junggar Basin[J]. Oil and Gas Geology, 2014, 35 (1): 77- 85. | |
66 |
Earman S , Phillips F M , Mcpherson B J O L . The role of "excess" CO2 in the formation of trona deposits[J]. Applied Geochemistry, 2005, 20 (12): 2217- 2232.
doi: 10.1016/j.apgeochem.2005.08.007 |
67 | Fazi S , Butturini A , Tassi F , et al. Biogeochemistry and biodiversity in a network of saline-alkaline lakes: Implications of ecohydrological connectivity in the Kenyan Rift Valley[J]. Ecohydrology & Hydrobiology, 2018, 18, 96- 106. |
68 | Zavarzin G A , Zhilina T N , Kevbrin V V . The alkaliphilic microbial community and its functional diversity[J]. Microbiology, 1999, 68 (5): 503- 521. |
69 |
Melack JM , Kilham P . Photosynthetic rates of phytoplankton in East African alkaline, saline lakes[J]. Limnol Oceanogr, 1974, 19, 743- 755.
doi: 10.4319/lo.1974.19.5.0743 |
70 | Helz G R , Bura Nakić E , Mikac N , et al. New model for molybdenum behavior in euxinic waters[J]. Chemical Geology, 2011, 284 (3): 323- 332. |
71 |
Sorokin D Y , Banciu H L , Muyzer G . Functional microbiology of soda lakes[J]. Current Opinion in Microbiology, 2015, 25, 88- 96.
doi: 10.1016/j.mib.2015.05.004 |
72 | Kempe S, Kazmierczak J. Soda ocean hypothesis[M]//Reitner J, Thiel V. Encyclopedia of Geobiology. Berlin, Heidelberg: Springer, 2011: 765-870. |
73 |
Ferris J P , Jr W J H . HCN and chemical evolution: The possible role of cyano compounds in prebiotic synthesis[J]. Tetrahedron, 1984, 40 (7): 1093- 1120.
doi: 10.1016/S0040-4020(01)99315-9 |
74 |
Verschuren D , Edgington D N , Kling H J , et al. Silica Depletion in Lake Victoria: Sedimentary Signals at Offshore Stations[J]. Journal of Great Lakes Research, 1998, 24 (1): 118- 130.
doi: 10.1016/S0380-1330(98)70804-4 |
75 | Sanz Montero , M E , Rodríguez Aranda J P , Pérez Soba C . Microbial weathering of Fe-rich phyllosilicates and formation of pyrite in the dolomite precipitating environment of a Miocene lacustrine system[J]. European Journal of Mineralogy, 2008, 21, 163- 175. |
76 |
Renaut R W , Jones B , Tiercelin J J . Rapid in situ silicification of microbes at Loburu hot springs, Lake Bogoria, Kenya rift valley[J]. Sedimentology, 1998, 45, 1083- 1103.
doi: 10.1046/j.1365-3091.1998.00194.x |
77 |
Konhauser K O , Phoenix V R , Bottrell S H , et al. Microbial-silica interactions in Icelandic hot spring sinter: Possible analogues for some Precambrian siliceous stromatolites[J]. Sedimentology, 2001, 48, 415- 433.
doi: 10.1046/j.1365-3091.2001.00372.x |
78 | Parnell J. Significance of lacustrine cherts for the environment of source-rock deposition in the Orcadian Basin, Scotland[M]//Fleet A J, Kelts K, Talbot M R. Lacustrine Petroleum Source Rocks. London: Geological Society Special Publication, 1988: 205-217. |
79 |
Jirsa F , Gruber M , Stojanovic A , et al. Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme draught[J]. Chemie der Erde Geochemistry, 2013, 73, 275- 282.
doi: 10.1016/j.chemer.2012.09.001 |
80 |
Kiage L M , Liu K . Palynological evidence of climate change and land degradation in the Lake Baringo area, Kenya, East Africa, since AD 1650[J]. Palaeogeography Palaeoclimatology Palaeoe-cology, 2009, 279, 60- 72.
doi: 10.1016/j.palaeo.2009.05.001 |
81 | 王敏, 陈祥, 严永新, 等. 南襄盆地泌阳凹陷陆相页岩油地质特征与评价[J]. 古地理学报, 2013, 15 (5): 103- 111. |
Wang Min , Chen Xiang , Yan Yongxin , et al. Geological characteri-stics and evaluation of continental shale oil in Biyang sag of Nanxi-ang Basin[J]. Journal of Palaeogeography, 2013, 15 (5): 103- 111. | |
82 | 文华国, 郑荣才, HaiRuoQING, 等. 青藏高原北缘酒泉盆地青西凹陷白垩系湖相热水沉积原生白云岩[J]. 中国科学: 地球科学, 2014, 44 (4): 591- 604. |
Wen Huaguo , Zheng Rongcai , Qing Hairuo , et al. Primary dolostone related to the Cretaceous lacustrine hydrothermal sedimentation in Qingxi sag, Jiuquan Basin on the northern Tibetan Plateau[J]. Science China: Earth Sciences, 56, 2080- 2093. | |
83 |
Zhu S F , Jia Y , Cui H , et al. Alteration and burial dolomitization of fine-grained, intermediate volcaniclastic rocks under saline-alkaline conditions: Bayindulan Sag in the Er'Lian Basin, China[J]. Marine and Petroleum Geology, 2019, 110, 621- 637.
doi: 10.1016/j.marpetgeo.2019.07.045 |
84 |
Zhu S F , Jue H , Zhu X M , et al. Dolomitization of felsic volcaniclastic rocks in continental strata: A study from the Lower Cretaceous of the A'nan Sag in Er'lian Basin, China[J]. Sedimentary Geolo-gy, 2017, 353, 13- 27.
doi: 10.1016/j.sedgeo.2017.03.004 |
85 | 匡立春, 唐勇, 雷德文, 等. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J]. 石油勘探与开发, 2012, 27 (6): 20- 30. |
Kuang Lichun , Tang Yong , Lei Dewen , et al. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2012, 27 (6): 20- 30. | |
86 | Katz B J . Clastic and carbonate lacustrine systems: An organic geochemical comparison(Green River Formation and East African lake sediments)[M]. London: Geological Society Special Publication, 1988: 81- 90. |
87 | Smoot J P. Origin of the Carbonate Sediments in the Wilkins Peak Member of the Lacustrine Green River Formation (Eocene), Wyoming, USA[M]//Matter A, Tucker M E. Modern and Ancient Lake Sediments. Algiers: Special Publications in The International Association of Sedimentologists, 1978: 109-127. |
88 |
Guo P , Liu C , Wang L , et al. Mineralogy and organic geochemistry of the terrestrial lacustrine pre-salt sediments in the Qaidam Basin: Implications for good source rock development[J]. Marine Petroleum Geology, 2019, 107, 149- 162.
doi: 10.1016/j.marpetgeo.2019.04.029 |
89 | Desborough G A . Authigenic albite and potassium feldspar in the Green River Formation, Colorado and Wyoming[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1975, 60, 235- 239. |
90 |
熊英, 程克明, 马力元. 酒西坳陷下白垩统湖相碳酸盐岩生烃研究[J]. 石油勘探与开发, 2006, 33 (6): 687- 691.
doi: 10.3321/j.issn:1000-0747.2006.06.009 |
Xiong Ying , Cheng Keming , Ma Liyuan . Hydrocarbon generation of Lower Cretaceous lacustrine carbonate in Jiuxi Depression[J]. Petroleum Exploration and Development, 2006, 33 (6): 687- 691.
doi: 10.3321/j.issn:1000-0747.2006.06.009 |
|
91 |
李婷婷, 朱如凯, 白斌, 等. 酒泉盆地青西凹陷下沟组湖相细粒沉积岩纹层特征及研究意义[J]. 中国石油勘探, 2015, 20 (1): 38- 47.
doi: 10.3969/j.issn.1672-7703.2015.01.004 |
Li Tingting , Zhu Rukai , Bai Bin , et al. Characteristics and research significance of fine lacustrine sedimentary rock laminations of Xiagou Formation in Qingxi Depression of Jiuquan Basin[J]. China Petroleum Exploration, 2015, 20 (1): 38- 47.
doi: 10.3969/j.issn.1672-7703.2015.01.004 |
|
92 |
Desborough G A . A biogenic-chemical stratified lake model for the origin of oil shale of the Green River Formation An alternative to the playa-lake model[J]. Geological Society of America Bulletin, 1978, 89, 961- 971.
doi: 10.1130/0016-7606(1978)89<961:ABSLMF>2.0.CO;2 |
93 |
Slaughter M , Hill RJ . The influence of organic matter in organogenic dolomitization: Perspective[J]. Journal of Sedimentary Research, 1991, 61, 296- 303.
doi: 10.1306/D42676F9-2B26-11D7-8648000102C1865D |
94 |
Zhu S F , Cui H , Jia Y , et al. Occurrence, composition, and origin of analcime in sedimentary rocks of non-marine petroliferous basins in China[J]. Marine and Petroleum Geology, 2020, 113, 104164.
doi: 10.1016/j.marpetgeo.2019.104164 |
95 | Zhu S F , Qin Y , Liu X , et al. Origin of dolomitic rocks in the Lower Permian Fengcheng Formation, Junggar Basin, China: Evidence from petrology and geochemistry[J]. Mineralogy and Petrolo-gy, 2017, 112 (2): 267- 282. |
96 | Hay R L . Zeolites and zeolitic reactions in sedimentary rocks[J]. Geological Society of America Special Paper, 1966, 85, 130. |
97 |
Langella A , Cappelletti P , Gennaro M . Zeolites in closed hydrologic systems[J]. Reviews in Mineralogy and Geochemistry, 2001, 45, 235- 260.
doi: 10.2138/rmg.2001.45.7 |
98 |
Larsen D . Revisiting silicate authigenesis in the Pliocene-Pleistocene Lake Tecopa beds, southeastern California: Depositional and hydrological controls[J]. Geosphere, 2008, 4 (3): 612- 639.
doi: 10.1130/GES00152.1 |
99 |
Tank R W . Clay Minerals of the Green River Formation (Eocene) of Wyoming[J]. Clay Minerals, 1972, 9, 297- 308.
doi: 10.1180/claymin.1972.009.3.05 |
100 |
Hay R L , Moiola R J . Authigenic silicate minerals in Searles Lake, California[J]. Sedimentology, 1963, 2 (4): 312- 332.
doi: 10.1111/j.1365-3091.1963.tb01222.x |
101 |
Worden R H . Dawsonite cement in the Triassic Lam Formation, Shabwa Basin, Yemen: A natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction[J]. Marine and Petroleum Geology, 2006, 23, 61- 77.
doi: 10.1016/j.marpetgeo.2005.07.001 |
102 | 纪友亮, 蒋裕强, 张世奇. 油气储层地质学[M]. 北京: 石油工业出版社, 2015: 258 |
Ji Youliang , Jiang Yuqiang , Zhang Shiqi . Reservoir geology[M]. Beijing: Petroleum Industry Press, 2015: 258 | |
103 |
李晓萌, 潘仁芳, 武文竞, 等. 川南地区下古生界筇竹寺组与龙马溪组页岩气纵向对比及评价[J]. 石油化工应用, 2016, 35 (10): 87- 92.
doi: 10.3969/j.issn.1673-5285.2016.10.021 |
Li Xiaomeng , Pan Renfang , Wu Wenjing , et al. Shale gas comparision and evaluation of Longmaxi formation and Qiongzhusi formation of lower Palaeozoic in the area of southern Sichuan[J]. Petrochemical Industry Application, 2016, 35 (10): 87- 92.
doi: 10.3969/j.issn.1673-5285.2016.10.021 |
|
104 |
Jarvie D M , Hill R J , Ruble T E , et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91 (4): 475- 499.
doi: 10.1306/12190606068 |
105 |
柯思. 泌阳凹陷页岩油赋存状态及可动性探讨[J]. 石油地质与工程, 2017, 31 (1): 80- 83.
doi: 10.3969/j.issn.1673-8217.2017.01.018 |
Ke Si . Discussion on the occurrence and mobility of shale oil in the Biyang Depression[J]. Petroleum Geology and Engineering, 2017, 31 (1): 80- 83.
doi: 10.3969/j.issn.1673-8217.2017.01.018 |
|
106 | 朱世发, 朱筱敏, 王绪龙, 等. 准噶尔盆地西北缘二叠系沸石矿物成岩作用及对油气的意义[J]. 中国科学(地球科学版), 2011, 41 (11): 1602- 1612. |
Zhu Shifa , Zhu Xiaomin , Wang Xulong , et al. Zeolite diagenesis and its control on petroleum reservoir quality of Permian in northwestern margin of JunggarBasin[J]. Science China: Earth Scie-nces, 41 (11): 1602- 1612. |
[1] | 高嘉洪, 金之钧, 梁新平, 李士祥, 杨伟伟, 朱如凯, 杜晓宇, 刘全有, 李彤, 董琳, 李鹏, 张旺. 火山活动对鄂尔多斯盆地三叠系长7段淡水湖盆富营养化与沉积水体介质环境的影响[J]. 石油与天然气地质, 2023, 44(4): 887-898. |
[2] | 田立新, 王清斌, 刘晓健, 郝轶伟. 渤海海域莱州湾凹陷沙河街组硅化碎屑岩地质特征及其储层意义[J]. 石油与天然气地质, 2020, 41(5): 1073-1082. |
[3] | 袁伟, 柳广弟, 徐黎明, 牛小兵. 鄂尔多斯盆地延长组7段有机质富集主控因素[J]. 石油与天然气地质, 2019, 40(2): 326-334. |
[4] | 李映涛, 叶宁, 袁晓宇, 黄擎宇, 苏炳睿, 周瑞琦. 塔里木盆地顺南4井中硅化热液的地质与地球化学特征[J]. 石油与天然气地质, 2015, 36(6): 934-944. |
[5] | 吴文祥, 张海翔, 李占东, 梁鹏, 刘赛, 李萌, 鲍储慧. 层序地层地球化学方法在烃源岩评价中的应用——以海拉尔盆地贝尔凹陷为例[J]. 石油与天然气地质, 2015, 36(4): 701-710. |
[6] | 李浩, 陆建林, 左宗鑫, 王保华, 李瑞磊, 刘娅昭. 长岭断陷南部断陷层湖相优质烃源岩发育控制因素[J]. 石油与天然气地质, 2015, 36(2): 209-218,229. |
[7] | 蔡希源. 湖相烃源岩生排烃机制及生排烃效率差异性——以渤海湾盆地东营凹陷为例[J]. 石油与天然气地质, 2012, 33(3): 329-334,345. |
[8] | 王伟明, 卢双舫, 曹瑞成, 尚教辉, 陈国辉. 海拉尔盆地乌东斜坡带优质烃源岩识别及油气运聚特征再认识[J]. 石油与天然气地质, 2011, 32(5): 692-697,709. |
[9] | 蔡雄飞,冯庆来,顾松竹,罗中杰. 海退型陆棚相:烃源岩形成的重要部位 ——以中、上扬子地区北缘上二叠统大隆组为例[J]. 石油与天然气地质, 2011, 32(1): 29-37. |
[10] | 庞雄奇, 郭永华, 姜福杰, 尹相东, 马行陟, 郭恩珍. 渤海海域优质烃源岩及其分布预测[J]. 石油与天然气地质, 2009, 30(4): 393-397. |
[11] | 罗静兰, 林潼, 杨知盛, 刘小洪, 张军, 刘淑云. 松辽盆地升平气田营城组火山岩岩相及其储集性能控制因素分析[J]. 石油与天然气地质, 2008, 29(6): 748-757. |
[12] | 陈波, 黄发木, 夏永涛, 罗明霞, 刘计勇. 松辽盆地深层断陷发育特征与油气富集[J]. 石油与天然气地质, 2008, 29(4): 428-432. |
[13] | 董月霞, 周海民, 夏文臣. 南堡凹陷火山活动与裂陷旋回[J]. 石油与天然气地质, 2000, 21(4): 304-307. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||