石油与天然气地质 ›› 2022, Vol. 43 ›› Issue (6): 1309-1320.doi: 10.11743/ogg20220603
李增学1,2(), 刘莹1,2(), 李晓静1,2, 张功成1,2, 孙瑞1,2, 王东东1,2, 尹露生1,2, 刘佳敏1,2
收稿日期:
2022-03-21
修回日期:
2022-09-22
出版日期:
2022-11-21
发布日期:
2022-11-21
通讯作者:
刘莹
E-mail:lizengxue@126.com;liuying-69@163.com
第一作者简介:
李增学(1954—),男,教授、博士生导师,煤地质学、能源地质学与盆地分析。E?mail: 基金项目:
Zengxue Li1,2(), Ying Liu1,2(), Xiaojing Li1,2, Gongcheng Zhang1,2, Rui Sun1,2, Dongdong Wang1,2, Lusheng Yin1,2, Jiamin Liu1,2
Received:
2022-03-21
Revised:
2022-09-22
Online:
2022-11-21
Published:
2022-11-21
Contact:
Ying Liu
E-mail:lizengxue@126.com;liuying-69@163.com
摘要:
煤系及煤层是重要的烃源岩类型,已引起广泛重视。以中国南海琼东南盆地为例,剖析泥炭沼泽破坏、重建作用与煤及陆源海相烃源岩形成的成因关系,归纳了泥炭沼泽破坏作用与泥炭物质形成和聚集的“源-汇系统”的特点。研究认为风暴事件是异地煤和陆源海相烃源岩形成的主要动力因素之一,并在此基础上建立了中国南海边缘海盆地泥炭风暴沉积模式。泥炭沼泽破坏和重建作用与泥炭物质的形成、分散及聚集过程是相互作用的关系,且具有复杂多变性;泥炭沼泽破坏作用使泥炭物质被大部或全部分解或搬运,而重建作用则是在适宜的气候条件下使泥炭沼泽发育的过程得以恢复;风暴事件是南海新生代盆地泥炭沼泽发生破坏作用以及泥炭物质被远距离搬运并沉积于海相环境的主要动力因素之一。风暴潮强烈地侵蚀和扰动滨岸带泥炭沼泽,导致大量泥炭碎屑物质被掀起而卷入海水中,经由风暴重力流和浊流搬运,最终沉积形成含有陆源海相有机质的烃源岩。
中图分类号:
1 | 张功成,陈莹,李增学,等. 中国海域煤型油气成因理论[J]. 石油与天然气地质,2022,43(3):553-565. |
Zhang Gongcheng, Chen Ying, Li Zengxue,et al. Theory on genesis of coaliferous petroleum in the China Sea[J]. Oil & Gas Geology,2022,43(3):553-565. | |
2 | 杨起,韩德馨. 中国煤田地质学(上册)[M]. 北京:煤炭工业出版社,1979,1-261. |
Yang Qi, Han Dexin. Coal geology China (Volume 1) [M]. Beijing: China Coal Industry Publishing House, 1979, 1-261. | |
3 | Dai Shifeng, Bechtel Achim, Eble Cortland F., et al. Recognition of peat depositional environments in coal: A review[J]. International Journal of Coal Geology,2020, 103383:1-67. |
4 | Irina Delusina C A, Scott W S, Kenneth L V. Environmental evolution of peat in the Sacramento-San Joaquin Delta (California) during the Middle and Late Holocene as deduced from pollen, diatoms and magnetism[J].Quaternary International,2022:50-61. |
5 | Torsten U, Abdul R A, Andrea K K, et al. Diversity patterns in microfloras recovered from Miocene brown coals of the lower Rhine Basin reveal distinct coupling of the structure of the peat‐forming vegetation and continental climate variability[J].Geological Journal, 2021, 56(2):768-785. |
6 | Yan Zhang, Gao Chuanyu, Zhang Shaoqing, et al. Significance of different n-alkane biomarker distributions in four same-age peat sequences around the edges of a small maar lake in China[J].The Science of the Total Environment, 2022:154137. |
7 | Prokopovich N P. Subsidence of peat in California and Florida[J]. Bulletin of Engineering Geology and the Environment,1985,22:395–420. |
8 | Van Asselen S, Stouthamer E, Van Asch T W J. Effects of peat compaction on delta evolution: A review on processes, responses, measuring and modeling[J]. Earth Science Review, 2009, 92:35-51. |
9 | Van Asselen S, Stouthamer E, Smith N D. Factors controlling peat compaction in alluvial floodplains: A case study in the coal-temperate Cumberland marshes, Canada[J]. Journal of Sedimentary Research, 2010, 80:155–166. |
10 | Flores R M. Coal and coalbed gas: Fueling the future[M]. Elsevier, San Diego, 2014. |
11 | Doyle T W, Krauss K W, Conner W H, et al. Predicting the retreat and migration of tidal forests along the northern Gulf of Mexico under sea-level rise[J]. Forest Ecology and Management, 2010, 259:770-777. |
12 | Fagherazzi S, Anisfeld S C, Blum L K, et al. Sea level rise and the dynamics of the Marsh-Upland boundary[J]. Frontiers of Environmental Science & Engineering. . |
13 | Wang Dongdong, Zhang Gongcheng, Li Zengxue, et al. The development characteristics and distribution predictions of the Paleogene coal-measure source rock in the Qiongdongnan Basin, Northern South China Sea[J]. Acta Geologica Sinica (English Edition), 2021, 95(1): 105-120. |
14 | 张功成,李增学,王东东,等. 中国南海海域煤地质特征[J].煤炭学报,2020, 45(11):3864-3878. |
Zhang Gongcheng, Li Zengxue, Wang Dongdong,et al. Characteristics of coal geology in South China Sea[J]. Journal of China Coal Society, 2020, 45(11):3864-3878. | |
15 | Meade R H. Sources, sinks, and storage of river sediment in the Atlantic drainage of the United States[J]. The Journal of Geology, 1982, 90(3): 235-252. |
16 | Sømme T O, Hellandhansen W, Martinsen O J, et al. Relationships between morphological and sedimentological parametersin source-to-sink systems: A basis for predicting semi-quantitative characteristics in subsurface systems[J]. Basin Research, 2009, 21(4): 361-387. |
17 | Sømme T O, Jackson C A L, Vaksdal M. Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the Mor-Trondelag area of southern Norway: Part 1-depositional setting and fan evolution[J]. Basin Research, 2013, 25(5): 489-511. |
18 | Anthony E J, Julian M. Source-to-sink sediment transfers, environmental engineering and hazard mitigation in the steep Var River catchment, French Rivera, southeastern France[J]. Geomorphology, 1999, 31(1): 337-354. |
19 | Leeder M R. Sedimentary basins: Tectonic recorders of sediment discharge from drainage Catchments[J]. Earth Surface Processes and Landforms, 1997, 22(3): 229-237. |
20 | 林畅松, 夏庆龙, 施和生, 等. 地貌演化、源—汇过程与盆地分析[J]. 地学前缘, 2015, 22(1): 9-20. |
Lin Changsong, Xia Qinglong, Shi Hesheng, et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1): 9-20. | |
21 | 庞雄, 彭大钧, 陈长民, 等. 三级“源-渠-汇”耦合研究珠江深水扇系统[J]. 地质学报, 2007, 81(6): 857-864. |
Pang Xiong, Peng Dajun, Chen Changmin, et al. Three hierarchies “source-conduit-sink” coupling analysis of the Pearl River deep-water fan system[J]. Acta Geologica Sinica, 2007, 81(6): 857-864. | |
22 | 朱红涛,徐长贵,朱筱敏,等. 陆相盆地源—汇系统要素耦合研究进展[J]. 地球科学, 2017, 42(11): 1851-1870. |
Zhu Hongtao, Xu Changgui, Zhu Xiaomin, et al. Advances of the source-to-sink unites and coupling model research in continental basin[J]. Earth Science, 2017, 42(11): 1851-1870. | |
23 | 龚承林,齐昆,徐杰,等. 深水源—汇系统对多尺度气候变化的过程响应与反馈机制[J]. 沉积学报,2021,39(1):231-252. |
Gong Chenglin, Qi Kun, Xu Jie, et al. Process—product linkages and feedback mechanisms of deepwater source-to-sink responses to multi scale climate changes[J]. Acta Sedimentologica Sinica, 2021, 39(1):231-252. | |
24 | 邵龙义, 鲁静, 汪浩, 等. 中国含煤岩系层序地层学研究进展[J]. 沉积学报, 2009, 27(5): 904-914. |
Shao Longyi, Lu Jing, Wang Hao, et al. Developments of coal measures sequence stratigraphy in China [J]. Acta Sedimentologica Sinica, 2009, 27(5): 904-915. | |
25 | 邵龙义, 鲁静, 汪浩, 等. 近海型含煤岩系沉积学及层序地层学研究进展[J]. 古地理学报, 2008a, 10(6): 561-570. |
Shao Longyi, Lu Jing, Wang Hao, et al. Advances in sedimentology and sequence stratigraphy of paralic coal masures [J]. Journal of Palaeogeography, 2008a, 10(6): 561-570. | |
26 | 邵龙义, 肖正辉, 汪浩, 等. 沁水盆地石炭-二叠纪含煤岩系高分辨率层序地层及聚煤模式[J]. 地质科学, 2008b,(4): 157-171. |
Shao Longyi, Xiao Zhenghui, Wang Hao, et al. High resolution sequence stratigraphy and coal accumulation model of Carboniferous-Permian coal-bearing rock series in Qinshui Basin [J]. Chinese Journal of Geology, 2008b,(4): 157-171. | |
27 | 李增学, 吕大炜, 王东东, 等. 多元聚煤理论体系及聚煤模式[J]. 地球学报, 2015, 36(3): 271-282. |
Li Zengxue, Lv Dawei, Wang Dongdong, et al. The multiple coal-forming theoretical system and its model[J]. Acta Geoscientica Sinica, 2015, 36(3): 271-282. | |
28 | 邵龙义, 党星宇, 高祥宇, 等. 厚煤层成因机制——天文周期控制的多期次泥炭沼泽叠加模式[J]. 煤炭科学技术, 2022, 50(1): 186-195. |
Shao Longyi, Dang Xingyu, Gao Xiangyu, et al. Genetic mechanism of thick coal seams: astronomical-forcing superimposed multi-staged swamp model[J]. Coal Science and Technology, 2022, 50(1): 186-195. | |
29 | 胡益成, 苏华成. 河南晚石炭世含煤地层中的风暴异地煤[J]. 煤田地质与勘探, 1992, 20(3): 1-5. |
Hu Yicheng, Su Huacheng. The storm allochthony coal of late carboniferous coal-bearing formation in Henan Proyince[J]. Coalfield Geology and Exploration, 1992, 20(3): 1-5. | |
30 | 胡益成,廖玉枝. 华北盆地南部早二叠世早期聚煤作用的成因机制[J]. 地学前缘, 1999, 6(): 111-115. |
Hu Yicheng, Liao Yuzhi. Genetic mechanism of early Permian coal accumulation in the Southern North China basin[J]. Earth Science Frontiers, 1999, 6(): 111-115. | |
31 | 李绪宣. 琼东南盆地构造动力学演化及油气成藏研究[D].广州:中国科学院广州地球化学研究所,2004. |
Li Xuxuan. Study on structural dynamics and hydrocarbon accumulation in Qiongdongnan Basin[D]. Guangzhou: Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,2004. | |
32 | 张功成,米立军,陶维祥,等. 深水区-南海北部大陆边缘油气勘探新领域[J]. 石油学报,2007, 28(2):15-21. |
Zhang Gongcheng, Mi Lijun, Tao Wweixiang, et al.Deepwater area-the new prospecting targets of northern continental margin of South China Sea[J]. Acta Petrolei Sinica, 2007, 28(2): 15-21. | |
33 | 蔡国富,邵磊,乔培军,等. 琼东南盆地古近纪海侵及沉积环境演化[J]. 石油学报,2013, 34(增2):91-101. |
Cai Guofu, Shao Lei, Qiao Peijun, et al. Marine transgression and evolution of depositional environment in the Paleogene strata of Qiongdongnan Basin,South China Sea [J]. Acta Petrolei Sinica, 2013, 34(S2): 91-101. | |
34 | 李增学,宋广增,王东东,等. 琼东南盆地渐新统煤系-扇-辫状河三角洲特征[J]. 地球科学,2018,43(10):3471-3484. |
Li Zengxue, Song Guangzeng, Wang Dongdong, et al. Characteristics of (fan) braided river delta in Oligocene coal measures of Qiongdongnan Basin [J]. Earth Science, 2018,43(10):3471-3484. | |
35 | 刘莹,刘海燕,杨海长,等. 琼东南盆地古近纪成煤沉积体系类型及特征 [J].石油与天然气地质,2019,40(1):142-151. |
Liu Ying, Liu Haiyan, Yang Haizhang, et al. Types and characteristics of Paleogene coal-forming sedimentary systems in Qiongdongnan Basin[J]. Oil & Gas Geology,2019,40(1):142-151. | |
36 | Li Zengxue, Zeng Qingbo, Xu Meng, et al. Peat formation and accumulation mechanism in northern marginal basin of South China Sea[J]. Acta Oceanologica Sinica, 2021, 40(2): 95-106. |
37 |
Wang Dongdong, Zhang Gongcheng, Li Zengxue, et al. Thedevelopment characteristics and distribution predictions of the Paleogene coal-measure source rock in the Qiongdongnan Basin, Northern South China Sea[J]. Acta Geologica Sinica (English Edition), 2021, 95(1): 105-120. DOI: 0.1111/1755-6724.14625 .
doi: 0.1111/1755-6724.14625 |
38 | Bates C C. Rational theory of delta formation[J]. American Association of Petroleum Geologists Bulletin, 1953, 37: 2119-2162. |
39 | Fisher W L, McGowen J H. Depositional system in the Wilcox Group (Eocene) of Teas and their relationship to occurrence of oil and gas[J]. American Association of Petroleum Geologists Bulletin, 1969, 53(1): 30-54. |
40 | 刘仕友, 陈泓燕, 李德勇, 等. 琼东南盆地陵水凹陷渐新统陵水组沉积特征及烃源岩发育模式[J]. 海相油气地质, 2019, 24(1): 63-70. |
Liu Shiyou, Chen Hongyan, Li Deyong, et al. Sedimentary characteristics and source rock development model of the Oligocene Lingshui Formation in Lingshui Sag, Qiongdongnan Basin[J]. Marine Origin Petroleum Geology, 2019, 24(1): 63-70. | |
41 | Zhao Honggang, Li Ying, Chang Xiangchun, et al. A comparative study of the coal-forming characteristics of marginal sea basins and epicontinental sea basins[J]. Acta Geologica Sinica (English Edition), 2021, 95(1): 121–130. |
42 | 杨文卿,谢周清,孙立广. 南海古海啸重建与海啸沉积研究进展[J]. 地学前缘, 2021, 28(2): 246-257. |
Yang Wenqing, Xie Zhouqing, Sun Liguang. Research progress in the reconstruction of paleotsunami in the South China Sea and the tsunami deposit characteristics[J]. Earth Science Frontiers, 2021, 28(2): 246-257. | |
43 | 陈欢庆, 朱筱敏, 张功成, 等. 井震结合深水区物源分析——以琼东南盆地深水区古近系陵水组为例[J]. 石油地球物理勘探, 2010, 45(4): 552-558. |
Chen Huanqing, Zhu Xiaomin, Zhang Gongcheng, et al. Material source analysis in deep water area based on well to-seismic integrated studies—a case study on Lingshui Formation of Paleogene in deep water area in southeast Hainan Basin of South China Sea[J]. Oil Geophysical Prospecting, 2010, 45(4): 552-558. | |
44 | 何云龙. 琼东南盆地陆坡区重力流沉积特征及其成因机制[D]. 武汉:中国地质大学, 2012. |
He Yunlong. The characteristics and mechanism of sediment gravity flow in slope area in Qiongdongnan Basin[D]. Wuhan: China University of Geosciences, 2012. | |
45 | Li Zengxue, Li Ying, Wang Dongdong, et al. Source-to-sink system for peat accumulation in marginal basins of the South China Sea with the Qiongdongnan Basin as an example[J]. Australian Journal of Earth Sciences, 2021, 68(3): 421-439. |
[1] | 周荔青, 江东辉, 杨鹏程, 张如凤, 董鑫, 桑亚迪. 琼东南盆地陵水北坡LS13-2区勘探思路与突破方向[J]. 石油与天然气地质, 2024, 45(3): 673-683. |
[2] | 付超, 谢玉洪, 赵雨初, 王晖, 苑志旺, 徐伟, 陈国宁. 深水峡谷上游复合浊积砂岩储层类型及其展布规律[J]. 石油与天然气地质, 2024, 45(2): 516-529. |
[3] | 侯读杰, 吴克强, 尤丽, 张自鸣, 李雅君, 熊小峰, 徐敏, 严夏泽, 陈威合, 程熊. 琼东南盆地陆源海相烃源岩有机质富集机理[J]. 石油与天然气地质, 2024, 45(1): 31-43. |
[4] | 尤丽, 权永彬, 庹雷, 滕长宇, 左高昆. 琼东南盆地深水区宝岛21-1气田天然气来源及输导体系[J]. 石油与天然气地质, 2023, 44(5): 1270-1278. |
[5] | 吴克强, 解习农, 裴健翔, 任建业, 尤丽, 姜涛, 权永彬. 超伸展陆缘盆地深部结构及油气勘探意义[J]. 石油与天然气地质, 2023, 44(3): 651-661. |
[6] | 侯明才, 何小胡, 金秋月, 曹海洋, 贺礼文, 阙有缘, 陈安清. 琼东南盆地中生代潜山成储主控因素及分布规律[J]. 石油与天然气地质, 2023, 44(3): 637-650. |
[7] | 李东伟, 龚承林, 胡林, 何小胡, 罗泉源. 深水水道沉积内幕级次划分与精细刻画[J]. 石油与天然气地质, 2023, 44(3): 553-564. |
[8] | 刘莹, 刘海燕, 杨海长, 王东东, 宋广增, 吕大炜, 陈莹, 李增学. 琼东南盆地古近纪成煤沉积体系类型及特征[J]. 石油与天然气地质, 2019, 40(1): 142-151. |
[9] | 童亨茂, 范彩伟, 童传新, 宋鹏, 张昊. 琼东南盆地宝岛变换带的特征、类型及其成因机制[J]. 石油与天然气地质, 2015, 36(6): 897-905. |
[10] | 张亚雄, 朱筱敏, 陈欢庆, 张功成. 琼东南盆地渐新统陵水组坡折带类型及层序地层样式[J]. 石油与天然气地质, 2014, 35(4): 473-479. |
[11] | 魏魁生, 楚美娟, 崔颖凯, 沈华, 梁建设, 杨国忠, 刘铁树. 琼东南盆地东部低位体系域的时空组合特征及油气勘探意义[J]. 石油与天然气地质, 2004, 25(6): 650-655. |
[12] | 郭成贤, 朱忠德, 靳涛, 谢宏. 湘西北杨家坪寒武纪事件沉积[J]. 石油与天然气地质, 1999, 20(1): 39-45. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||