石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (4): 1089-1105.doi: 10.11743/ogg20240414
张琴1,2(), 卢东连1, 王凯3, 刘畅4, 郭明强5, 张梦婕1, 郭超杰1, 王颖1, 胡文忠1, 朱筱敏1,2
收稿日期:
2024-03-02
修回日期:
2024-07-10
出版日期:
2024-09-05
发布日期:
2024-09-05
第一作者简介:
张琴(1973—),女,博士、教授、博士研究生导师,沉积学及储层地质学。E-mail:zhangqin@cup.edu.cn。
基金项目:
Qin ZHANG1,2(), Donglian LU1, Kai WANG3, Chang LIU4, Mingqiang GUO5, Mengjie ZHANG1, Chaojie GUO1, Ying WANG1, Wenzhong HU1, Xiaomin ZHU1,2
Received:
2024-03-02
Revised:
2024-07-10
Online:
2024-09-05
Published:
2024-09-05
摘要:
下扬子地区下寒武统荷塘组细粒沉积岩岩相微观孔隙发育特征不清楚制约了页岩气的勘探开发。基于普通薄片观察、氩离子抛光扫描电镜(SEM)分析、物性测试、X射线衍射全岩矿物及黏土矿物含量分析、N2及CO2等温吸附实验、聚焦离子束扫描电镜(FIB-SEM)分析等实验资料,建立了荷塘组细粒沉积岩岩相划分方案,分析了不同岩相的微观孔隙结构特征。研究表明:①荷塘组细粒沉积岩主要发育块状硅质泥岩相、纹层状硅质页岩相、块状含黏土硅质泥岩相、块状硅/灰混合质泥岩相和块状混合灰质泥岩相5种岩相类型。②荷塘组不同细粒沉积岩岩相孔隙度和渗透率差异较大。孔隙类型主要为粒间孔、晶间孔、粒内孔、有机质孔和微裂缝,以微米-纳米级孔隙为主。介孔孔径为2.0 ~ 10.0 nm,微孔孔径为0.4 ~ 0.9 nm。③块状硅/灰混合质泥岩相有机质和脆性矿物含量高,粒间孔与微裂缝发育,孔隙度和渗透率较大、孔隙连通性较好、比表面积较大,为荷塘组最有利的页岩气勘探开发细粒沉积岩岩相。块状含黏土硅质泥岩相孔隙比表面积和孔体积较高,脆性指数、孔隙度和渗透率低于块状硅/灰混合质泥岩相,为次要的有利岩相。
中图分类号:
表1
下扬子地区荷塘组细粒岩矿物成分"
样品编号 | 全岩矿物组分含量/ % | 岩相类型 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
黏土 矿物 | 文石 | 石英 | 钾长石 | 斜长石 | 方解石 | 白云石 | 黄铁矿 | 其他成分 | ||
WP10 1-1 | 29.8 | — | 68.8 | 0.1 | — | — | — | — | 1.3 | 块状含黏土硅质泥岩相 |
WP10 4-1 | 8.8 | — | 41.9 | 12.4 | 20.2 | — | 5.1 | 11.6 | — | 块状硅质泥岩相 |
WP11 4-1 | 3.9 | — | 93.8 | 0.5 | 0.3 | — | 0.3 | 1.2 | — | 块状硅质泥岩相 |
WP13 1-1 | 15.2 | — | 74.0 | 3.4 | 4.0 | — | 0.9 | 2.5 | — | 纹层状硅质页岩相 |
ZP3 3-1 | 21.3 | 1.8 | 28.5 | 2.6 | 7.4 | 7.7 | 30.0 | 0.3 | 0.4 | 块状硅/灰混合质泥岩相 |
ZP3 4-1 | 27.7 | — | 52.3 | 4.5 | 13.3 | 0.8 | 0.7 | — | 0.7 | 块状含黏土硅质泥岩相 |
ZP1 2-1 | 13.8 | 2.4 | 9.9 | — | 2.1 | 60.6 | 10.4 | 0.7 | 0.1 | 块状混合灰质泥岩相 |
表3
下扬子地区荷塘组细粒岩物性数据"
样品编号 | 样品长度/cm | 样品直径/cm | 岩石密度/ (g/cm3) | 孔隙度/ % | 垂直渗透率/ (10-3 μm2) | 岩相类型 |
---|---|---|---|---|---|---|
WP10 1-1 | 2.323 | 2.530 | 2.228 | 14.917 | 0.042 80 | 块状含黏土硅质泥岩相 |
WP10 4-1 | 2.752 | 2.545 | 2.415 | 3.307 | 0.007 64 | 块状硅质泥岩相 |
WP11 4-1 | 2.472 | 2.524 | 2.405 | 2.105 | 0.006 28 | 块状硅质泥岩相 |
WP13 1-1 | 2.841 | 2.536 | 2.286 | 14.913 | 0.035 70 | 纹层状硅质页岩相 |
ZP3 3-1 | 3.381 | 2.470 | 2.026 | 25.517 | 0.775 00 | 块状硅/灰混合质泥岩相 |
ZP1 2-1 | 1.924 | 2.531 | 2.679 | 1.772 | 0.007 10 | 块状混合灰质泥岩相 |
表4
下扬子地区荷塘组细粒岩N2和CO2吸附实验孔隙结构参数"
样品编号 | 岩相 | N2孔隙结构 | CO2孔隙结构 | ||||
---|---|---|---|---|---|---|---|
BET孔隙比表面积/(m2/g) | BJH累计孔隙比表面积/(m2/g) | 总孔隙体积/(cm3/g) | DFT孔隙比表面积/(m2/g) | DR孔隙比表面积/(m2/g) | 总孔隙体积/(cm3/g) | ||
WP10 1-1 | 块状含黏土硅质泥岩相 | 15.758 7 | 11.449 4 | 0.020 882 0 | 12.159 0 | 10.909 2 | 0.002 100 0 |
WP10 4-1 | 块状硅质泥岩相 | 6.493 9 | 5.603 0 | 0.006 837 0 | 20.682 0 | 22.760 6 | 0.004 460 0 |
WP11 4-1 | 块状硅质泥岩相 | 7.121 3 | 6.115 4 | 0.007 504 0 | 21.742 0 | 21.163 4 | 0.004 570 0 |
ZP1 2-1 | 块状混合灰质泥岩相 | 1.305 0 | 1.511 5 | 0.002 780 0 | 5.945 0 | 7.111 6 | 0.001 000 0 |
ZP3 3-1 | 块状硅/灰混合质泥岩相 | 11.263 7 | 9.049 4 | 0.012 775 0 | 11.700 0 | 9.384 7 | 0.002 090 0 |
图7
下扬子地区荷塘组不同细粒岩相孔隙发育特征SEM照片a.粒间孔、黏土矿物晶间孔和有机质孔,块状硅质泥岩相,样品WP11 4-1;b.有机质孔,块状硅质泥岩相,样品WP11 4-1;c.粒间孔、黏土矿物晶间孔、溶蚀孔和微裂缝,纹层状硅质页岩相,样品WP13 1-1;d.粒间孔、溶蚀孔和微裂缝,纹层状硅质页岩相,样品WP13 1-1;e.粒间孔、黏土矿物晶间孔和微裂缝,块状含黏土硅质泥岩相,样品WP10 1-1;f.粒间孔和微裂缝,块状含黏土硅质泥岩相,样品WP10 1-1;g.黏土矿物晶间孔,块状硅/灰混合质泥岩相,样品ZP3 3-1;h.粒间孔、黏土矿物晶间孔和微裂缝,块状硅/灰混合质泥岩相,样品ZP3 3-1;i.粒间孔和微裂缝,块状混合灰质泥岩相,样品ZP1 2-1"
1 | ROGNER H H. An assessment of world hydrocarbon resources[J]. Annual Review of Environment and Resources, 1997, 22: 217-262. |
2 | HILL D G, LOMBARDI T E, MARTIN J P. Fractured shale gas potential in New York[J]. Northeastern Geology and Environmental Sciences, 2004, 26(1/2): 57-78. |
3 | 邹才能, 潘松圻, 荆振华, 等. 页岩油气革命及影响[J]. 石油学报, 2020, 41(1): 1-12. |
ZOU Caineng, PAN Songqi, JING Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1-12. | |
4 | BILGEN S, SARIKAYA İ. New horizon in energy: Shale gas[J]. Journal of Natural Gas Science and Engineering, 2016, 35(Part A): 637-645. |
5 | 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10. |
JIN Zhijun, HU Zongquan, GAO Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10. | |
6 | DAVIS L A. The shale oil and gas revolution[J]. Engineering, 2018, 4(4): 438-439. |
7 | LU Shuangfang, HUANG Wenbiao, CHEN Fangwen, et al. Classification and evaluation criteria of shale oil and gas resources: Discussion and application[J]. Petroleum Exploration and Development, 2012, 39(2): 268-276. |
8 | 贾承造. 论非常规油气对经典石油天然气地质学理论的突破及意义[J]. 石油勘探与开发, 2017, 44(1): 1-11. |
JIA Chengzao. Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory[J]. Petroleum Exploration and Development, 2017, 44(1): 1-11. | |
9 | 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14. |
ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14. | |
10 | 梁超, 姜在兴, 杨镱婷, 等. 四川盆地五峰组—龙马溪组页岩岩相及储集空间特征[J]. 石油勘探与开发, 2012, 39(6): 691-698. |
LIANG Chao, JIANG Zaixing, YANG Yiting, et al. Characteristics of shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation, Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(6): 691-698. | |
11 | ZHUANG Luchuan, LU Shuangfang, JIANG Shu, et al. Effect of shale lithofacies on pore structure of the Wufeng-Longmaxi shale in southeast Chongqing, China[J]. Energy & Fuels, 2018, 32(6): 6603-6618. |
12 | 王超, 张柏桥, 舒志国, 等. 四川盆地涪陵地区五峰组-龙马溪组海相页岩岩相类型及储层特征[J]. 石油与天然气地质, 2018, 39(3): 485-497. |
WANG Chao, ZHANG Boqiao, SHU Zhiguo, et al. Lithofacies types and reservoir characteristics of marine shales of the Wufeng Formation-Longmaxi Formation in Fuling area, the Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(3): 485-497. | |
13 | TANG Qingsong, ZHOU Lu, CHEN Lei, et al. Development characteristics of shale lithofacies in the Longmaxi Formation and their main controlling factors in the Changning area, South Sichuan Basin, SW China[J]. Frontiers in Earth Science, 2021, 9: 775657. |
14 | WILLIAMS T S, BHATTACHARYA S, SONG Liaosha, et al. Petrophysical analysis and mudstone lithofacies classification of the HRZ shale, North Slope, Alaska[J]. Journal of Petroleum Science and Engineering, 2022, 208(Part C): 109454. |
15 | 李丹龙, 伏美燕, 邓虎成, 等. 上扬子地区下寒武统牛蹄塘组富有机质页岩岩相及沉积环境分析——以贵州温水村剖面为例[J]. 天然气地球科学, 2023, 34(3): 445-459. |
LI Danlong, FU Meiyan, DENG Hucheng, et al. Analysis of lithofacies and sedimentary environment of shale deposited in shelf facies: A case study of the Wenshuicun section in Guizhou Province, South China[J]. Natural Gas Geoscience, 2023, 34(3): 445-459. | |
16 | LIU Kouqi, OSTADHASSAN M, ZHOU Jie, et al. Nanoscale pore structure characterization of the Bakken shale in the USA[J]. Fuel, 2017, 209: 567-578. |
17 | MI Huaying, GUO Yujie, YU Xiaogang. Study on pore structure of shale reservoir by low temperature nitrogen adsorption method[J]. Geofluids, 2022, 1: 1-10. |
18 | ZHANG Qin, LIU Zaiyang, LIU Chang, et al. Experimental study on the development characteristics and controlling factors of microscopic organic matter pore and fracture system in shale[J]. Frontiers in Earth Science, 2021, 9: 773960. |
19 | ZHANG Qin, RADWAN A E, Wang KAI, et al. Pore structure characteristics of different lithofacies of the Longmaxi shale, Western Hunan-Hubei Region, China: Implications for reservoir quality prediction[J]. Geological Journal, 2023, 58(11): 4194-4214. |
20 | 王志峰, 张元福, 梁雪莉, 等. 四川盆地五峰组—龙马溪组不同水动力成因页岩岩相特征[J]. 石油学报, 2014, 35(4): 623-632. |
WANG Zhifeng, ZHANG Yuanfu, LIANG Xueli, et al. Characteristics of shale lithofacies formed under different hydrodynamic conditions in the Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2014, 35(4): 623-632. | |
21 | 彭勇民, 龙胜祥, 胡宗全, 等. 四川盆地涪陵地区页岩岩石相标定方法与应用[J]. 石油与天然气地质, 2016, 37(6): 964-970. |
PENG Yongmin, LONG Shengxiang, HU Zongquan, et al. Calibration method of shale petrological facies and its application in Fuling area, the Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(6): 964-970. | |
22 | 吴蓝宇, 胡东风, 陆永潮, 等. 四川盆地涪陵气田五峰组—龙马溪组页岩优势岩相[J]. 石油勘探与开发, 2016, 43(2): 189-197. |
WU Lanyu, HU Dongfeng, LU Yongchao, et al. Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling gas field of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(2): 189-197. | |
23 | HU Zongquan, DU Wei, SUN Chuanxiang, et al. Evolution and migration of shale facies and their control on shale gas: A case study from the Wufeng-Longmaxi formations in the Sichuan Basin and its surroundings[J]. Interpretation, 2018, 6(4): 57-70. |
24 | ABOUELRESH M O, SLATT R E. Lithofacies and sequence stratigraphy of the Barnett Shale in east-central Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(1): 1-22. |
25 | WANG Guochang, CARR T R. Methodology of organic-rich shale lithofacies identification and prediction: A case study from Marcellus Shale in the Appalachian Basin[J]. Computers & Geosciences, 2012, 49: 151-163. |
26 | GUO Xuejing, SHEN Yinghao, HE Shunli. Quantitative pore characterization and the relationship between pore distributions and organic matter in shale based on nano-CT image analysis: A case study for a lacustrine shale reservoir in the Triassic Chang 7 member, Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2015, 27(3): 1630-1640. |
27 | RUI Zhenhua, CUI Kehang, WANG Xiaoqing, et al. A comprehensive investigation on performance of oil and gas development in Nigeria: Technical and non-technical analyses[J]. Energy, 2018, 158: 666-680. |
28 | 庞飞, 包书景, 任收麦, 等. 修武盆地下寒武统页岩气富集条件及有利区预测[J]. 东北石油大学学报, 2014, 38(5): 23-30, 85. |
PANG Fei, BAO Shujing, REN Shoumai, et al. Shale gas accumulation conditions and favorable areas of the Lower Cambrian in Xiuwu Basin[J]. Journal of Northeast Petroleum University, 2014, 38(5): 23-30, 85. | |
29 | 邹才能, 朱如凯, 白斌, 等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报, 2011, 27(6): 1857-1864. |
ZOU Caineng, ZHU Rukai, BAI Bin, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27(6): 1857-1864. | |
30 | GAO Fenglin, SONG Yan, LI Zhuo, et al. Quantitative characterization of pore connectivity using NMR and MIP: A case study of the Wangyinpu and Guanyintang shales in the Xiuwu Basin, Southern China[J]. International Journal of Coal Geology, 2018, 197: 53-65. |
31 | 何晶, 何生, 刘早学, 等. 鄂西黄陵背斜南翼下寒武统水井沱组页岩孔隙结构与吸附能力[J]. 石油学报, 2020, 41(1): 27-42. |
HE Jing, HE Sheng, LIU Zaoxue, et al. Pore structure and adsorption capacity of shale in the Lower Cambrian Shuijingtuo Formation in the southern flank of Huangling anticline, western Hubei[J]. Acta Petrolei Sinica, 2020, 41(1): 27-42. | |
32 | 郭旭升, 胡东风, 魏志红, 等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 2016, 21(3): 24-37. |
GUO Xusheng, HU Dongfeng, WEI Zhihong, et al. Discovery and exploration of Fuling shale gas field[J]. China Petroleum Exploration, 2016, 21(3): 24-37. | |
33 | 邵威, 黄正清, 李建青, 等. 浙西南—赣东北地区寒武系荷塘组页岩气成藏地质条件及有利区带优选[J]. 中国地质, 2022, 49(4): 1262-1274. |
SHAO Wei, HUANG Zhengqing, LI Jianqing, et al. Shale gas reservoir-forming conditions and exploration prospecting in the Cambrian Hetang Formation of southwestern Zhejiang and northeastern Jiangxi Province[J]. Geology in China, 2022, 49(4): 1262-1274. | |
34 | 朱文博, 张训华, 王修齐, 等. 下扬子地区下寒武统荷塘组泥页岩地质特征与勘探前景——以浙西江山—桐庐地区为例[J]. 石油实验地质, 2020, 42(3): 477-488. |
ZHU Wenbo, ZHANG Xunhua, WANG Xiuqi, et al. Geological characteristics and shale gas potential of Lower Cambrian Hetang Formation in Lower Yangtze region: A case study of Jiangshan-Tonglu area, western Zhejiang Province[J]. Petroleum Geology and Experiment, 2020, 42(3): 477-488. | |
35 | 吴旭东. 下扬子地块宣城地区荷塘组富有机质页岩古环境恢复——以宣页1井为例[J].海洋地质前沿, 2023, 39(4): 46-56. |
WU Xudong. Paleoenvironmental reconstruction of organic-rich shale in the Hetang Formation of the Lower Yangtze Block: A case study of Well XY1[J]. Marine Geology Frontiers, 2023, 39(4): 46-56. | |
36 | 姚红生, 何希鹏, 汪凯明. 下扬子皖南地区下寒武统荷塘组页岩地球化学特征及地质意义[J]. 海洋地质前沿, 2022, 38(4): 32-41. |
YAO Hongsheng, HE Xipeng, WANG Kaiming. Geochemical characteristics and significance of the shale of Lower Cambrian Hetang Formation in the southern Anhui Province of Lower Yangtze area[J]. Marine Geology Frontiers, 2022, 38(4): 32-41. | |
37 | 印峰, 杨风丽, 叶芳, 等. 晚震旦至中奥陶世下扬子被动大陆边缘原型盆地特征[J]. 地球科学(中国地质大学学报), 2013, 38(5): 1053-1064. |
YIN Feng, YANG Fengli, YE Fang, et al. Late Sinian-Middle Ordovician the prototype basin characteristics of passive continental margin in Lower Yangtze[J]. Earth Science(Journal of China University of Geosciences), 2013, 38(5): 1053-1064. | |
38 | 冯增昭, 何幼斌, 吴胜和. 中下扬子地区二叠纪岩相古地理[J]. 沉积学报, 1993, 11(3): 13-24. |
FENG Zengzhao, HE Youbin, WU Shenghe. Listhofacies paleogeography of Permian middle and Lower Yangtze region[J]. Acta Sedimentologica Sinica, 1993, 11(3): 13-24. | |
39 | 朱光, 徐嘉炜, 刘国生, 等. 下扬子地区前陆变形构造格局及其动力学机制[J]. 中国区域地质, 1999, 18(1): 73-79. |
ZHU Guang, XU Jiawei, LIU Guosheng, et al. Tectonic pattern and dynamic mechanism of the foreland deformation in the Lower Yangtze region[J]. Regional Geology of China, 1999, 18(1): 73-79. | |
40 | CAI Zhourong, HUANG Qiangtai, XIA Bin, et al. Differences in shale gas exploration prospects of the Upper Yangtze platform and the Lower Yangtze platform: Insights from computer modelling of tectonic development[J]. Journal of Natural Gas Science and Engineering, 2016, 36(A): 42-53. |
41 | 李建青, 章诚诚, 黄正清, 等. 下扬子复杂构造区超高压含气层的发现及油气富集关键要素[J]. 地质通报, 2021, 40(4): 577-585. |
LI Jianqing, ZHANG Chengcheng, HUANG Zhengqing, et al. Discovery of overpressure gas reservoirs in the complex structural area of the Lower Yangtze and its key elements of hydrocarbon enrichment[J]. Geological Bulletin of China, 2021, 40(4): 577-585. | |
42 | 白玉坤. 下扬子地区二叠系页岩含气性特征分析[J]. 地质装备, 2022, 23(3): 41-45. |
BAI Yukun. Analysis of gas bearing characteristics of Permian shale in lower Yangtze region[J]. Equipment for Geotechnical Engineering, 2022, 23(3): 41-45. | |
43 | 黄正清, 周道容, 李建青, 等. 下扬子地区寒武系页岩气成藏条件分析与资源潜力评价[J]. 石油实验地质, 2019, 41(1): 94-98. |
HUANG Zhengqing, ZHOU Daorong, LI Jianqing, et al. Shale gas accumulation conditions and resource potential evaluation of the Cambrian in the Lower Yangtze area[J]. Petroleum Geology and Experiment, 2019, 41(1): 94-98. | |
44 | 汪凯明. 下扬子皖南地区下寒武统大陈岭组页岩特征及其沉积环境[J]. 科学技术与工程, 2022, 22(31): 13689-13698. |
WANG Kaiming. Characteristics and sedimentary environment of the Lower Cambrian Dachenling Formation shale in the southern Anhui of Lower Yangtze area[J]. Science Technology and Engineering, 2022, 22(31): 13689-13698. | |
45 | 赵文智, 李建忠, 杨涛, 等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发, 2016, 43(4): 499-510. |
ZHAO Wenzhi, LI Jianzhong, YANG Tao, et al. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4): 499-510. | |
46 | 冯增昭. 沉积相的一些术语定义的评论[J]. 古地理学报, 2020, 22(2): 207-220. |
FENG Zengzhao. A review on the definitions of terms of sedimentary facies[J]. Journal of Palaeogeography(Chinese Edition), 2020, 22(2): 207-220. | |
47 | DAPPLES E C, KRUMBEIN W C, SLOSS L L. Tectonic control of lithologic associations[J]. AAPG Bulletin, 1948, 32(10): 1924-1947. |
48 | IMBRIE J. Quantitative lithofacies and biofacies study of Florena shale (Permian) of Kansas[J]. AAPG Bulletin, 1955, 39(5): 649-670. |
49 | DUNHAM J B, COTTON-THORNTON M L. Lithology of the Monterey Formation in the western Santa Maria Valley Field, Santa Maria Basin, California[M]//KELLER M A, MCGOWEN M K. Miocene and Oligocene Petroleum Reservoirs of the Santa Maria and Santa Barbara-Ventura Basins, California. Tulsa: SEPM Society for Sedimentary Geology, 1990: 202-243. |
50 | HICKEY J J, BO H. Lithofacies summary of the Mississippian Barnett Shale, Mitchell 2 T.P. Sims well, Wise County, Texas[J]. AAPG Bulletin, 2007, 91(4): 437-443. |
51 | 姜在兴, 梁超, 吴靖, 等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报, 2013, 34(6): 1031-1039. |
JIANG Zaixing, LIANG Chao, WU Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039. | |
52 | LOUCKS R G, RUPPEL S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601. |
53 | WANG Enze, GUO Tonglou, LI Maowen, et al. Exploration potential of different lithofacies of deep marine shale gas systems: Insight into organic matter accumulation and pore formation mechanisms[J]. Journal of Natural Gas Science and Engineering, 2022, 102: 104563. |
54 | BOWKER K A. Barnett Shale gas production, Fort Worth Basin: Issues and discussion[J]. AAPG Bulletin, 2007, 91(4): 523-533. |
55 | 张琴, 朱筱敏, 李晨溪, 等. 渤海湾盆地沾化凹陷沙河街组富有机质页岩孔隙分类及孔径定量表征[J]. 石油与天然气地质, 2016, 37(3): 422-432, 438. |
ZHANG Qin, ZHU Xiaomin, LI Chenxi, et al. Classification and quantitative characterization of microscopic pores in organic-rich shale of the Shahejie Formation in the Zhanhua Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2016, 37(3): 422-432, 438. | |
56 | 陈尚斌, 朱炎铭, 王红岩, 等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报, 2012, 37(3): 438-444. |
CHEN Shangbin, ZHU Yanming, WANG Hongyan, et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society, 2012, 37(3): 438-444. | |
57 | 葛明娜, 庞飞, 包书景. 贵州遵义五峰组—龙马溪组页岩微观孔隙特征及其对含气性控制——以安页1井为例[J]. 石油实验地质, 2019, 41(1): 23-30. |
GE Mingna, PANG Fei, BAO Shujing. Micro pore characteristics of Wufeng-Longmaxi shale and their control on gas content: A case study of Well Anye 1 in Zunyi area, Guizhou Province[J]. Petroleum Geology and Experiment, 2019, 41(1): 23-30. | |
58 | 纪文明, 宋岩, 姜振学, 等. 四川盆地东南部龙马溪组页岩微—纳米孔隙结构特征及控制因素[J]. 石油学报, 2016, 37(2): 182-195. |
JI Wenming, SONG Yan, JIANG Zhenxue, et al. Micro-nano pore structure characteristics and its control factors of shale in Longmaxi Formation, southeastern Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(2): 182-195. | |
59 | LI Qihui, REN Dazhong, WANG Hu, et al. Microscopic characteristics of tight sandstone reservoirs and their effects on the imbibition efficiency of fracturing fluids: A case study of the Linxing area, Ordos Basin[J]. Energy Geoscience, 2024, 5(3): 100302. |
60 | YANG Ying, ZHANG Xin, ZHOU Xiaofeng, et al. Experimental analysis of the pore structure, relative permeability, and water flooding characteristics of the Yan’an Formation sandstone, southwestern Ordos Basin[J]. Energy Geoscience, 2023, 4(3): 100184. |
61 | 彭军, 吴慧明, 韩浩东, 等. 巴楚地区东河塘组致密砂岩储层成岩相研究[J]. 石油与天然气地质, 2016, 37(2): 245-255, 279. |
PENG Jun, WU Huiming, HAN Haodong, et al. Study on diagenetic facies of the Donghetang tight sandstone reservoirs in Bachu area[J]. Oil & Gas Geology, 2016, 37(2): 245-255, 279. | |
62 | 龙鹏宇, 张金川, 唐玄, 等. 泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J]. 天然气地球科学, 2011, 22(3): 525-532. |
LONG Pengyu, ZHANG Jinchuan, TANG Xuan, et al. Feature of muddy shale fissure and its effect for shale gas exploration and development[J]. Natural Gas Geoscience, 2011, 22(3): 525-532. | |
63 | 杨峰, 宁正福, 张世栋, 等. 基于氮气吸附实验的页岩孔隙结构表征[J]. 天然气工业, 2013, 33(4): 135-140. |
YANG Feng, NING Zhengfu, ZHANG Shidong, et al. Characterization of pore structures in shales through nitrogen adsorption experiment[J]. Natural Gas Industry, 2013, 33(4): 135-140. | |
64 | 刘友祥, 俞凌杰, 张庆珍, 等. 川东南龙马溪组页岩的矿物组成与微观储集特征研究[J]. 石油实验地质, 2015, 37(3): 328-333. |
LIU Youxiang, YU Lingjie, ZHANG Qingzhen, et al. Mineral composition andmicroscopic reservoir features of Longmaxi shales in southeastern Sichuan Basin[J]. Petroleum Geology and Experiment, 2015, 37(3): 328-333. | |
65 | 宁凡, 邹妞妞, 张大权, 等. 黔北地区下寒武统牛蹄塘组页岩特征研究[J]. 特种油气藏, 2020, 27(1): 62-67, 135. |
NING Fan, ZOU Niuniu, ZHANG Daquan, et al. Shale characterization of the Lower Cambrian Niutitang Formation in northern Guizhou[J]. Special Oil & Gas Reservoirs, 2020, 27(1): 62-67, 135. | |
66 | 朱如凯, 李梦莹, 杨静儒, 等. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质, 2022, 43(2): 251-264. |
ZHU Rukai, LI Mengying, YANG Jingru, et al. Advances and trends of fine-grained sedimentology[J]. Oil & Gas Geology, 2022, 43(2): 251-264. | |
67 | 胡宗全, 杜伟, 朱彤, 等. 四川盆地及其周缘五峰组-龙马溪组细粒沉积的层序地层与岩相特征[J]. 石油与天然气地质, 2022, 43(5): 1024-1038. |
HU Zongquan, DU Wei, ZHU Tong, et al. Sequence stratigraphy and lithofacies characteristics of fine-grained deposits of Wufeng-Longmaxi formations in the Sichuan Basin and on its periphery[J]. Oil & Gas Geology, 2022, 43(5): 1024-1038. | |
68 | 马新华, 李熙喆, 梁峰, 等. 威远页岩气田单井产能主控因素与开发优化技术对策[J]. 石油勘探与开发, 2020, 47(3): 555-563. |
MA Xinhua, LI Xizhe, LIANG Feng, et al. Dominating factors on well productivity and development strategies optimization in Weiyuan shale gas play, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(3): 555-563. | |
69 | 陈吉, 肖贤明. 南方古生界3套富有机质页岩矿物组成与脆性分析[J]. 煤炭学报, 2013, 38(5): 822-826. |
CHEN Ji, XIAO Xianming. Mineral composition and brittleness of three sets of Paleozoic organic-rich shales in China South area[J]. Journal of China Coal Society, 2013, 38(5): 822-826. | |
70 | 张晨晨, 董大忠, 王玉满, 等. 页岩储集层脆性研究进展[J]. 新疆石油地质, 2017, 38(1): 111-118. |
ZHANG Chenchen, DONG Dazhong, WANG Yuman, et al. Research progress on brittleness of shale reservoirs[J]. Xinjiang Petroleum Geology, 2017, 38(1): 111-118. |
[1] | 叶玥豪, 陈伟, 汪华, 宋金民, 明盈, 戴鑫, 李智武, 孙豪飞, 马小刚, 刘婷婷, 唐辉, 刘树根. 四川盆地上二叠统大隆组页岩储层特征及其控制因素[J]. 石油与天然气地质, 2024, 45(4): 979-991. |
[2] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[3] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[4] | 张益, 张斌, 刘帮华, 柳洁, 魏千盛, 张歧, 陆红军, 朱鹏宇, 王瑞. 页岩气储层吸附渗流研究现状及发展趋势[J]. 石油与天然气地质, 2024, 45(1): 256-280. |
[5] | 王光付, 李凤霞, 王海波, 周彤, 张亚雄, 王濡岳, 李宁, 陈昱辛, 熊晓菲. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
[6] | 胡东风, 魏志红, 刘若冰, 魏祥峰, 王威, 王庆波. 川东南盆缘复杂构造区綦江页岩气田的发现与启示[J]. 石油与天然气地质, 2023, 44(6): 1418-1429. |
[7] | 王红岩, 周尚文, 赵群, 施振生, 刘德勋, 焦鹏飞. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
[8] | 边瑞康, 孙川翔, 聂海宽, 刘珠江, 杜伟, 李沛, 王濡岳. 四川盆地东南部五峰组-龙马溪组深层页岩气藏类型、特征及勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1515-1529. |
[9] | 冯动军. 川东南二叠系龙潭组海-陆过渡相页岩气甜点评价及意义[J]. 石油与天然气地质, 2023, 44(3): 778-788. |
[10] | 王光付, 李凤霞, 王海波, 李军, 张宏, 周彤, 商晓飞, 潘林华, 沈云琦. 四川盆地非常规气藏地质-工程一体化压裂实践与认识[J]. 石油与天然气地质, 2022, 43(5): 1221-1237. |
[11] | 刘双莲. 页岩气“双甜点”参数测井评价方法[J]. 石油与天然气地质, 2022, 43(4): 1005-1012. |
[12] | 张心罡, 庞宏, 庞雄奇, 陈君青, 吴松, 马奎友, 张思玉. 四川盆地上二叠统龙潭组烃源岩生、排烃特征及资源潜力[J]. 石油与天然气地质, 2022, 43(3): 621-632. |
[13] | 王濡岳, 胡宗全, 龙胜祥, 杜伟, 吴靖, 邬忠虎, 聂海宽, 王鹏威, 孙川翔, 赵建华. 四川盆地上奥陶统五峰组-下志留统龙马溪组页岩储层特征与演化机制[J]. 石油与天然气地质, 2022, 43(2): 353-364. |
[14] | 王鹏威, 陈筱, 刘忠宝, 杜伟, 李东晖, 金武军, 王濡岳. 海相富有机质页岩储层压力预测方法——以涪陵页岩气田上奥陶统五峰组-下志留统龙马溪组页岩为例[J]. 石油与天然气地质, 2022, 43(2): 467-476. |
[15] | 王妍妍, 王卫红, 胡小虎, 刘华, 蒋晓蓉, 戴城, 方思冬. 基于脉冲注入理论的页岩储层微破裂试井解释技术及应用[J]. 石油与天然气地质, 2022, 43(1): 241-250. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||