石油与天然气地质 ›› 2020, Vol. 41 ›› Issue (5): 1107-1118.doi: 10.11743/ogg20200521
谈明轩1,2,3(), 朱筱敏2,3, 张自力2,3, 刘伟3,4, 赵宏超3,5, 苏彬3
收稿日期:
2020-01-20
出版日期:
2020-10-28
发布日期:
2020-10-22
第一作者简介:
谈明轩(1990-),男,博士、讲师,沉积学及海洋地质学。E-mail:基金项目:
Mingxuan Tan1,2,3(), Xiaomin Zhu2,3, Zili Zhang2,3, Wei Liu3,4, Hongchao Zhao3,5, Bin Su3
Received:
2020-01-20
Online:
2020-10-28
Published:
2020-10-22
摘要:
盆-山动力学、地表过程及沉积物收支研究一直是地球科学领域的研究前沿之一。“源-汇”系统则是以沉积物路径系统将三者有机结合起来,使其成为一个完整的剥蚀-沉积体系。随着近年来研究手段和理论认识的不断发展,“源-汇”系统定量研究逐渐由现代、第四纪向深时方向发展。由于古“源-汇”在后期受到不同程度的改造,所保存的地质信息并不完整。在系统总结其内部要素中几个重要沉积学问题的基础上,分析结果表明源区和汇区的古地貌、古水系及古环境定量重建和精细表征是古“源-汇”系统研究的首要前提。碎屑矿物定量示踪、地貌比例关系以及物质平衡分析是明确古代“源-汇”系统发育特征及其过程的重要方法,为建立新的“源-汇”模型和深入了解地貌演化、沉积历史、有利储层预测具有关键性作用。
中图分类号:
1 |
Armitage J J , Duller R.A , Whittaker A C , et al. Transformation of tectonic and climatic signals from source to sedimentary archive[J]. Nature Geoscience, 2011, 4 (4): 231- 235.
doi: 10.1038/ngeo1087 |
2 | Allen P A . From landscapes into geological history[J]. Nature, 2008, 451 (17): 274- 276. |
3 | Romans B W , Graham S A . A deep-time perspective of land-ocean linkages in the sedimentary record[J]. Annual Review of Marine Science, 2013, 5 (5): 69- 94. |
4 |
Romans B W , Castelltorts S , Covault J A , et al. Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 2016, 153, 7- 29.
doi: 10.1016/j.earscirev.2015.07.012 |
5 | Kuehl S A , Nittrouer C A . Exploring the transfer of Earth surface materials from source to sink[J]. Eos, Transactions American Geophy-sical Union, 2011, 92 (22): 188- 188. |
6 |
Walsh J P , Wiberg P L , Alato R , et al. Source-to-sink research:eco-nomy of the earth's surface and its strata[J]. Earth-Science Reviews, 2016, 153, 1- 6.
doi: 10.1016/j.earscirev.2015.11.010 |
7 | 李铁刚, 曹奇原, 李安春. 从源到汇:大陆边缘的沉积作用[J]. 地球科学进展, 2003, 18 (5): 713- 721. |
Li Tiegang , Cao Qiyuan , Li Anchun . Source to sink:sedimentation in the continental margins[J]. Advance in Earth Sciences, 2003, 18 (5): 713- 721. | |
8 | 朱红涛, 徐长贵, 朱筱敏, 等. 陆相盆地源-汇系统要素耦合研究进展[J]. 地球科学, 2017, 42 (11): 1851- 1870. |
Zhu Hongtao , Xu Changgui , Zhu Xiaomin , et al. Advances of the source-to-sink units and coupling model research in continental basin[J]. Earth Science, 2017, 42 (11): 1851- 1870. | |
9 |
Zhu H T , Steel R , Zhu X M , et al. Introduction to special section:Source-to-sink system analysis of petroliferous and other sedimentary basins[J]. Interpretation, 5 (4): STi- STii.
doi: 10.1190/INT-2017-0907-SPSEINTRO.1 |
10 |
Helland-Hansen W , Sømme T O , Martinsen O J , et al. Deciphering earth's natural hourglasses:perspectives on source-to-sink analysis[J]. Journal of Sedimentary Research, 2016, 86 (9): 1008- 1033.
doi: 10.2110/jsr.2016.56 |
11 | 林畅松, 夏庆龙, 施和生, 等. 地貌演化、源-汇过程与盆地分析[J]. 地学前缘, 2015, 22 (1): 9- 20. |
Lin Changsong , Xia Qinglong , Shi Hesheng , et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontier, 2015, 22 (1): 9- 20. | |
12 | 杨江海, 马严. 源-汇沉积过程的深时古气候意义[J]. 地球科学, 2017, 42 (11): 1910- 1921. |
Yang Jianghai , Ma Yan . Paleoclimate perspectives of Source-to-Sink sedimentary processes[J]. Earth Science, 2017, 42 (11): 1910- 1921. | |
13 |
Xu J , Snedden J W , Galloway W E , et al. Channel-belt scaling relationship and application to early Miocene source-to-sink systems in the Gulf of Mexico basin[J]. Geosphere, 2017, 13 (1): 1- 22.
doi: 10.1130/GES01353.1 |
14 |
Hinderer M . From gullies to mountain belts:a review of sediment budgets at various scales[J]. Sedimentary Geology, 2012, 280, 21- 59.
doi: 10.1016/j.sedgeo.2012.03.009 |
15 |
Sømme T O , Helland-Hansen W , Martinsen O J , et al. Predicting morphological relationships and sediment partitioning in source-to-sink systems[J]. Basin Research, 2009, 21, 361- 387.
doi: 10.1111/j.1365-2117.2009.00397.x |
16 |
Mulder T , Syvitski J P M . Climatic and morphologic relationships of rivers:implications of sea-level fluctuations on river loads[J]. Journal of Geology, 1996, 104 (5): 509- 523.
doi: 10.1086/629849 |
17 |
Twidale C R . River patterns and their meaning[J]. Earth-Science Reviews, 2004, 67 (3-4): 159- 218.
doi: 10.1016/j.earscirev.2004.03.001 |
18 | Scholz C A , Rosendahl B R , Scott D L . Development of coarse-grained facies in lacustrine rift basins:Examples from East Africa[J]. Geology, 1990, 18 (2): 140. |
19 |
Gawthorpe R L , Leeder M R . Tectono-sedimentary evolution of active extensional basins[J]. Basin Research, 2000, 12 (3-4): 195- 218.
doi: 10.1111/j.1365-2117.2000.00121.x |
20 |
Pechlivanidou S , Cowie P A , Hannisdal B , et al. Source-to-sink analysis in an active extensional setting:Holocene erosion and deposition in the Sperchios rift, central Greece[J]. Basin Research, 2018, 30, 522- 543.
doi: 10.1111/bre.12263 |
21 | 杨萍. 青海湖的形成与环境演化[J]. 青海环境, 2011, 21 (2): 59- 61. |
Yang Ping . The formation and environmental evolution of Qinghai Lake[J]. Environment in Qinghai, 2011, 21 (2): 59- 61. | |
22 |
Leeder M R , Jackson J A . The interaction between normal faulting and drainage in active extensional basins, with examples from the western United States and central Greece[J]. Basin Research, 1993, 5 (2): 79- 102.
doi: 10.1111/j.1365-2117.1993.tb00059.x |
23 |
Pechlivanidou S , Cowie P A , Duclaux G , et al. Tipping the balance:Shifts in sediment production in an active rifting setting[J]. Geology, 2019, 47 (3): 259- 262.
doi: 10.1130/G45589.1 |
24 |
Blum M , Martin J , Millken K , et al. Paleovalley systems:insights from quaternary analogs and experiments[J]. Earth-Science Reviews, 2013, 116, 128- 169.
doi: 10.1016/j.earscirev.2012.09.003 |
25 |
Scholz C A , Johnson T C , Cohen A S , et al. East African megadroughts between 135 and 75 thousand years ago and bearing on early-modern human origins[J]. Proceedings of the National Academy of Sciences, 2007, 104 (42): 16416- 16421.
doi: 10.1073/pnas.0703874104 |
26 |
Lyons R P , Scholz , C A , Buoniconti M R , et al. Late Quaternary stratigraphic analysis of the Lake Malawi Rift, East Africa:an integration of drill-core and seismic-reflection data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 303 (1-4): 20- 37.
doi: 10.1016/j.palaeo.2009.04.014 |
27 | 崔龙涛, 张倩萍. 坡折带-物源耦合控砂模式在湖相盆地储层预测中的探讨——以松辽盆地西斜坡地区白垩系储层为例[J]. 石油地质与工程, 2018, 32 (4): 6- 11. |
Cui Longtao , Zhang Qianping . Discussion on reservoir prediction controlled by slope break belt-source coupling sand bodies in lacustrine basin[J]. Petroleum Geology & Engineering, 2018, 32 (4): 6- 11. | |
28 | 陈林, 张曰静, 商丰凯, 等. 不同物源体系沉积结合部砂体展布范围精细识别[J]. 石油地质与工程, 2019, 33 (2): 6- 10. |
Chen Lin , Zhang Yuejing , Shang Fengkai , et al. Fine identification of sedimentary boundary of different provenance systems[J]. Petroleum Geology & Engineering, 2019, 33 (2): 6- 10. | |
29 | Liu Q H , Zhu X M , Yang Y , et al. Sequence stratigraphy and seismic geomorphology application of facies architecture and sediment-dispersal patterns analysis in the third member of Eocene Shahejie Formation, slope system of Zhanhua Sag, Bohai Bay Basin, China[J]. Marine & Petroleum Geology, 2016, 78, 766- 784. |
30 | 徐长贵, 杜晓峰, 徐伟, 等. 沉积盆地"源-汇"系统研究新进展[J]. 石油与天然气地质, 2017, 38 (1): 1- 11. |
Xu Changgui , Du Xiaofeng , Xu Wei , et al. New advances of the "source-to-sink" system research in sedimentary basin[J]. Oil & Gas Geology, 2017, 38 (1): 1- 11. | |
31 | 李勇, 黎兵, 周荣军, 等. 剥蚀-沉积体系中剥蚀量与沉积通量的定量对比研究——以岷江流域为例[J]. 地质学报, 2007, 81 (3): 332- 343. |
Li Yong , Li Bing , Zhou Rongjun , et al. The quantitative correlation between denudation volume and sedimentary flux in the denudation-accumulation system:examples from Minjiang River drainage system[J]. Acta Geologica Sinica, 2007, 81 (3): 332- 343. | |
32 |
Guillocheau F , Rouby D , Robin C , et al. Quantification and causes of the terrigenous sediment budget at the scale of a continental margin:a new method applied to the Namibia-South Africa margin[J]. Basin Research, 2012, 24 (1): 3- 30.
doi: 10.1111/j.1365-2117.2011.00511.x |
33 | Michael N.Functioning of an ancient routing system, the Escanilla Formation, South Central Pyrenees[D].London: Imperial College London, 2013. |
34 |
Sadler P M . Sediment accumulation rates and the completeness of stratigraphic sections[J]. The Journal of Geology, 1981, 89 (5): 569- 584.
doi: 10.1086/628623 |
35 | Schumer R , Jerolmack D J . Real and apparent changes in sediment deposition rates through time[J]. Journal of Geophysical Research:Earth Surface, 2009, 114 (F3): F00A06. |
36 | Allen P A . Sediment routing systems:The fate of sediment from source to sink[M]. Cambridge Cambridge University Press, 2017. |
37 | Watkins S E , Whittaker A C , Bell R E , et al. Are landscapes buffered to high-frequency climate change? A comparison of sediment fluxes and depositional volumes in the Corinth Rift, central Greece, over the past 130 k.y[J]. Geological Society of America Bulletin, 2019, 132 (3/4): 372- 388. |
38 |
Nyberg B , Helland-Hansen W , Gawthorpe R L , et al. Revisiting morphological relationships of modern source-to-sink segments as a first-order approach to scale ancient sedimentary systems[J]. Sedimentary Geology, 2018, 373, 111- 133.
doi: 10.1016/j.sedgeo.2018.06.007 |
39 | 马收先, 孟庆任, 曲永强. 轻矿物物源分析研究进展[J]. 岩石学报, 2014, 30 (2): 597- 608. |
Ma Shouxian , Meng Qingren , Qu Yongqiang . Development on provenance analysis of light minerals[J]. Acta Petrologica Sinica, 2014, 30 (2): 597- 608. | |
40 |
Xu J , Snedden J W , Stockli D F , Fulthorpe D F , et al. Early Miocene continental-scale sediment supply to the Gulf of Mexico basin based on detrital zircon analysis[J]. Geological Society of America Bulletin, 2017, 129 (1-2): 3- 22.
doi: 10.1130/B31465.1 |
41 | Sharman G R , Hubbard S M , Covault J A , et al. Sediment routing evolution in the North Alpine Foreland Basin, Austria:interplay of transverse and longitudinal sediment dispersal[J]. Basin Research, 2017, 30 (3): 426- 447. |
42 | 郭佩, 刘池洋, 王建强, 等. 碎屑锆石年代学在沉积物源研究中的应用及存在问题[J]. 沉积学报, 2017, 35 (1): 46- 56. |
Guo Pei , Liu Chiyang , Wang Jianqiang , et al. Consideration on the application of detrital-zircon geochronology to sedimentary provenance analysis[J]. Acta Sedimentological Sinica, 2017, 35 (1): 46- 56. | |
43 |
Markwitz V , Kirkland C . Source to sink zircon grain shape:Constraints on selective preservation and significance for Western Australian Proterozoic basin provenance[J]. Geoscience Frontiers, 2018, 9, 415- 430.
doi: 10.1016/j.gsf.2017.04.004 |
44 |
Saylor J E , Sundell K E . Quantifying comparison of large detrital geochronology data sets[J]. Geosphere, 2016, 12 (1): 203- 220.
doi: 10.1130/GES01237.1 |
45 |
Sharman G R , Sharman J P , Sylvester Z . detritalPy:A Python-based Toolset for Visualizing and Analyzing Detrital Geo-Thermochronologic Data[J]. The Depositional Record, 2018, 4, 202- 215.
doi: 10.1002/dep2.45 |
46 |
Tyrell S , Haughton P D W , Daly J S . Drainage reorganization during breakup of Pangea revealed by in-situ Pb isotopic analysis of detrital K-feldspar[J]. Geology, 2007, 35 (11): 971- 974.
doi: 10.1130/G4123A.1 |
47 | Zhang Z J , Tyrrell S , Li C A , et al. Pb isotope compositions of detrital K-feldspar grains in the upper-middle Yangtze River system:Implications for sediment provenance and drainage evolution[J]. Geoche-mistry Geophysics Geosystems, 2015, 15 (7): 2765- 2779. |
48 |
Jinnah Z A , Roberts E M , Deino A L , et al. New 40Ar- 39Ar and detrital zircon U-Pb ages for the Upper Cretaceous Wahweap and Kaiparowits Formations on the Kaiparowits Plateau, Utah:implications for regional correlation, provenance, and biostratigraphy[J]. Cretaceous Research, 2009, 30 (2): 287- 299.
doi: 10.1016/j.cretres.2008.07.012 |
49 |
Liu Z S , Shi H S , Zhu J Z , et al. Detrital K-feldspar 40Ar/39Ar ages:source constraints of the Lower Miocene sandstones in the Pearl River Mouth Basin, South China Sea[J]. Acta Geologica Sinica (English Edition), 2012, 86 (2): 383- 392.
doi: 10.1111/j.1755-6724.2012.00667.x |
50 | 喻顺, 陈文, 孙敬博, 等. 库车盆地白垩系碎屑白云母物源区示踪与构造意义[J]. 地质学报, 2016, 90 (8): 1874- 1885. |
Yu Shun , Chen Wen , Sun Jingbo , et al. Provenance tracing of Cretaceous Detrital Muscovite in the Kuqa Basin and its tectonic significance[J]. Acta Geologica Sinica, 2016, 90 (8): 1874- 1885. | |
51 | Hietpa J , Samson S , Moecher D . A direct comparison of the ages of detrital monazite versus detrital zircon in Appalachian foreland basin sandstones:Searching for the record of Phanerozoic orogenic events[J]. Earth & Planetary Science Letters, 2011, 310 (3-4): 488- 497. |
52 | 简星, 关平, 张巍. 碎屑金红石:沉积物源的一种指针[J]. 地球科学进展, 2012, 27 (8): 828- 846. |
Jian Xing , Guan Ping , Zhang Wei . Detrital Rutile:a sediment provenance indicator[J]. Advances in Earth Science, 2012, 27 (8): 828- 846. | |
53 |
Tan M X , Zhu X M , Liu W , et al. Sediment routing systems in the second member of the Eocene Shahejie Formation in the Liaoxi Sag, offshore Bohai Bay Basin:A synthesis from tectono-sedimentary and detrital zircon geochronological constraints[J]. Marine and Petro-leum Geology, 2018, 94, 95- 113.
doi: 10.1016/j.marpetgeo.2018.04.003 |
54 | 蔡长娥.沉积盆地碎屑锆石低温热年代学研究[D].北京:中国石油大学(北京), 2017. |
Cai C E.Detrital zircon low-temperaturethermochronology in sedimentary basin[D].Beijing: China University of Petroleum (Beijing), 2017. | |
55 | Xu J , Stockli D F , Snedden J W . Enhanced provenance interpretation using combined U-Pb and (U-Th)/He double dating of detrital zircon grains from lower Miocene strata, proximal Gulf of Mexico Basin, North America[J]. Earth & Planetary Science Letters, 2017, 475, 44- 57. |
56 |
Hooke R L B . Steady-state relationships on arid-region alluvial fans in closed basins[J]. American Journal of Science, 1968, 266 (8): 609- 629.
doi: 10.2475/ajs.266.8.609 |
57 |
Bull W B . The alluvial-fan environment[J]. Progress in Physical Geography, 1977, 1 (2): 222- 270.
doi: 10.1177/030913337700100202 |
58 | Schumm S A, Winskley B R.1994.The character of large alluvial rivers[M]//Schumm S A, Winkley B R.The Variability of Large Alluvial Rivers.New York: American Society of Civil Engineers, 1994: 1-9. |
59 |
Davidson S K , North C P . Geomorphological regional curves for prediction of drainage area and screening modern analogues for rivers in the rock record[J]. Journal of Sedimentary Research, 2009, 79 (10): 773- 792.
doi: 10.2110/jsr.2009.080 |
60 |
Hovius N . Regular spacing of drainage outlets from linear mountain belts[J]. Basin Research, 1996, 8 (1): 29- 44.
doi: 10.1111/j.1365-2117.1996.tb00113.x |
61 |
Talling P J , Stewart M D , Stark C P , et al. Regular spacing of drainage outlets from linear fault blocks[J]. Basin Research, 1997, 9 (4): 275- 302.
doi: 10.1046/j.1365-2117.1997.00048.x |
62 |
Walcott R C , Summerfield M A . Universality and variability in basin outlet spacing:implications for the two-dimensional form of drainage basins[J]. Basin Research, 2009, 21 (2): 147- 155.
doi: 10.1111/j.1365-2117.2008.00379.x |
63 |
Sømme T O , Jackson C A L . Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the Møre-Trøndelag area of southern Norway:Part 2, sediment dispersal and forcing mechanisms[J]. Basin Research, 2013, 25, 512- 531.
doi: 10.1111/bre.12014 |
64 |
Sømme T O , Martinsen O J , Thurmond J B . Reconstructing morphological and depositional characteristics in subsurface sedimentary systems:an example from the Maastrichtian-Danian Ormen Lange system, Møre Basin, Norwegian Sea[J]. AAPG Bulletin, 2009, 93 (10): 1347- 1377.
doi: 10.1306/06010909038 |
65 |
Snedden J W , Galloway W E , Milliken K T , et al. Validation of empirical source-to-sink scaling relationships in a continental-scale system:The Gulf of Mexico basin Cenozoic record[J]. Geosphere, 2018, 14 (2): 768- 784.
doi: 10.1130/GES01452.1 |
66 |
Covault J A , Romans B W , Graham S A , et al. Terrestrial source to deep-sea sink sediment budgets at high and low sea levels:Insights from tectonically active Southern California[J]. Geology, 2011, 39 (7): 619- 622.
doi: 10.1130/G31801.1 |
67 |
Mason C , Romans B . Climate-driven unsteady denudation and sediment flux in a high-relief unglaciated catchment-fan using 26Al and 10Be:Panamint Valley, California[J]. Earth and Planetary Science Letters, 2018, 492, 130- 143.
doi: 10.1016/j.epsl.2018.03.056 |
68 |
Babault J , Viaplana-Muzas M , Legrand X , et al. Source-to-sink constraints on tectonic and sedimentary evolution of the western Central Range and Cenderawasih Bay (Indonesia)[J]. Journal of Asian Earth Sciences, 2018, 156, 265- 287.
doi: 10.1016/j.jseaes.2018.02.004 |
69 |
Brewer C J , Hampson G J , Whittaker A C . Comparison of methods to estimate sediment flux in ancient sediment routing systems[J]. Earth-Science Reviews, 2020, 207, 103217.
doi: 10.1016/j.earscirev.2020.103217 |
70 |
Holbrook J , Wanas H . A fulcrum approach to assessing source-to-sink mass balance using channel paleohydrologic parameters derivable from common fluvial data sets with an example from the Cretaceous of Egypt[J]. Journal of Sedimentary Research, 2014, 84 (5): 349- 372.
doi: 10.2110/jsr.2014.29 |
71 |
Lin W , Bhattacharya J P . Estimation of source-to-sink mass balance by a fulcrum approach using channel paleohydrologic parameters of the Cretaceous Dunvegan Formation, Canada[J]. Journal of Sedimentary Research, 2017, 87 (1): 97- 116.
doi: 10.2110/jsr.2017.1 |
72 |
Sharma S , Bhattacharya J P , Richards B . Source-to-sink sediment budget analysis of the Cretaceous Ferron Sandstone, Utah, USA, using the fulcrum approach[J]. Journal of Sedimentary Research, 2017, 87 (6): 594- 608.
doi: 10.2110/jsr.2017.23 |
73 |
Syvitski J PM , Milliman J D . Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean[J]. Journal of Geology, 2007, 115, 1- 19.
doi: 10.1086/509246 |
74 |
Sømme T O , Piper D J W , Deptuck M E , et al. Linking onshore-offshore sediment dispersal in the Golo Source-to-Sink System (Corsica, France) During the Late Quaternary[J]. Journal of Sedimentary Research, 2011, 81 (2): 118- 137.
doi: 10.2110/jsr.2011.11 |
75 |
Zhang J Y , Covault J , Pyrcz M , et al. Quantifying sediment supply to continental margins:Application to the Paleogene Wilcox Group, Gulf of Mexico[J]. AAPG Bulletin, 2018, 102 (9): 1685- 1702.
doi: 10.1306/01081817308 |
76 | Martinsen O J, Sømme T O, Thurmond J B, et al.Source-to-sink systems on passive margins: theory and practice with an example from the Norwegian continental margin[C]//Geological Society, London, Petroleum Geology Conference series.Geological Society of London, 2010, 7(1): 913-920. |
77 |
Zhu X M , Li S l , Liu Q H , et al. Source to sink studies between the Shaleitian uplift and surrounding sags:Perspectives on the importance of hinterland relief and catchment area for sediment budget, Western Bohai Bay Basin, China[J]. Interpretation, 2017, 5 (4): 65- 84.
doi: 10.1190/INT-2017-0027.1 |
78 |
Ding X S , Salles T , Flament N , et al. Quantitative stratigraphic stratigraphic analysis in a source-to-sink numerical framework[J]. Geoscientific Model Development, 2019, 12 (6): 2571- 2585.
doi: 10.5194/gmd-12-2571-2019 |
79 | Salles T , Duclaux G . Combined hillslope diffusion and sediment transport simulation applied to landscape dynamics modelling[J]. Earth Surface Processes & Landforms, 2015, 40 (6): 823- 839. |
80 |
Tristan S , Ding X S , Gilles B , et al. pyBadlands:A framework to simulate sediment transport, landscape dynamics and basin stratigraphic evolution through space and time[J]. Plos One, 2018, 13 (4): e0195557.
doi: 10.1371/journal.pone.0195557 |
81 |
Clevie Q , De Boer P L , Wachter M . Numerical modelling of drainage basin evolution and three-dimensional alluvial fan stratigraphy[J]. Sedimentary Geology, 2003, 163, 85- 110.
doi: 10.1016/S0037-0738(03)00174-X |
82 | Gazzetti, E.Autogenic signals in an experimental source-to-sink system[D].Minnesota: University of Minnesota, 2015. |
83 |
Pettinga L , Jobe Z , Shumaker L , et al. Morphometric scaling relationships in submarine channel-lobe systems[J]. Geology, 2018, 46 (9): 819- 822.
doi: 10.1130/G45142.1 |
[1] | 何登发, 李德生, 童晓光, 吴晓智. 中国沉积盆地油气立体综合勘探论[J]. 石油与天然气地质, 2021, 42(2): 265-284. |
[2] | 林畅松. 盆地沉积动力学:研究现状与未来发展趋势[J]. 石油与天然气地质, 2019, 40(4): 685-700. |
[3] | 徐长贵, 杜晓峰, 徐伟, 赵梦. 沉积盆地“源-汇”系统研究新进展[J]. 石油与天然气地质, 2017, 38(1): 1-11. |
[4] | 刘波涛, 尹虎, 王新海, 李清泉. 修正岩石压缩系数的页岩气藏物质平衡方程及储量计算[J]. 石油与天然气地质, 2013, 34(4): 471-474. |
[5] | 李江龙, 张宏方. 物质平衡方法在缝洞型碳酸盐岩油藏能量评价中的应用[J]. 石油与天然气地质, 2009, 30(6): 773-778,785. |
[6] | 胡俊坤, 李晓平, 李琰, 叶亮, 任科. 异常高压气藏有限封闭水体能量评价[J]. 石油与天然气地质, 2009, 30(6): 689-691. |
[7] | 王民, 郭晓博, 薛海涛, 卢双舫, 付广, 陈勇. 多套源岩天然气扩散损失量评价—以松辽盆地北部浅层气源岩为例[J]. 石油与天然气地质, 2009, 30(2): 203-209. |
[8] | 岑芳, 赖枫鹏, 姜辉, 黄志文, 邹存友. 改进定容含硫气藏储量计算方法[J]. 石油与天然气地质, 2007, 28(3): 320-323,336. |
[9] | 陈志海, 常铁龙, 刘常红. 缝洞型碳酸盐岩油藏动用储量计算新方法[J]. 石油与天然气地质, 2007, 28(3): 315-319,328. |
[10] | 余和中, 韩守华, 谢锦龙, 郭庆新, 武金云. 华北板块东南缘原型沉积盆地类型与构造演化[J]. 石油与天然气地质, 2006, 27(2): 244-252. |
[11] | 赵重远. 试说中国后海西地台的存在和其地质意义[J]. 石油与天然气地质, 2005, 26(1): 16-22. |
[12] | 王连进, 叶加仁. 沉积盆地超压形成机制述评[J]. 石油与天然气地质, 2001, 22(1): 17-20. |
[13] | 任战利. 中国北方沉积盆地热演化史的对比[J]. 石油与天然气地质, 2000, 21(1): 33-37. |
[14] | 刘池洋, 杨兴科. 改造盆地研究和油气评价的思路[J]. 石油与天然气地质, 2000, 21(1): 11-14. |
[15] | 刘池洋, 赵重远, 杨兴科. 活动性强、深部作用活跃——中国沉积盆地的两个重要特点[J]. 石油与天然气地质, 2000, 21(1): 1-6,23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||