1 |
袁士义, 王强. 中国油田开发主体技术新进展与展望[J]. 石油勘探与开发, 2018, 45 (4): 1- 12.
|
|
Yuan Shiyi , Wang Qiang . New progress and prospect of oilfields development technologies in China[J]. Petroleum Exploration and Development, 2018, 45 (4): 1- 12.
|
2 |
李阳, 杨勇. 老油田绿色低成本开发探索与实践[J]. 油气地质与采收率, 2019, 26 (2): 1- 6.
|
|
Li Yang , Yang Yong . Exploration and practice of green low-cost development in old oilfields[J]. Petroleum Geology and Recovery Efficiency, 2019, 26 (2): 1- 6.
|
3 |
计秉玉, 王友启, 聂俊, 等. 中国石化提高采收率技术研究进展与应用[J]. 石油与天然气地质, 2016, 37 (4): 572- 576.
|
|
Ji Bingyu , Wang Youqi , Nie Jun , et al. Research progress and application of EOR techniques in SINOPEC[J]. Oil & Gas Geology, 2016, 37 (4): 572- 576.
|
4 |
宫宝, 李松源, 田晓东, 等. 评价水驱油田开发效果的系统工程方法[J]. 大庆石油地质与开发, 2015, 34 (5): 58- 63.
|
|
Gong Bao , Li Songyuan , Tian Xiaodong , et al. System engineering method for evaluating waterflooded oilfield development effects[J]. Petroleum Geology & Oilfield Development in Daqing, 2015, 34 (5): 58- 63.
|
5 |
张戈. 复杂断块油藏人工边水驱提高采收率机理分析[J]. 断块油气田, 2014, 21 (4): 476- 479.
|
|
Zhang Ge . Analysis on IOR mechanism of artificial edge water floo-ding in complex fault-block reservoir[J]. Fault-Block Oil and Gas Field, 2014, 21 (4): 476- 479.
|
6 |
孙焕泉. 未来提高油田采收率的技术发展趋势[J]. 当代石油石化, 2017, 25 (1): 1- 6.
|
|
Sun Huanquan . Future development trend of oil field oil recovery[J]. Petroleum & Petrochemical Today, 2017, 25 (1): 1- 6.
|
7 |
王强, 高明, 刘朝霞, 等. 化学驱提高采收率潜力评价方法研究[J]. 钻采工艺, 2017, 40 (1): 41- 43.
|
|
Wang Qiang , Gao Ming , Liu Zhaoxia , et al. Study on potential evaluation method of chemical flooding[J]. Drilling & Production Techno-logy, 2017, 40 (1): 41- 43.
|
8 |
胡永乐, 郝明强, 陈国利, 等. 中国CO2驱油与埋存技术及实践[J]. 石油勘探与开发, 2019, 46 (4): 716- 727.
|
|
Hu Yongle , Hao Mingqiang , Chen Guoli , et al. Technologies and practice of CO2 flooding and sequestration in China[J]. Petroleum Exploration and Development, 2019, 46 (4): 716- 727.
|
9 |
程立. 水驱油藏采收率与井网密度对应关系研究[J]. 石油地质与工程, 2019, 33 (4): 61- 64.
|
|
Cheng Li . Corresponding relationship between oil recovery and well spacing density for water flooding reservoirs[J]. Petroleum Geology & Engineering, 2019, 33 (4): 61- 64.
|
10 |
李士伦, 汤勇, 侯承希. 注CO2提高采收率技术现状及发展趋势[J]. 油气藏评价与开发, 2019, 9 (3): 1- 8.
|
|
Li Shilun , Tang Yong , Hou Chengxi . Present situation and development trend of CO2 injection enhanced oil recovery technology[J]. Reservoir Evaluation and Development, 2019, 9 (3): 1- 8.
|
11 |
孙新革, 赵长虹, 熊伟, 等. 风城浅层超稠油蒸汽吞吐后期提高采收率技术[J]. 特种油气藏, 2018, 25 (3): 72- 76.
|
|
Sun Xinge , Zhao Changhong , Xiong Wei , et al. Enhanced oil recovery in the late stage of shallow super-heavy oil reservoir with steam huff-puff in Fengcheng Oilfield[J]. Special Oil & Gas Reservoirs, 2018, 25 (3): 72- 76.
|
12 |
穆中奇, 代金友, 赵正军, 等. 低渗透气藏采收率预测研究[J]. 石油地质与工程, 2018, 32 (6): 70- 72.
|
|
Mu Zhongqi , Dai Jinyou , Zhao Zhengjun , et al. Study on predicting the recovery efficiency of low permeability gas reservoirs[J]. Petro-leum Geology & Engineering, 2018, 32 (6): 70- 72.
|
13 |
孙志刚, 杨海博, 杨勇, 等. 注采交替提高采收率物理模拟实验[J]. 断块油气田, 2019, 26 (1): 88- 92.
|
|
Yang Haibo , Sun Zhigang , Yang Yong , et al. Physical simulation experiment by alternation of injection and production to improve oil recovery[J]. Fault-Block Oil and Gas Field, 2019, 26 (1): 88- 92.
|
14 |
刘毅, 程诗睿, 胡子龙, 等. 微生物复合降黏技术提高稠油底水油藏采收率研究及应用[J]. 油气藏评价与开发, 2017, 7 (2): 70- 73.
|
|
Liu Yi , Chen Shirui , Hu Zilong , et al. Research and application of the composite microbial viscosity reduction technology to improve the recovery of heavy oil reservoir[J]. Reservoir Evaluation and Development, 2017, 7 (2): 70- 73.
|
15 |
孙焕泉. 薄储层超稠油热化学复合采油方法与技术[J]. 石油与天然气地质, 2020, 41 (5): 1100- 1106.
|
|
Sun Huanquan . Hybrid thermal chemical recovery of thin extra-heavy oil reservoirs[J]. Oil & Gas Geology, 2020, 41 (5): 1100- 1106.
|
16 |
张建国. 低矿化度水/表面活性剂复合驱提高采收率技术[J]. 断块油气田, 2019, 26 (5): 609- 612, 637.
|
|
Zhang Jianguo . Alternative injection of low salinity water/surfactant to improve recovery[J]. Fault-Block Oil and Gas Field, 2019, 26 (5): 609- 612, 637.
|
17 |
佘文昌, 孔柏岭. 古城油田稠油油藏二元复合驱提高采收率研究[J]. 石油地质与工程, 2018, 32 (5): 70- 72.
|
|
She Wenchang , Kong Boling . EOR study by SP flooding in heavy oil reservoirs of Gucheng oilfield[J]. Petroleum Geology & Engineering, 2018, 32 (5): 70- 72.
|
18 |
李士伦, 汤勇, 侯承希. 注CO2提高采收率技术现状及发展趋势[J]. 油气藏评价与开发, 2019, 9 (3): 1- 8.
|
|
Li Shilun , Tang Yong , Hou Chengxi . Present situation and development trend of CO2 injection enhanced oil recovery technology[J]. Reservoir Evaluation and Development, 2019, 9 (3): 1- 8.
|
19 |
梅海燕, 何浪, 张茂林, 等. 页岩油注气提高采收率现状及可行性分析[J]. 油气藏评价与开发, 2018, 8 (6): 77- 82.
|
|
Mei Haiyan , He Lang , Zhang Maolin , et al. Status and feasibility analysis on improved shale-oil recovery by gas injection[J]. Reservoir Evaluation and Development, 2018, 8 (6): 77- 82.
|
20 |
曲占庆, 雷锡岳, 郝彤, 等. 聚合物驱后复合相态调驱体系提高采收率技术[J]. 特种油气藏, 2018, 25 (2): 143- 147.
|
|
Qu Zhanqing , Lei Xiyue , Hao Tong , et al. Composite profile-control flooding to enhance oil recovery after polymer flooding[J]. Special Oil & Gas Reservoirs, 2018, 25 (2): 143- 147.
|
21 |
王友启. 特高含水期油田"四点五类"剩余油分类方法[J]. 石油钻探技术, 2017, 45 (2): 76- 80.
|
|
Wang Youqi . Classification method of remaining oil with four points and five types in ultra-high water cut oilfield[J]. Petroleum Drilling Techniques, 2017, 45 (2): 76- 80.
|
22 |
廖广志, 王强, 王红庄, 等. 化学驱开发现状与前景展望[J]. 石油学报, 2017, 38 (2): 196- 207.
|
|
Liao Guangzhi , Wang Qiang , Wang Hongzhuang , et al. Chemical flooding development status and prospect[J]. Acta Petrolei Sinica, 2017, 38 (2): 196- 207.
|
23 |
孙焕泉, 李振泉, 曹绪龙, 等. 驱油剂加合增效基础研究进展[M]. 北京: 科学出版社, 2016: 182- 188.
|
|
Sun Huanquan , Li Zhengquan , Cao Xulong , et al. Basic research progress on the synergistic effect of chemicals in enhanced oil recovery[M]. Beijing: Science Press, 2016: 182- 188.
|
24 |
王文环, 彭缓缓, 李光泉, 等. 特低渗透油藏水驱规律及最佳驱替模式[J]. 石油与天然气地质, 2019, 40 (1): 182- 189.
|
|
Wang Wenhuan , Peng Huanhuan , Li Guangquan , et al. Waterflooding and optimum displacement pattern for ultra-low permeability reservoirs[J]. Oil & Gas Geology, 2019, 40 (1): 182- 189.
|
25 |
康毅力, 田键, 罗平亚, 等. 致密油藏提高采收率技术瓶颈与发展策略[J]. 石油学报, 2020, 41 (4): 467- 477.
|
|
Kang Yili , Tian Jian , Luo Pingya , et al. Technical bottlenecks and development strategies of enhancing recovery for tight oil reservoirs[J]. Acta Petrolei Sinica, 2020, 41 (4): 467- 477.
|
26 |
顾浩, 孙建芳, 秦学杰, 等. 稠油热采不同开发技术潜力评价[J]. 油气地质与采收率, 2018, 25 (3): 112- 116.
|
|
Gu Hao , Sun Jianfang , Qin Xuejie , et al. Potential evaluation of diffe-rent thermal-recovery technologies for heavy oil[J]. Petroleum Geology and Recovery Efficiency, 2018, 25 (3): 112- 116.
|
27 |
康志江, 李阳, 计秉玉, 等. 碳酸盐岩缝洞型油藏提高采收率关键技术[J]. 石油与天然气地质, 2020, 41 (2): 434- 441.
|
|
Kang Zhijiang , Li Yang , Ji Bingyu , et al. Key technologies for EOR in fractured-vuggy carbonate reservoirs[J]. Oil & Gas Geology, 2020, 41 (2): 434- 441.
|
28 |
王友启. 陆相特高含水油田固水提高采收率机制研究[J]. 中国石油大学学报(自然科学版), 2012, 36 (6): 108- 112.
|
|
Wang Youqi . Research on mechanism of enhanced oil recovery using immobilizing movable water in continental extra-high water cut oilfield[J]. Journal of China University of Petroleum, 2012, 36 (6): 108- 112.
|