石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (5): 1169-1180.doi: 10.11743/ogg20210514
张东东1,2(), 刘文汇1,2,3,*(), 王晓锋1,2, 罗厚勇1,2, 王庆涛1,2, 李忆宁1,2, 李风娇1,2
收稿日期:
2021-03-02
出版日期:
2021-10-28
发布日期:
2021-10-26
通讯作者:
刘文汇
E-mail:zhangdd@nwu.edu.cn;whliu@nwu.edu.cn
第一作者简介:
张东东(1985-), 男, 博士、副教授, 石油地质与油气地球化学。E-mail: 基金项目:
Dongdong Zhang1,2(), Wenhui Liu1,2,3,*(), Xiaofeng Wang1,2, Houyong Luo1,2, Qingtao Wang1,2, Yining Li1,2, Fengjiao Li1,2
Received:
2021-03-02
Online:
2021-10-28
Published:
2021-10-26
Contact:
Wenhui Liu
E-mail:zhangdd@nwu.edu.cn;whliu@nwu.edu.cn
摘要:
深层油气勘探不断取得的重要发现,使其成为中国乃至全球油气资源的重要战略领域。但盆地深层高温、高压的环境,漫长的演化历史以及复杂的有机-无机相互作用导致人们对深层油气成藏机制尚不完全明了。按照油气藏的形成主因、演化历程以及成藏特征将深层油气藏划分为浅成深埋型、浅备深成型和深层成藏型油气藏等3种类型,并对它们的成因机制和主要成藏特征进行了梳理和表征;同时重点讨论了深层油气成源和成烃的难点问题,其中深层外源氢的参与、富钙烃源物质以及无机成因气等对高-过成熟有机质的成烃意义重大。对深层油气成藏机制的探讨将有助于推动中国深层油气勘探并夯实产业发展理论基础。
中图分类号:
1 | 李建忠, 陶小晚, 白斌, 等. 中国海相超深层油气地质条件、成藏演化及有利勘探方向[J]. 石油勘探与开发, 2021, 48 (1): 1- 16. |
Li Jianzhong , Tao Xiaowan , Bai Bin , et al. Geological conditions, reservoir forming evolution and favorable exploration directions of marine ultra-deep oil and gas in China[J]. Petroleum Exploration and Development, 2021, 48 (1): 1- 16. | |
2 |
任战利, 祁凯, 杨桂林, 等. 沉积盆地深层热演化历史与油气关系研究现状及存在问题[J]. 非常规油气, 2020, 7 (3): 1- 7, 15.
doi: 10.3969/j.issn.2095-8471.2020.03.001 |
Ren Zhanli , Qi Kai , Yang Guilin , et al. Research status and existing problems of relationship between deep thermal evolution history and oil and gas in sedimentary basins[J]. Unconventional Oil & Gas, 2020, 7 (3): 1- 7, 15.
doi: 10.3969/j.issn.2095-8471.2020.03.001 |
|
3 | 何治亮, 李双建, 刘全有, 等. 盆地深部地质作用与深层资源-科学问题与攻关方向[J]. 石油实验地质, 2020, 42 (5): 123- 135. |
He Zhiliang , Li Shuangjian , Liu Quanyou , et al. Deep geological processes and deep resources in basins: scientific issues and research directions[J]. Petroleum Geology & Experiment, 2020, 42 (5): 123- 135. | |
4 | 庞雄奇, 林会喜, 郑定业, 等. 中国深层和超深层碳酸盐岩油气藏形成分布的基本特征与动力机制及发展方向[J]. 地质力学学报, 2020, 26 (5): 673- 695. |
Pang Xiongqi , Lin Huixi , Zheng Dingye , et al. Basic characteristics, dynamic mechanism and development direction of the formation and distribution of deep and ultra-deep carbonate reservoirs in China[J]. Journal of Geomechanics, 2020, 26 (5): 673- 695. | |
5 |
袁玉松, 胡文瑄, 陈书平, 等. 超深层油气保存主控因素及评价思路[J]. 海相油气地质, 2019, 24 (4): 47- 56.
doi: 10.3969/j.issn.1672-9854.2019.04.005 |
Yuan Yusong , Hu Wenxuan , Chen Shuping , et al. The main controlling factors and evaluation ideas of ultra-deep oil and gas preservation[J]. Marine Origin Petroleum Geology, 2019, 24 (4): 47- 56.
doi: 10.3969/j.issn.1672-9854.2019.04.005 |
|
6 | 何登发, 马永生, 刘波, 等. 中国含油气盆地深层勘探的主要进展与科学问题[J]. 地学前缘, 2019, 26 (1): 1- 12. |
He Dengfa , Ma Yongsheng , Liu Bo , et al. Main advances and key issues for deep-seated exploration in petroliferous basins in China[J]. Earth Science Frontiers, 2019, 26 (1): 1- 012. | |
7 | 张光亚, 马锋, 梁英波, 等. 全球深层油气勘探领域及理论技术进展[J]. 石油学报, 2015, 36 (9): 1156- 1166. |
Zhang Guangya , Ma Feng , Liang Yingbo , et al. Domain and theory technology progress of global deep oil&gas exploration[J]. Acta Petrolei Sinica, 2015, 36 (9): 1156- 1166. | |
8 |
贾承造, 庞雄奇. 深层油气地质理论研究进展与主要发展方向[J]. 石油学报, 2015, 36 (12): 1457- 1469.
doi: 10.7623/syxb201512001 |
Jia Chengzao , Pang Xiongqi . Research processes and main development directions of deep hydrocarbon geological theories[J]. Acta Petrolei Sinica, 2015, 36 (12): 1457- 1469.
doi: 10.7623/syxb201512001 |
|
9 | 赵文智, 胡素云, 刘伟, 等. 再论中国陆上深层海相碳酸盐岩油气地质特征与勘探前景[J]. 天然气工业, 2014, 34 (4): 1- 9. |
Zhao Wenzhi , Hu Suyun , Liu Wei , et al. Petroleum geological features and exploration prospect in deep marine carbonate strata onshore China: A further discussion[J]. Natural Gas Industry, 2014, 34 (4): 1- 9. | |
10 | 庞雄奇, 汪文洋, 汪英勋, 等. 含油气盆地深层与中浅层油气成藏条件和特征差异性比较[J]. 石油学报, 2015, 36 (10): 1167- 1187. |
Pang Xiongqi , Wang Wenyang , Wang Yingxun , et al. Comparison of otherness on hydrocarbon accumulation conditions and characteristics between deep and middle-shallow in petroliferous basins[J]. Acta Petrolei Sinica, 2015, 36 (10): 1167- 1187. | |
11 | 刘池洋. 叠合盆地特征及油气赋存条件[J]. 石油学报, 2007, 28 (1): 1- 7. |
Liu Chiyang . Geologic characteristics and petroleum accumulation conditions of superimposed basins[J]. Acta Petrolei Sinica, 2007, 28 (1): 1- 7. | |
12 |
刘池洋. 后期改造强烈: 中国沉积盆地的重要特点之一[J]. 石油与天然气地质, 1996, 17 (4): 255- 261.
doi: 10.3321/j.issn:0253-9985.1996.04.001 |
Liu Chiyang . Strong late-reformation: one of the important characteristics of sedimentary basins in China[J]. Oil & Gas Geology, 1996, 17 (4): 255- 261.
doi: 10.3321/j.issn:0253-9985.1996.04.001 |
|
13 | 马永生, 黎茂稳, 蔡勋育, 等. 中国海相深层油气富集机理与勘探开发: 研究现状, 关键技术瓶颈与基础科学问题[J]. 石油与天然气地质, 2020, (4): 655- 672. |
Ma Yongsheng , Li Maowen , Cai Xunyu , et al. Mechanisms and exploitation of deep marine petroleum accumulations in China: Advances, technological bottlenecks and basic scientific problems[J]. Oil & Gas Geology, 2020, (4): 655- 672. | |
14 |
李阳, 薛兆杰, 程喆, 等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探, 2020, 25 (1): 45- 57.
doi: 10.3969/j.issn.1672-7703.2020.01.005 |
Li Yang , Xue Zhaojie , Cheng Zhe , et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25 (1): 45- 57.
doi: 10.3969/j.issn.1672-7703.2020.01.005 |
|
15 | 刘文汇, 郑建京, 妥进才, 等. 塔里木盆地深层气[M]. 北京: 科学出版社, 2007: 1- 60. |
Liu Wenhui , Zheng Jianjing , Tuo Jincai , et al. Deep-gas in Tarim Basin[M]. Beijing: Science Press, 2007: 1- 60. | |
16 | 张金川, 陶佳, 李振, 等. 中国深层页岩气资源前景和勘探潜力[J]. 天然气工业, 2021, 41 (1): 15- 28. |
Zhang Jinchuan , Tao Jia , Li Zhen , et al. Prospect of deep shale gas resources in China[J]. Natural Gas Industry, 2021, 41 (1): 15- 28. | |
17 | 何治亮, 聂海宽, 胡东风, 等. 深层页岩气有效开发中的地质问题-以四川盆地及其周缘五峰组-龙马溪组为例[J]. 石油学报, 2020, 41 (4): 379- 391. |
He Zhiliang , Nie Haikuan , Hu Dongfeng , et al. Geological problems in the effective development of deep shale gas: A case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2020, 41 (4): 379- 391. | |
18 | Pusey W . How to evaluate potential gas and oil source rocks[J]. World Oil, 1973, 176 (5): 71- 75. |
19 | Tissot B , Welte H . Petroleum formation and occurrence[M]. Berlin Heidelberg, New York: Springer-Verlag, 1984: 1- 235. |
20 |
Feng W , Wang F , Jiang T , et al. Origin and accumulation of petrol-eum in deep precambrian reservoir in Baxian Sag, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2020, 120, 104541.
doi: 10.1016/j.marpetgeo.2020.104541 |
21 |
Li J , Zhang Z , Zhu G , et al. The origin and accumulation of ultra-deep oil in Halahatang area, northern Tarim Basin[J]. Journal of Petroleum Science and Engineering, 2020, 195, 107898.
doi: 10.1016/j.petrol.2020.107898 |
22 | 朱光有, 曹颖辉, 闫磊, 等. 塔里木盆地8000m以深超深层海相油气勘探潜力与方向[J]. 天然气地球科学, 2018, 29 (6): 755- 772. |
Zhu Guangyou , Cao Yinghui , Yan Lei , et al. Petroleum exploration potential and favorable areas of ultra-deep marine strata deeper than 8000 meters in Tarim Basin[J]. Natural Gas Geoscience, 2018, 29 (6): 755- 772. | |
23 |
Zhu G , Milkov A V , Li J , et al. Deepest oil in Asia: Characteristics of petroleum system in the Tarim basin, China[J]. Journal of Petroleum Science and Engineering, 2021, 199, 108246.
doi: 10.1016/j.petrol.2020.108246 |
24 |
Wang Q , Hao F , Cao Z , et al. Geochemistry and origin of the ultra-deep Ordovician oils in the Shunbei field, Tarim Basin, China: Implications on alteration and mixing[J]. Marine and Petroleum Geology, 2021, 123, 104725.
doi: 10.1016/j.marpetgeo.2020.104725 |
25 | 张天付, 黄理力, 倪新锋, 等. 塔里木盆地柯坪地区下寒武统吾松格尔组岩性组合及其成因和勘探意义——亚洲第一深井轮探1井突破的启示[J]. 石油与天然气地质, 2020, 41 (5): 928- 940. |
Zhang Tianfu , Huang Lili , Ni Xinfeng , et al. Lithological combination, genesis and exploration significance of the Lower Cambrian Wusonggeer Formation of Kalpin area in Tarim Basin: Insight through the deepest Asian onshore well-Well Luntan 1[J]. Oil & Gas Geology, 2020, 41 (5): 928- 940. | |
26 |
Price L C . Thermal stability of hydrocarbons in nature: Limits, evidence, characteristics, and possible controls[J]. Geochimica et Cosmochimica Acta, 1993, 57 (14): 3261- 3280.
doi: 10.1016/0016-7037(93)90539-9 |
27 | Price L C , Wenger L M . The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis[J]. Organic Geochemistry, 1992, 19 (1/3): 141- 159. |
28 |
卢双舫, 薛海涛, 钟宁宁. 石油保存下限的化学动力学研究[J]. 石油勘探与开发, 2002, 29 (6): 1- 3.
doi: 10.3321/j.issn:1000-0747.2002.06.001 |
Lu Shuangfang , Xue Haitao , Zhong Ningning . The chemical kinetic study of the oil preservation threshold[J]. Petroleum Exploration and Development, 2002, 29 (6): 1- 3.
doi: 10.3321/j.issn:1000-0747.2002.06.001 |
|
29 | Hunt J M . Generation and migration of petroleum from abnormally pressured fluid compartments[J]. AAPG Bulletin, 1990, 74 (1): 1- 12. |
30 |
McTavish R A . The role of overpressure in the retardation of organic matter maturation[J]. Journal of Petroleum Geology, 1998, 21 (2): 153- 186.
doi: 10.1111/j.1747-5457.1998.tb00652.x |
31 |
Simoneit B R T . Aqueous high-temperature and high-pressure organic geochemistry of hydrothermal vent systems[J]. Geochimica et Cosmochimica Acta, 1993, 57 (14): 3231- 3243.
doi: 10.1016/0016-7037(93)90536-6 |
32 |
Mango F D , Hightower J . The catalytic decomposition of petroleum into natural gas[J]. Geochimica et Cosmochimica Acta, 1997, 61 (24): 5347- 5350.
doi: 10.1016/S0016-7037(97)00310-4 |
33 |
Mango F D . The stability of hydrocarbons under the time-temperature condition of petroleum genesis[J]. Nature, 1991, 352, 146- 148.
doi: 10.1038/352146a0 |
34 |
Dieckmann V , Schenk H J , Horsfield B , et al. Kinetics of petroleum generation and cracking by programmed-temperature closed-system pyrolysis of Toarcian Shales[J]. Fuel, 1998, 77, 23- 31.
doi: 10.1016/S0016-2361(97)00165-8 |
35 |
Gai H , Tian H , Xiao X . Late gas generation potential for different types of shale source rocks: implications from pyrolysis experiments[J]. International Journal of Coal Geology, 2018, 193, 16- 29.
doi: 10.1016/j.coal.2018.04.009 |
36 |
Gai H , Xiao X , Cheng P , et al. Gas generation of shale organic matter with different contents of residual oil based on a pyrolysis experiment[J]. Organic Geochemistry, 2015, 78, 69- 78.
doi: 10.1016/j.orggeochem.2014.11.001 |
37 | Lorant F , Behar F . Late generation of methane from mature kerogens[J]. Energy & Fuels, 2002, 16, 412- 427. |
38 |
郝芳, 邹华耀, 方勇, 等. 超压环境有机质热演化和生烃作用机理[J]. 石油学报, 2006, 27 (5): 9- 18.
doi: 10.3321/j.issn:0253-2697.2006.05.002 |
Hao Fang , Zou Huayao , Fang Yong , et al. Kinetics of organic matter maturation and hydrocarbon generation in overpressure environment[J]. Acta Petrolei Sinica, 2006, 27 (5): 9- 18.
doi: 10.3321/j.issn:0253-2697.2006.05.002 |
|
39 |
郝芳, 邹华耀, 倪建华, 等. 沉积盆地超压系统演化与深层油气成藏条件[J]. 地球科学-中国地质大学学报, 2002, 27 (5): 610- 615.
doi: 10.3321/j.issn:1000-2383.2002.05.022 |
Hao Fang , Zou Huayao , Ni Jianhua , et al. Evolution of overpressured systems in sedimentary basins and conditions for deep oil/gas accumulation[J]. Earth Science-Journal of China University of Geosc-iences, 2002, 27 (5): 610- 615.
doi: 10.3321/j.issn:1000-2383.2002.05.022 |
|
40 | 姜峰, 杜建国, 王万春, 等. 高温超高压模拟实验研究——Ⅱ.高温高压下烷烃产物的演化特征[J]. 沉积学报, 1998, 16 (4): 145- 148. |
Jiang Feng , Du Jianguo , Wang Wanchun , et al. Thestudy on high-pressure-high-temperature aqueous pyrolysisⅡ.Evolutionary characteristics of alkane generated from organic matter under high temperature and high pressure[J]. Acta Sedimentologica Sinica, 1997, 16 (4): 145- 148. | |
41 | Barker C . Calculated volume and pressure changes during the thermal cracking of oil to gas in reservoirs[J]. AAPG Bulletin, 1990, 74 (7): 1254- 1261. |
42 | 任战利, 崔军平, 祁凯, 等. 深层、超深层温度及热演化历史对油气相态与生烃历史的控制作用[J]. 天然气工业, 2020, 40 (2): 22- 30. |
Ren Zhanli , Cui Junping , Qi Kai , et al. Control effects of temperature and thermal evolution history of deep and ultra-deep layers on hydrocarbon phase state and hydrocarbon generation history[J]. Natural Gas Industry, 2020, 40 (2): 22- 30. | |
43 | 邱楠生, 刘雯, 徐秋晨, 等. 深层-古老海相层系温压场与油气成藏[J]. 地球科学, 2018, 43 (10): 3511- 3525. |
Qiu Nansheng , Liu Wen , Xu Qiucheng , et al. Temperature-pressure field and hydrocarbon accumulation in deep-ancient marine strata[J]. Earth Science, 2018, 43 (10): 3511- 3525. | |
44 | 贾承造. 论非常规油气对经典石油天然气地质学理论的突破及意义[J]. 石油勘探与开发, 2017, 44 (1): 1- 11. |
Jia Chengzao . Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory[J]. Petroleum Exploration and Development, 2017, 44 (1): 1- 11. | |
45 |
刘文汇, 王杰, 腾格尔, 等. 中国海相层系多元生烃及其示踪技术[J]. 石油学报, 2012, (S1): 115- 125.
doi: 10.7623/syxb2012S1014 |
Liu Wenhui , Wang Jie , Tenger , et al. Multiple hydrocarbon generation of marine strata and its tracer technique in China[J]. Acta Petrolei Sinica, 2012, (S1): 115- 125.
doi: 10.7623/syxb2012S1014 |
|
46 |
刘文汇, 张建勇, 范明, 等. 叠合盆地天然气的重要来源-分散可溶有机质[J]. 石油实验地质, 2007, 29 (1): 1- 6.
doi: 10.3969/j.issn.1001-6112.2007.01.001 |
Liu Wenhui , Zhang Jianyong , Fan Ming , et al. Gas generation character of dissipated soluble organic matter[J]. Petroleum Geology & Experiment, 2007, 29 (1): 1- 6.
doi: 10.3969/j.issn.1001-6112.2007.01.001 |
|
47 | 何治亮, 马永生, 朱东亚, 等. 深层-超深层碳酸盐岩储层理论技术进展与攻关方向[J]. 石油与天然气地质, 2021, 42 (3): 533- 546. |
He Zhiliang , Ma Yongsheng , Zhu Dongya , et al. Theoretical and technological progress and research direction of deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2021, 42 (3): 533- 546. | |
48 | 刘永立, 尤东华, 李海英, 等. 超深层碳酸盐岩层系硅质岩储层表征与评价——以塔里木盆地塔深6井为例[J]. 石油与天然气地质, 2021, 42 (3): 547- 556. |
Liu Yongli , You Donghua , Li Haiying , et al. Characterization and evaluation of chert reservoirs in ultra-deep carbonate rock formations- A case study on Well TS 6 in the Tarim Basin[J]. Oil & Gas Geology, 2021, 42 (3): 547- 556. | |
49 |
Wang Xiaofeng , Liu Wenhui , Shi Baoguang , et al. Hydrogen isotope characteristics of thermogenic methane in Chinese sedimentary basins[J]. Organic Geochemistry, 2015, 83-84, 178- 189.
doi: 10.1016/j.orggeochem.2015.03.010 |
50 | Liu D , Zhang W , Kong Q , et al. Lower Paleozoic source rocks and natural gas origins in Ordos Basin, NWChina[J]. Petroleum Exploration & Development, 2016, 43 (4): 591- 601. |
51 |
Liu Q , Jin Z , Meng Q , Wu X , et al. Genetic types of natural gas and filling patterns in Daniudi gas field, Ordos Basin, China[J]. Journal of Asian Earth Sciences, 2015, 107, 1- 11.
doi: 10.1016/j.jseaes.2015.04.001 |
52 |
Tang S , Tang D , Li S , et al. Geochemical characteristics and origin of natural gas and gas-filling mode of the Paleozoic in the Yanchuannan gas field, Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2018, 49, 286- 297.
doi: 10.1016/j.jngse.2017.11.013 |
53 |
Wu X , Liu Q , Zhu J , et al. Geochemical characteristics of tight gas and gas-source correlation in the Daniudi gas field, the Ordos Basin, China[J]. Marine and Petroleum Geology, 2017, 79, 412- 425.
doi: 10.1016/j.marpetgeo.2016.10.022 |
54 |
戴金星, 石昕, 卫延召. 无机成因油气论和无机成因的气田(藏)概略[J]. 石油学报, 2001, 22 (6): 5- 10.
doi: 10.3321/j.issn:0253-2697.2001.06.002 |
Dai Jinxing , Shi Xin , Wei Yanzhao . Summary of the abiogenic origin theory and the abiogenic gas pools (fields)[J]. Acta Petrolei Sinica, 2001, 22 (6): 5- 10.
doi: 10.3321/j.issn:0253-2697.2001.06.002 |
|
55 | 戴金星. 中国含油气盆地的无机成因气及其气藏[J]. 天然气工业, 1995, 15 (3): 22- 27. |
Dai Jinxing . Abiogenic gas in oil-gas bearing basins in China and its reserviors[J]. Natural Gas Industry, 1995, 15 (3): 22- 27. | |
56 |
崔永强, 李莉, 陈卫军. 松辽盆地无机成因烃类气藏的幔源贡献[J]. 大庆石油地质与开发, 2001, 20 (4): 6- 8.
doi: 10.3969/j.issn.1000-3754.2001.04.002 |
Cui Yongqiang , Li Li , Chen Weijun . Mantle source contribution of inorganic genetic hydrocarbon gas reservoir in Songliao basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2001, 20 (4): 6- 8.
doi: 10.3969/j.issn.1000-3754.2001.04.002 |
|
57 | 郭占谦, 刘文龙, 王先彬. 松辽盆地非生物成因气的成藏特征[J]. 中国科学D辑(地球科学), 1997, 27 (2): 143- 148. |
Guo Zhanqian , Liu Wenlong , Wang Xianbin . Accumulation characteristics of abiogenic gas in Songliao Basin[J]. Science in China (Series D), 1997, 27 (2): 143- 148. | |
58 |
Seewald J S . Organic-inorganic interaction in petroleum-producing sedimentary basins[J]. Nature, 2003, 426, 327- 333.
doi: 10.1038/nature02132 |
59 | 张旗, 金维浚, 王金荣, 等. 岩浆热场对油气成藏的影响[J]. 地球物理学进展, 2016, 31 (4): 1525- 1541. |
Zhang Qi , Jin Weijun , Wang Jinrong , et al. Relationship between magma-thermal field and hydrocarbon accumulation[J]. Progress in Geophysics, 2016, 31 (4): 1525- 1541. | |
60 | 梁新平, 金之钧, 刘全有, 等. 火山灰对富有机质页岩形成的影响——以西西伯利亚盆地中生界巴热诺夫组为例[J]. 石油与天然气地质, 2021, 42 (1): 201- 211. |
Liang Xinping , Jin Zhijun , Liu Quanyou , et al. Impact of volcanic ash on the formation of organic-rich shale: A case study on the Mesozoic Bazhenov Formation, West Siberian Basin[J]. Oil & Gas Geology, 2021, 42 (1): 201- 211. | |
61 |
Spirakis C S . The roles of organic matter in the formation of uranium deposits in sedimentary rocks[J]. Ore Geology Reviews, 1996, 11 (1-3): 53- 69.
doi: 10.1016/0169-1368(95)00015-1 |
62 |
Lollar B S , Onstott T C , Lacrampe-Couloume G , et al. The contribution of the precambrian continental lithosphere to global H2 production[J]. Nature, 2014, 516, 379- 382.
doi: 10.1038/nature14017 |
63 | Lin L H , Hall J , Lippmann-Pipke J , et al. Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities[J]. Geochemistry, Geophysics, Geosystems, 2005a, 6, 1- 13. |
64 |
Kita I , Matsuo S , Wakita H . H2 generation by reaction between H2O and crushed rock: An experimental study on H2 degassing from the active fault zone[J]. Journal of Geophysical Research Solid Earth, 1982, 87, 10789- 10795.
doi: 10.1029/JB087iB13p10789 |
65 |
Hu Q Y , Kim D Y , Liu J , et al. Dehydrogenation of goethite in Earth's deep lower mantle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1498- 1501.
doi: 10.1073/pnas.1620644114 |
66 |
Helgeson H C , Knox A M , Owens C E , et al. Petroleum, oil field waters, and authigenic mineral assemblages: Are they in metastable equilibrium in hydrocarbon reservoirs[J]. Geochimica et Cosmochimica Acta, 1993, 57 (14): 3295- 3339.
doi: 10.1016/0016-7037(93)90541-4 |
67 |
Charlou J L , Donval J P , Fouquet Y , et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14'N, MAR)[J]. Chemical Geology, 2002, 191, 345- 359.
doi: 10.1016/S0009-2541(02)00134-1 |
68 | 刘全有, 金之钧, 刘文汇, 等. 鄂尔多斯盆地海相层系中有机酸盐存在以及对低丰度高演化烃源岩生烃潜力评价的影响[J]. 中国科学: 地球科学, 2013, 43 (12): 1975- 1983. |
Liu Quanyou , Jin Zhijun , Liu Wenhui , et al. Presence of carboxylate salts in marine carbonate strata of the Ordos Basin and their impact on hydrocarbon generation evaluation of low TOC, high maturity source rocks[J]. Science China: Earth Sciences, 2013, 43 (12): 1975- 1983. | |
69 | 刘鹏, 王晓锋, 房嬛, 等. 碳酸盐岩有机质丰度测试新方法[J]. 沉积学报, 2016, 34 (1): 200- 206. |
Liu Peng , Wang Xiaofeng , Fang Xuan , et al. A new method to measure the value of organic abundance in carbonate rocks[J]. Acta Sedimentologica Sinica, 2016, 34 (1): 200- 206. | |
70 |
Wang Q , Liu W , Pei L , et al. Hydrocarbon generation from calcium stearate: insights from closed-system pyrolysis[J]. Marine and Petroleum Geology, 2021, 126, 104923.
doi: 10.1016/j.marpetgeo.2021.104923 |
71 | Gold T . The origin of methane in the crust of the earth[J]. The Future of Energy Gases: U S Geo Logical Survey Professional Paper, 1993, 1570, 57- 80. |
72 | Kolesnikov A , Gutcherov V G , Goncharov A F . Methane derived hydrocarbon produced under upper mantel conditions[J]. Nature Geoscience, 2009, 2, 556- 570. |
73 | Friedel R A , Sharkey Jr A G . Alkanes in natural and synthetic petroleum: comparison of calculated and actual composition[J]. Science, 1963, 124, 1203- 1205. |
[1] | 吴伟涛, 冯炎松, 费世祥, 王一妃, 吴和源, 杨旭东. 鄂尔多斯盆地神木气田二叠系石千峰组5段致密气富集因素及有利区预测[J]. 石油与天然气地质, 2024, 45(3): 739-751. |
[2] | 韩鹏远, 丁文龙, 杨德彬, 张娟, 马海陇, 王生晖. 塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J]. 石油与天然气地质, 2024, 45(3): 770-786. |
[3] | 张艳秋, 陈红汉, 王燮培, 王彭, 苏丹梅, 谢舟. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800. |
[4] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[5] | 曹自成, 云露, 漆立新, 李海英, 韩俊, 耿锋, 林波, 陈菁萍, 黄诚, 毛庆言. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356. |
[6] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[7] | 张长建, 杨德彬, 蒋林, 姜应兵, 昌琪, 马雪健. 塔里木盆地塔河北部“过溶蚀残留型”断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383. |
[8] | 刘成林, 丁振刚, 范立勇, 康锐, 洪思婕, 朱玉新, 陈践发, 王海东, 许诺. 鄂尔多斯盆地含氦天然气地球化学特征与富集影响因素[J]. 石油与天然气地质, 2024, 45(2): 384-392. |
[9] | 万俊雨, 朱建辉, 姚素平, 张毅, 李春堂, 张威, 姜海健, 王杰. 鄂尔多斯盆地中、东部奥陶系马家沟组成烃生物及烃源岩地球生物学评价[J]. 石油与天然气地质, 2024, 45(2): 393-405. |
[10] | 江同文, 邓兴梁, 曹鹏, 常少英. 塔里木盆地富满断控破碎体油藏储集类型特征与注水替油效果[J]. 石油与天然气地质, 2024, 45(2): 542-552. |
[11] | 杨丽华, 刘池洋, 黄雷, 周义军, 刘永涛, 秦阳. 鄂尔多斯盆地古峰庄地区疑似侵入岩体的发现及其地质意义[J]. 石油与天然气地质, 2024, 45(1): 142-156. |
[12] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[13] | 曹江骏, 王继平, 张道锋, 王龙, 李笑天, 李娅, 张园园, 夏辉, 于占海. 深层致密砂岩储层成岩演化对含气性的影响[J]. 石油与天然气地质, 2024, 45(1): 169-184. |
[14] | 牛月萌, 韩俊, 余一欣, 黄诚, 林波, 杨帆, 余浪, 陈俊宇. 塔里木盆地顺北西部地区火成岩侵入体发育特征及其与断裂耦合关系[J]. 石油与天然气地质, 2024, 45(1): 231-242. |
[15] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||