石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (3): 827-851.doi: 10.11743/ogg20240318
丁文龙1,2(), 李云涛1,2(), 韩俊3, 黄诚3, 王来源3, 孟庆修3
收稿日期:
2024-01-01
修回日期:
2024-05-10
出版日期:
2024-06-30
发布日期:
2024-07-01
通讯作者:
李云涛
E-mail:dingwenlong2006@126.com;liyuntao1230@126.com
第一作者简介:
丁文龙(1965—),男,教授、博士研究生导师,石油构造分析与控油气作用、非常规油气储层裂缝形成机制与定量表征及工程甜点评价。E-mail:dingwenlong2006@126.com。
基金项目:
Wenlong DING1,2(), Yuntao LI1,2(), Jun HAN3, Cheng HUANG3, Laiyuan WANG3, Qingxiu MENG3
Received:
2024-01-01
Revised:
2024-05-10
Online:
2024-06-30
Published:
2024-07-01
Contact:
Yuntao LI
E-mail:dingwenlong2006@126.com;liyuntao1230@126.com
摘要:
构造裂缝是碳酸盐岩的主要储集空间之一,局部应力导致的构造破裂是影响裂缝发育的重要因素。基于有限元方法的构造应力场模拟已成为构造裂缝预测的重要方法,但尚未能解决模型设置与实际地质情况相差较大、最优边界条件获取效率低以及构造裂缝发育的主控因素不清晰等问题。①引入非均质岩石力学模型构建方法和自适应边界条件约束算法以提升应力场模拟的精度,根据储层破裂率和断裂活动性等参数定量表征储层裂缝发育特征;②定量探讨走滑断裂变形特征的差异和应力扰动对构造裂缝发育的影响,优选控制构造裂缝发育的最强因素构建碳酸盐岩裂缝型储集体发育指数并定量研究其主控因素;③以储集体发育规模预测为基础,结合单井裂缝测井和岩心解释成果,建立不同级别碳酸盐岩裂缝型储集体的地质模式。将该方法在中国塔里木盆地顺北地区18号断裂带及邻区奥陶系碳酸盐岩储层中应用。结果表明,张扭段、平移段与压扭段的裂缝发育程度依次降低。地层变形幅度越大,裂缝发育程度越高。储层岩石力学参数、距断裂的距离、水平两向应力差、应力非均质性系数和综合破裂率被用于构建裂缝型储集体发育指数,其分级结果与实际地质情况匹配度较高。
中图分类号:
图4
顺北地区奥陶系碳酸盐岩裂缝发育特征岩心照片a. X4井,灰色泥晶灰岩高角度裂缝,埋深6 932.00 m;b. X4井,灰色泥晶灰岩高角度裂缝,埋深6 934.88 m;c. X4井,灰色泥晶灰岩高角度裂缝, 埋深6 936.91 m;d. X6井,灰色泥晶灰岩中-低角度裂缝,埋深6 460.58 m;e. X6井,灰色泥晶灰岩中-低角度裂缝, 埋深6 462.14 m;f. X6井,灰色泥晶灰岩中-低角度裂缝,埋深6 463.26 m;g. X8井,灰色泥晶灰岩低角度缝和近直立缝,埋深6 554.43 m;h. X8井,灰色泥晶灰岩水平缝和中-高角度裂缝,埋深6 871.82 m;i. X8井,灰色泥晶灰岩中-高角度裂缝,埋深6 874.14 m(钻井位置见图3a。)"
表1
顺北地区奥陶系岩石力学参数"
样品编号 | 井号 | 深度/m | 围压/MPa | 抗压强度/MPa | 泊松比 | 杨氏模量/GPa | 内聚力/MPa | 内摩擦角/(°) |
---|---|---|---|---|---|---|---|---|
1 | X10 | 7 470.15~7 470.21 | 65 | — | 0.210 | 39.88 | — | — |
2 | X10 | 7 470.15~7 470.21 | 75 | — | 0.260 | 42.93 | ||
3 | X10 | 7 470.15~7 470.21 | 85 | — | 0.220 | 37.13 | ||
4 | X11 | 7 560.23~7 560.38 | 65 | — | 0.230 | 34.70 | 38 | 26.3 |
5 | X11 | 7 560.23~7 560.38 | 75 | — | 0.220 | 36.50 | ||
6 | X11 | 7 560.23~7 560.38 | 85 | — | 0.220 | 36.60 | ||
7 | X12 | 7 652.00~7 653.73 | 0 | 70.16 | 0.204 | 36.83 | — | — |
8 | X12 | 7 652.00~7 653.73 | 0 | 75.74 | 0.226 | 43.43 | ||
9 | X12 | 7 656.46~7 656.57 | 30 | 279.06 | 0.242 | 44.65 | ||
10 | X12 | 7 656.46~7 656.57 | 30 | 274.83 | 0.273 | 46.24 | ||
11 | X12 | 7 656.46~7 656.57 | 30 | 249.73 | 0.235 | 42.63 | ||
12 | X12 | 7 656.38~7 656.46 | 0 | 72.14 | 0.252 | 37.68 | 17.6 | 41.6 |
13 | X12 | 7 656.38~7 656.46 | 60 | 310.22 | 0.338 | 60.89 | ||
14 | X12 | 7 656.38~7 656.46 | 30 | 267.40 | 0.314 | 56.86 |
1 | 张鹏, 侯贵廷, 潘文庆, 等. 新疆柯坪地区碳酸盐岩对构造裂缝发育的影响[J]. 北京大学学报(自然科学版), 2011, 47(5): 831-836. |
ZHANG Peng, HOU Guiting, PAN Wenqing, et al. Effect of carbonate rock to development of structural fracture in the area of Keping, Xinjiang, China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2011, 47(5): 831-836. | |
2 | 丁文龙, 李超, 李春燕, 等. 页岩裂缝发育主控因素及其对含气性的影响[J]. 地学前缘, 2012, 19(2): 212-220. |
DING Wenlong, LI Chao, LI Chunyan, et al. Dominant factor of fracture development in shale and its relationship to gas accumulation[J]. Earth Science Frontiers, 2012, 19(2): 212-220. | |
3 | 刘敬寿, 丁文龙, 肖子亢, 等. 储层裂缝综合表征与预测研究进展[J]. 地球物理学进展, 2019, 34(6): 2283-2300. |
LIU Jingshou, DING Wenlong, XIAO Zikang, et al. Advances in comprehensive characterization and prediction of reservoir fractures[J]. Progress in Geophysics, 2019, 34(6): 2283-2300. | |
4 | 刘军, 任丽丹, 李宗杰, 等. 塔里木盆地顺南地区深层碳酸盐岩断裂和裂缝地震识别与评价[J]. 石油与天然气地质, 2017, 38(4): 703-710. |
LIU Jun, REN Lidan, LI Zongjie, et al. Seismic identification and evaluation of deep carbonate faults and fractures in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2017, 38(4): 703-710. | |
5 | DENG Shang, LI Huili, ZHANG Zhongpei, et al. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J]. AAPG Bulletin, 2019, 103(1): 109-137. |
6 | 云露, 邓尚. 塔里木盆地深层走滑断裂差异变形与控储控藏特征——以顺北油气田为例[J]. 石油学报, 2022, 43(6): 770-787. |
YUN Lu, DENG Shang. Structural styles of deep strike-slip faults in Tarim Basin and the characteristics of their control on reservoir formation and hydrocarbon accumulation: A case study of Shunbei oil and gas field[J]. Acta Petrolei Sinica, 2022, 43(6): 770-787. | |
7 | 郑和荣, 胡宗全, 云露, 等. 中国海相克拉通盆地内部走滑断裂发育特征及控藏作用[J]. 地学前缘, 2022, 29(6): 224-238. |
ZHENG Herong, HU Zongquan, YUN Lu, et al. Strike-slip faults in marine cratonic basins in China: Development characteristics and controls on hydrocarbon accumulation[J]. Earth Science Frontiers, 2022, 29(6): 224-238. | |
8 | 张继标, 张仲培, 汪必峰, 等. 塔里木盆地顺南地区走滑断裂派生裂缝发育规律及预测[J]. 石油与天然气地质, 2018, 39(5): 955-963, 1055. |
ZHANG Jibiao, ZHANG Zhongpei, WANG Bifeng, et al. Development pattern and prediction of induced fractures from strike-slip faults in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 955-963, 1055. | |
9 | 朱秀香, 赵锐, 赵腾. 塔里木盆地顺北1号断裂带走滑分段特征与控储控藏作用[J]. 岩性油气藏, 2023, 35(5): 131-138. |
ZHU Xiuxiang, ZHAO Rui, ZHAO Teng. Characteristics and control effect on reservoir and accumulation of strike-slip segments in Shunbei No.1 fault zone, Tarim Basin[J]. Lithologic Reservoirs, 2023, 35(5): 131-138. | |
10 | 周新桂, 张林炎, 黄臣军. 华庆探区长63储层破裂压力及裂缝开启压力估测与开发建议[J]. 中南大学学报(自然科学版), 2013, 44(7): 2812-2818. |
ZHOU Xingui, ZHANG Linyan, HUANG Chenjun. Estimation of formation breakdown pressure and fracture open pressure of Chang 63 low permeable reservoir in Huaqing area and development suggestions[J]. Journal of Central South University of Science and Technology, 2013, 44(7): 2812-2818. | |
11 | LIU Jingshou, DING Wenlong, GU Yang, et al. Methodology for predicting reservoir breakdown pressure and fracture opening pressure in low-permeability reservoirs based on an in situ stress simulation[J]. Engineering Geology, 2018, 246: 222-232. |
12 | 戴俊生, 刘敬寿, 杨海盟, 等. 铜城断裂带阜二段储层应力场数值模拟及开发建议[J]. 中国石油大学学报(自然科学版), 2016, 40(1): 1-9. |
DAI Junsheng, LIU Jingshou, YANG Haimeng, et al. Numerical simulation of stress field of Fu-2 Member in Tongcheng fault zone and development suggestions[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(1): 1-9. | |
13 | 朱圣举, 赵向原, 张皎生, 等. 低渗透砂岩油藏天然裂缝开启压力及影响因素[J]. 西北大学学报(自然科学版), 2016, 46(4): 573-578. |
ZHU Shengju, ZHAO Xiangyuan, ZHANG Jiaosheng, et al. Fracture opening pressure and its influence factors in low-permeability sandstone reservoirs[J]. Journal of Northwest University (Natural Science Edition), 2016, 46(4): 573-578. | |
14 | 计秉玉, 郑松青, 顾浩. 缝洞型碳酸盐岩油藏开发技术的认识与思考——以塔河油田和顺北油气田为例[J]. 石油与天然气地质, 2022, 43(6): 1459-1465. |
JI Bingyu, ZHENG Songqing, GU Hao. On the development technology of fractured-vuggy carbonate reservoirs: A case study on Tahe oilfield and Shunbei oil and gas field[J]. Oil & Gas Geology, 2022, 43(6): 1459-1465. | |
15 | 史今雄, 赵向原, 潘仁芳, 等. 川中地区震旦系灯影组碳酸盐岩天然裂缝特征及其对气井产能影响[J]. 石油与天然气地质, 2023, 44(2): 393-405. |
SHI Jinxiong, ZHAO Xiangyuan, PAN Renfang, et al. Characteristics of natural fractures in carbonate reservoirs and their impacts on well productivity in the Sinian Dengying Formation, central Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(2): 393-405. | |
16 | MICHAEL K, GOLAB A, SHULAKOVA V, et al. Geological storage of CO2 in saline aquifers—A review of the experience from existing storage operations[J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 659-667. |
17 | GODEC M L, KUUSKRAA V A, DIPIETRO P. Opportunities for using anthropogenic CO2 for enhanced oil recovery and CO2 storage[J]. Energy & Fuels, 2013, 27(8): 4183-4189. |
18 | OSMAN A I, HEFNY M, ABDEL MAKSOUD M I A, et al. Recent advances in carbon capture storage and utilisation technologies: A review[J]. Environmental Chemistry Letters, 2021, 19(2): 797-849. |
19 | GUÉGUEN Y, SCHUBNEL A. Elastic wave velocities and permeability of cracked rocks[J]. Tectonophysics, 2003, 370(1/4): 163-176. |
20 | CLAVAUD J B, MAINEULT A, ZAMORA M, et al. Permeability anisotropy and its relations with porous medium structure[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B1): B01202. |
21 | BERGMO P E S, GRIMSTAD A A, LINDEBERG E. Simultaneous CO2 injection and water production to optimise aquifer storage capacity[J]. International Journal of Greenhouse Gas Control, 2011, 5(3): 555-564. |
22 | 丁文龙, 许长春, 久凯, 等. 泥页岩裂缝研究进展[J]. 地球科学进展, 2011, 26(2): 135-144. |
DING Wenlong, XU Changchun, Kai JIU, et al. The research progress of shale fractures[J]. Advances in Earth Science, 2011, 26(2): 135-144. | |
23 | BARBIER M, HAMON Y, CALLOT J P, et al. Sedimentary and diagenetic controls on the multiscale fracturing pattern of a carbonate reservoir: The Madison Formation (Sheep Mountain, Wyoming, USA)[J]. Marine and Petroleum Geology, 2012, 29(1): 50-67. |
24 | GALE J F W, LAUBACH S E, OLSON J E, et al. Natural fractures in shale: A review and new observations[J]. AAPG Bulletin, 2014, 98(11): 2165-2216. |
25 | HENNINGS P, ALLWARDT P, PAUL P, et al. Relationship between fractures, fault zones, stress, and reservoir productivity in the Suban gas field, Sumatra, Indonesia[J]. AAPG Bulletin, 2015, 96(4): 753-772. |
26 | 赫俊民, 王小垚, 孙建芳, 等. 塔里木盆地塔河地区中-下奥陶统碳酸盐岩储层天然裂缝发育特征及主控因素[J]. 石油与天然气地质, 2019, 40(5): 1022-1030. |
HE Junmin, WANG Xiaoyao, SUN Jianfang, et al. Characteristics and main controlling factors of natural fractures in the Lower-to-Middle Ordovician carbonate reservoirs in Tahe area, Northern Tarim Basin[J]. Oil & Gas Geology, 2019, 40(5): 1022-1030. | |
27 | 田鹤, 曾联波, 徐翔, 等. 四川盆地涪陵地区海相页岩天然裂缝特征及对页岩气的影响[J]. 石油与天然气地质, 2020, 41(3): 474-483. |
TIAN He, ZENG Lianbo, XU Xiang, et al. Characteristics of natural fractures in marine shale in Fuling area, Sichuan Basin, and their influence on shale gas[J]. Oil & Gas Geology, 2020, 41(3): 474-483. | |
28 | 曾联波, 吕鹏, 屈雪峰, 等. 致密低渗透储层多尺度裂缝及其形成地质条件[J]. 石油与天然气地质, 2020, 41(3): 449-454. |
ZENG Lianbo, Peng LYU, QU Xuefeng, et al. Multi-scale fractures in tight sandstone reservoirs with low permeability and geological conditions of their development[J]. Oil & Gas Geology, 2020, 41(3): 449-454. | |
29 | 黄仁春, 刘若冰, 刘明, 等. 川东北通江-马路背地区须家河组断缝体储层特征及成因[J]. 石油与天然气地质, 2021, 42(4): 873-883. |
HUANG Renchun, LIU Ruobing, LIU Ming, et al. Characteristics and genesis of fault-fracture reservoirs in the Xujiahe Formation, Tongjiang-Malubei area, northeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 873-883. | |
30 | 葛勋, 郭彤楼, 马永生, 等. 四川盆地东南缘林滩场地区上奥陶统五峰组-龙马溪组页岩气储层甜点预测[J]. 石油与天然气地质, 2022, 43(3): 633-647. |
GE Xun, GUO Tonglou, MA Yongsheng, et al. Prediction of shale reservoir sweet spots of the Upper Ordovician Wufeng-Longmaxi Formations in Lintanchang area, southeastern margin of Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(3): 633-647. | |
31 | 丁文龙, 曾维特, 王濡岳, 等. 页岩储层构造应力场模拟与裂缝分布预测方法及应用[J]. 地学前缘, 2016, 23(2): 63-74. |
DING Wenlong, ZENG Weite, WANG Ruyue, et al. Method and application of tectonic stress field simulation and fracture distribution prediction in shale reservoir[J]. Earth Science Frontiers, 2016, 23(2): 63-74. | |
32 | LIU Jingshou, DING Wenlong, YANG Haimeng, et al. Quantitative multiparameter prediction of fractured tight sandstone reservoirs: A case study of the Yanchang Formation of the Ordos Basin, central China[J]. SPE Journal, 2021, 26(5): 3342-3373. |
33 | LIU Hao, ZUO Yujun, RODRIGUEZ-DONO A, et al. Study on multi-period palaeotectonic stress fields simulation and fractures distribution prediction in Lannigou gold mine, Guizhou[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9(1): 92. |
34 | HAN Xiaoying, DENG Shang, TANG Liangjie, et al. Geometry, kinematics and displacement characteristics of strike-slip faults in the northern slope of Tazhong uplift in Tarim Basin: A study based on 3D seismic data[J]. Marine and Petroleum Geology, 2017, 88: 410-427. |
35 | TENG Changyu, CAI Zhongxian, HAO Fang, et al. Structural geometry and evolution of an intracratonic strike-slip fault zone: A case study from the North SB5 fault zone in the Tarim Basin, China[J]. Journal of Structural Geology, 2020, 140: 104159. |
36 | 贾承造, 马德波, 袁敬一, 等. 塔里木盆地走滑断裂构造特征、形成演化与成因机制[J]. 天然气工业, 2021, 41(8): 81-91. |
JIA Chengzao, MA Debo, YUAN Jingyi, et al. Structural characteristics,formation & evolution and genetic mechanisms of strike-slip faults in the Tarim Basin[J]. Natural Gas Industry, 2021, 41(8): 81-91. | |
37 | SUN Qingqing, FAN Tailiang, GAO Zhiqian, et al. New insights on the geometry and kinematics of the Shunbei 5 strike-slip fault in the central Tarim Basin, China[J]. Journal of Structural Geology, 2021, 150: 104400. |
38 | XU Zhiqin, HE Bizhu, ZHANG Chuanlin, et al. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: New geochronological evidence from deep drilling samples[J]. Precambrian Research, 2013, 235: 150-162. |
39 | QIU Huabiao, DENG Shang, CAO Zicheng, et al. The evolution of the complex anticlinal belt with crosscutting strike-slip faults in the central Tarim Basin, NW China[J]. Tectonics, 2019, 38(6): 2087-2113. |
40 | 张建新, 于胜尧, 李云帅, 等. 原特提斯洋的俯冲、增生及闭合:阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用[J]. 岩石学报, 2015, 31(12): 3531-3554. |
ZHANG Jianxin, YU Shengyao, LI Yunshuai, et al. Subduction, accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion/collision orogeny in the Altun-Qilian-North Qaidam orogenic system[J]. Acta Petrologica Sinica, 2015, 31(12): 3531-3554. | |
41 | 邬光辉, 马兵山, 韩剑发, 等. 塔里木克拉通盆地中部走滑断裂形成与发育机制[J]. 石油勘探与开发, 2021, 48(3): 510-520. |
WU Guanghui, MA Bingshan, HAN Jianfa, et al. Origin and growth mechanisms of strike-slip faults in the central Tarim cratonic basin,NW China[J]. Petroleum Exploration and Development, 2021, 48(3): 510-520. | |
42 | 张光亚, 赵文智, 王红军, 等. 塔里木盆地多旋回构造演化与复合含油气系统[J]. 石油与天然气地质, 2007, 28(5): 653-663. |
ZHANG Guangya, ZHAO Wenzhi, WANG Hongjun, et al. Multicycle tectonic evolution and composite petroleum systems in the Tarim Basin[J]. Oil & Gas Geology, 2007, 28(5): 653-663. | |
43 | LI Chuanxin, WANG Xiaofeng, LI Benliang, et al. Paleozoic fault systems of the Tazhong Uplift, Tarim Basin, China[J]. Marine and Petroleum Geology, 2013, 39(1): 48-58. |
44 | YU Jingbo. Using cylindrical surface-based curvature change rate to detect faults and fractures[J]. Geophysics, 2014, 79(5): O1-O9. |
45 | 郑孟林, 王毅, 金之钧, 等. 塔里木盆地叠合演化与油气聚集[J]. 石油与天然气地质, 2014, 35(6): 925-934. |
ZHENG Menglin, WANG Yi, JIN Zhijun, et al. Superimposition, evolution and petroleum accumulation of Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 925-934. | |
46 | WINDLEY B F, ALLEN M B, ZHANG C, et al. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia[J]. Geology, 1990, 18(2): 128-131. |
47 | SOBEL E R, DUMITRU T A. Thrusting and exhumation around the margins of the western Tarim Basin during the India-Asia collision[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B3): 5043-5063. |
48 | LIN Bo, ZHANG Xu, XU Xuechun, et al. Features and effects of basement faults on deposition in the Tarim Basin[J]. Earth-Science Reviews, 2015, 145: 43-55. |
49 | FOSSEN H. Structural geology[M]. 2nd ed. Cambridge: Cambridge University Press, 2016. |
50 | ROBSON A G, HOLFORD S P, KING R C, et al. Structural evolution of horst and half-graben structures proximal to a transtensional fault system determined using 3D seismic data from the Shipwreck Trough, offshore Otway Basin, Australia[J]. Marine and Petroleum Geology, 2018, 89(Part 3): 615-634. |
51 | MITRA S, PAUL D. Structural geometry and evolution of releasing and restraining bends: Insights from laser-scanned experimental models[J]. AAPG Bulletin, 2011, 95(7): 1147-1180. |
52 | HARDING T P, LOWELL J D. Structural styles, their plate-tectonic habitats, and hydrocarbon traps in petroleum provinces[J]. AAPG Bulletin, 1979, 63(7): 1016-1058. |
53 | SYLVESTER A G. Strike-slip faults[J]. GSA Bulletin, 1988, 100(11): 1666-1703. |
54 | LI Yuntao, DING Wenlong, ZENG Tao, et al. Structural geometry and kinematics of a strike-slip fault zone in an intracontinental thrust system: A case study of the No. 15 fault zone in the Fuling area, eastern Sichuan Basin, southwest China[J]. Journal of Asian Earth Sciences, 2023, 242: 105512. |
55 | CHRISTIE-BLICK N, BIDDLE K T. Deformation and basin formation along strike-slip faults[M]//BIDDLE K T, CHRISTIE-BLICK N. Strike-Slip Deformation, Basin Formation, and Sedimentation. Broken Arrow: SEPM Society for Sedimentary Geology, 1985: 1-34. |
56 | 肖阳, 邬光辉, 雷永良, 等. 走滑断裂带贯穿过程与发育模式的物理模拟[J]. 石油勘探与开发, 2017, 44(3): 340-348. |
XIAO Yang, WU Guanghui, LEI Yongliang, et al. Analogue modeling of through-going process and development pattern of strike-slip fault zone[J]. Petroleum Exploration and Development, 2017, 44(3): 340-348. | |
57 | 卢雪梅. 碳酸盐岩裂缝描述七大难点[J]. 石油与天然气地质, 2021, 42(3): 530. |
LU Xuemei. Seven difficulties in carbonate fracture characterization[J]. Oil & Gas Geology, 2021, 42(3): 530. | |
58 | GUO Peng, YAO Leihua, REN Desheng. Simulation of three-dimensional tectonic stress fields and quantitative prediction of tectonic fracture within the Damintun Depression, Liaohe Basin, northeast China[J]. Journal of Structural Geology, 2016, 86: 211-223. |
59 | LIU Jingshou, YANG Haimeng, XU Ke, et al. Genetic mechanism of transfer zones in rift basins: Insights from geomechanical models[J]. GSA Bulletin, 2022, 134(9/10): 2436-2452. |
60 | LIU Jingshou, MEI Lianfu, DING Wenlong, et al. Asymmetric propagation mechanism of hydraulic fracture networks in continental reservoirs[J]. GSA Bulletin, 2023, 135(3/4): 678-688. |
61 | 张博, 陈红果, 胡瑞, 等. 含油气盆地构造应力场研究方法综述及展望[J]. 矿产与地质, 2023, 37(4): 885-889. |
ZHANG Bo, CHEN Hongguo, HU Rui, et al. Review and prospect prediction of research methods for tectonic stress field in oil-gas-bearing basin[J]. Mineral Resources and Geology, 2023, 37(4): 885-889. | |
62 | ZOBACK M D, PESKA P. In-situ stress and rock strength in the GBRN/DOE Pathfinder well, South Eugene Island, gulf of Mexico[J]. Journal of Petroleum Technology, 1995, 47(7): 582-585. |
63 | 陆诗阔, 王迪, 李玉坤, 等. 鄂尔多斯盆地大牛地气田致密砂岩储层三维岩石力学参数场研究[J]. 天然气地球科学, 2015, 26(10): 1844-1850. |
LU Shikuo, WANG Di, LI Yukun, et al. Research on three-dimensional mechanical parameters’ distribution of the tight sandstone reservoirs in Daniudi Gasfield[J]. Natural Gas Geoscience, 2015, 26(10): 1844-1850. | |
64 | 车小花, 赵腾, 乔文孝, 等. 多极子声波测井的裂缝识别与评价[J]. 石油与天然气地质, 2020, 41(6): 1263-1272. |
CHE Xiaohua, ZHAO Teng, QIAO Wenxiao, et al. Fracture identification and evaluation based on multi-pole acoustic logging[J]. Oil & Gas Geology, 2020, 41(6): 1263-1272. | |
65 | HOLCOMB D J. Using acoustic emissions to determine in-situ stress: Problems and promise[J]. Geomechanics, 1983, ASME AMD(57): 11-21. |
66 | ISHIDA T. Acoustic emission monitoring of hydraulic fracturing in laboratory and field[J]. Construction and Building Materials, 2001, 15(5/6): 283-295. |
67 | Kai JIU, DING Wenglong, HUANG Wenhui, et al. Simulation of paleotectonic stress fields within Paleogene shale reservoirs and prediction of favorable zones for fracture development within the Zhanhua Depression, Bohai Bay Basin, east China[J]. Journal of Petroleum Science and Engineering, 2013, 110: 119-131. |
68 | LIU Jingshou, DING Wenlong, WANG Ruyue, et al. Simulation of paleotectonic stress fields and quantitative prediction of multi-period fractures in shale reservoirs: A case study of the Niutitang Formation in the Lower Cambrian in the Cen’gong block, South China[J]. Marine and Petroleum Geology, 2017, 84: 289-310. |
69 | GRIFFITH A A. VI. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1921, 221(4): 163-198. |
70 | HANDIN J. On the Coulomb-Mohr failure criterion[J]. Journal of Geophysical Research, 1969, 74(22): 5343-5348. |
71 | BARTON C A, ZOBACK M D, MOOS D. Fluid flow along potentially active faults in crystalline rock[J]. Geology, 1995, 23(8): 683-686. |
72 | PEARSON E S, SNOW B A S. Tests for rank correlation coefficients[J]. Biometrika, 1962, 49(1/2):185-191. |
73 | MYERS J L, WELL A D, LORCH R F, Jr. Research design and statistical analysis[M]. 3rd ed. New York: Routledge, 2010. |
74 | PIANTADOSI J, HOWLETT P, BOLAND J. Matching the grade correlation coefficient using a copula with maximum disorder[J]. Journal of Industrial and Management Optimization, 2017, 3(2): 305-312. |
[1] | 韩鹏远, 丁文龙, 杨德彬, 张娟, 马海陇, 王生晖. 塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J]. 石油与天然气地质, 2024, 45(3): 770-786. |
[2] | 张艳秋, 陈红汉, 王燮培, 王彭, 苏丹梅, 谢舟. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800. |
[3] | 曹自成, 云露, 漆立新, 李海英, 韩俊, 耿锋, 林波, 陈菁萍, 黄诚, 毛庆言. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356. |
[4] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[5] | 张长建, 杨德彬, 蒋林, 姜应兵, 昌琪, 马雪健. 塔里木盆地塔河北部“过溶蚀残留型”断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383. |
[6] | 万俊雨, 朱建辉, 姚素平, 张毅, 李春堂, 张威, 姜海健, 王杰. 鄂尔多斯盆地中、东部奥陶系马家沟组成烃生物及烃源岩地球生物学评价[J]. 石油与天然气地质, 2024, 45(2): 393-405. |
[7] | 江同文, 邓兴梁, 曹鹏, 常少英. 塔里木盆地富满断控破碎体油藏储集类型特征与注水替油效果[J]. 石油与天然气地质, 2024, 45(2): 542-552. |
[8] | 牛月萌, 韩俊, 余一欣, 黄诚, 林波, 杨帆, 余浪, 陈俊宇. 塔里木盆地顺北西部地区火成岩侵入体发育特征及其与断裂耦合关系[J]. 石油与天然气地质, 2024, 45(1): 231-242. |
[9] | 张三, 金强, 史今雄, 胡明毅, 段梦悦, 李永强, 张旭栋, 程付启. 塔北地区奥陶系地下河溶洞充填规律与储集性能[J]. 石油与天然气地质, 2023, 44(6): 1582-1594. |
[10] | 屈海洲, 郭新宇, 徐伟, 李文皓, 唐松, 邓雅霓, 何仕鹏, 张云峰, 张兴宇. 碳酸盐岩微孔隙的分类、成因及对岩石物理性质的影响[J]. 石油与天然气地质, 2023, 44(5): 1102-1117. |
[11] | 康志江, 张冬梅, 张振坤, 王睿奇, 姜文斌, 刘坤岩. 深层缝洞型油藏井间连通路径智能预测技术[J]. 石油与天然气地质, 2023, 44(5): 1290-1299. |
[12] | 胡伟, 徐婷, 杨阳, 伦增珉, 李宗宇, 康志江, 赵瑞明, 梅胜文. 塔里木盆地超深油气藏流体相行为变化特征[J]. 石油与天然气地质, 2023, 44(4): 1044-1053. |
[13] | 张坦, 姚威, 赵永强, 周雨双, 黄继文, 范昕禹, 罗宇. 塔里木盆地巴麦地区石炭系卡拉沙依组年代标尺及地层剥蚀厚度精细计算[J]. 石油与天然气地质, 2023, 44(4): 1054-1066. |
[14] | 郭宏辉, 冯建伟, 赵力彬. 塔里木盆地博孜—大北地区被动走滑构造特征及其对裂缝发育的控制作用[J]. 石油与天然气地质, 2023, 44(4): 962-975. |
[15] | 何发岐, 张威, 丁晓琪, 祁壮壮, 李春堂, 孙涵静. 鄂尔多斯盆地乌审旗古隆起对岩溶气藏的控制机理[J]. 石油与天然气地质, 2023, 44(2): 276-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||