石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (2): 516-529.doi: 10.11743/ogg20240215
付超1(), 谢玉洪2, 赵雨初3, 王晖1, 苑志旺1, 徐伟1, 陈国宁1
收稿日期:
2023-11-07
修回日期:
2024-03-05
出版日期:
2024-04-30
发布日期:
2024-04-30
第一作者简介:
付超(1992—)男,博士后,油气储层表征与预测。E‑mail: fuchao5@cnooc.com.cn。
基金项目:
Chao FU1(), Yuhong XIE2, Yuchu ZHAO3, Hui WANG1, Zhiwang YUAN1, Wei XU1, Guoning CHEN1
Received:
2023-11-07
Revised:
2024-03-05
Online:
2024-04-30
Published:
2024-04-30
摘要:
琼东南盆地陵水气田位于中央峡谷上游,以浊积砂岩储层为主,受沉积和成岩作用共同影响,储层类型较为多样,表征难度较大。为了预测深水甜点区分布,依据峡谷形态和埋深规律,将峡谷上游区域沿浊流流向依次划分为调整段、顺直段和弯曲段;通过综合井筒中粒度、孔喉结构和填隙物类型对储层进行分类;基于岩石组构和物性参数间定量关系,分析对应沉积储层的沉积成因。研究认为,峡谷调整段以粗粒重力流沉积为主,随着颗粒间杂基含量降低,储层物性向下游逐渐变好;顺直段以细-粉砂浊流沉积为主,储层质量较为稳定,仅在局部因Ca2+离子富集致使胶结作用增强;弯曲段以粉砂质浊流堆积为主,较细的沉积粒度致使储层质量向下游方向随着埋深的增加而逐渐变差。调整段沉积过程控制储层质量,顺直段-弯曲段成岩作用控制储层质量。
中图分类号:
1 | 吴克强, 解习农, 裴健翔, 等. 超伸展陆缘盆地深部结构及油气勘探意义——以琼东南盆地为例[J]. 石油与天然气地质, 2023, 44(3): 651-661. |
WU Keqiang, XIE Xinong, PEI Jianxiang, et al. Deep architecture of hyperextended marginal basin and implications for hydrocarbon exploration: A case study of Qiongdongnan Basin[J]. Oil & Gas Geology, 2023, 44(3): 651-661. | |
2 | 谢玉洪. 莺琼盆地区中央峡谷源头沉积特征及油气勘探前景[J]. 地质科技通报, 2020, 39(5): 69-78. |
XIE Yuhong. Sedimentary characteristics and hydrocarbon exploration potential of the upstream of the central canyon in the Yinggehai and Qiongdongnan basins[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 69-78. | |
3 | 蒋恕, 王浩, 郭涛, 等. 渤海湾盆地辽东湾坳陷盆中隆起缓坡带重力流沉积形态及其控制因素[J]. 石油与天然气地质, 2022, 43(4): 823-832. |
JIANG Shu, WANG Hao, GUO Tao, et al. Geomorphology of gravity flow deposits in the gentle slope zone of intra-basinal high in the Liaodong Bay Depression, Bohai Bay Basin and its controlling factors[J]. Oil & Gas Geology, 2022, 43(4): 823-832. | |
4 | 李华, 何幼斌, 谈梦婷, 等. 深水重力流水道-朵叶体系形成演化及储层分布——以鄂尔多斯盆地西缘奥陶系拉什仲组露头为例[J]. 石油与天然气地质, 2022, 43(4): 917-928. |
LI Hua, HE Youbin, TAN Mengting, et al. Evolution of and reservoir distribution within deep-water gravity flow channel-lobe system: A case study of the Ordovician Lashenzhong Formation outcrop at western margin of Ordos Basin[J]. Oil & Gas Geology, 2022, 43(4): 917-928. | |
5 | 胡德胜, 宫立园, 满晓, 等. 北部湾盆地涠西南凹陷雁列断层变换带发育特征及其控储作用——以古近系流沙港组一段重力流沉积为例[J]. 石油与天然气地质, 2022, 43(6): 1359-1369. |
HU Desheng, GONG Liyuan, MAN Xiao, et al. Development pattern of en echelon fault transition zone in Weixi’nan Sag, Beibu Gulf Basin and its control on hydrocarbon accumulation[J]. Oil & Gas Geology, 2022, 43(6): 1359-1369. | |
6 | LIEN T, MIDTBØ R E, MARTINSEN O J. Depositional facies and reservoir quality of deep-marine sandstones in the Norwegian Sea[J]. Norwegian Journal of Geology, 2006, 86(2): 71-92. |
7 | LI Qing, JIANG Zaixing, LIU Keyu, et al. Factors controlling reservoir properties and hydrocarbon accumulation of lacustrine deep-water turbidites in the Huimin Depression, Bohai Bay Basin, East China[J]. Marine and Petroleum Geology, 2014, 57: 327-344. |
8 | KHAN A S, KELLING G, UMAR M, et al. Depositional environments and reservoir assessment of Late Cretaceous sandstones in the south central Kirthar foldbelt, Pakistan[J]. Journal of Petroleum Geology, 2002, 25(4): 373-406. |
9 | LI Zhen, WU Shenghe, XIA Dongling, et al. Diagenetic alterations and reservoir heterogeneity within the depositional facies: A case study from distributary-channel belt sandstone of Upper Triassic Yanchang Formation reservoirs (Ordos Basin, China)[J]. Marine and Petroleum Geology, 2017, 86: 950-971. |
10 | 孙辉, 范国章, 邵大力, 等. 深水局部限制型水道复合体沉积特征及其对储层性质的影响——以东非鲁武马盆地始新统为例[J]. 石油与天然气地质, 2021, 42(6): 1440-1450. |
SUN Hui, FAN Guozhang, SHAO Dali, et al. Depositional characteristics of locally restricted channel complex in deep water and its influence on reservoir properties: A case study of the Eocene series, Rovuma Basin[J]. Oil & Gas Geology, 2021, 42(6): 1440-1450. | |
11 | HANSEN L A S, CALLOW R H T, KANE I A, et al. Genesis and character of thin-bedded turbidites associated with submarine channels[J]. Marine and Petroleum Geology, 2015, 67: 852-879. |
12 | 林煜, 吴胜和, 王星, 等. 尼日尔三角洲盆地深水油田A海底扇储层质量差异[J]. 石油与天然气地质, 2014, 35(4): 494-502. |
LIN Yu, WU Shenghe, WANG Xing, et al. Reservoir quality differences of submarine fans in deep-water oilfield A in Niger Delta Basin, West Africa[J]. Oil & Gas Geology, 2014, 35(4): 494-502. | |
13 | 王敏, 张佳佳, 王瑞峰, 等. 东非鲁伍马盆地深水海底扇储集层质量差异及主控因素[J]. 石油勘探与开发, 2022, 49(3): 491-501. |
WANG Min, ZHANG Jiajia, WANG Ruifeng, et al. Quality variations and controlling factors of deepwater submarine-fan reservoirs, Rovuma Basin, East Africa[J]. Petroleum Exploration and Development, 2022, 49(3): 491-501. | |
14 | 陈飞, 范洪军, 范廷恩, 等. 西非尼日尔三角洲盆地A油田深水浊积水道沉积体系沉积特征[J]. 地学前缘, 2023, 30(4): 209-217. |
CHEN Fei, FAN Hongjun, FAN Tingen, et al. Sedimentary architecture of the deep-water turbidite system in A oil field, Nigeria Delta, West Africa[J]. Earth Science Frontiers, 2023, 30(4): 209-217. | |
15 | ANSCHUTZ P, JORISSEN F J, CHAILLOU G, et al. Recent turbidite deposition in the eastern Atlantic: Early diagnesis and biotic recovery[J]. Journal of Marine Research, 2002, 60(6): 835-854. |
16 | SYLVESTER Z, LOWE D R. Textural trends in turbidites and slurry beds from the Oligocene flysch of the East Carpathians, Romania[J]. Sedimentology, 2004, 51(5): 945-972. |
17 | 付超, 谢玉洪, 王晖, 等. 深水峡谷复合浊积砂体内隔夹层发育类型与沉积成因——以琼东南盆地中央峡谷为例[J]. 天然气工业, 2023, 43(5): 23-33. |
FU Chao, XIE Yuhong, WANG Hui, et al. Types and sedimentary genesis of barriers and interlayers in the composite turbidite sand bodies of deep-water canyon: A case study of the Central Canyon in the Qiongdongnan Basin[J]. Natural Gas Industry, 2023, 43(5): 23-33. | |
18 | 谢玉洪, 李绪深, 范彩伟, 等. 琼东南盆地上中新统黄流组轴向水道源汇体系与天然气成藏特征[J]. 石油勘探与开发, 2016, 43(4): 521-528, 549. |
XIE Yuhong, LI Xushen, FAN Caiwei, et al. The axial channel provenance system and natural gas accumulation of the Upper Miocene Huangliu Formation in Qiongdongnan Basin, South China Sea[J]. Petroleum Exploration and Development, 2016, 43(4): 521-528, 549. | |
19 | 苏明, 张成, 解习农, 等. 深水峡谷体系控制因素分析——以南海北部琼东南盆地中央峡谷体系为例[J]. 中国科学(地球科学), 2014, 44(8): 1807-1820. |
SU Ming, ZHANG Cheng, XIE Xinong, et al. Controlling factors on the submarine canyon system: A case study of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea[J]. Science China Earth Sciences, 2014, 44(8): 1807-1820. | |
20 | 付超, 于兴河, 金丽娜, 等. 琼东南盆地莺歌海组重力流沉积演化过程[J]. 沉积学报, 2017, 35(3): 552-560. |
FU Chao, YU Xinghe, JIN Lina, et al. Sedimentary evolution of gravity flow disposition of Yinggehai Formation in Qiongdongnan Basin[J]. Acta Sedimentologica Sinica, 2017, 35(3): 552-560. | |
21 | FU Chao, LI Shenli, LI Shunli, et al. Spatial-temporal evolution of the source-to-sink system in the northwestern South China Sea from the Eocene to the Miocene[J]. Global and Planetary Change, 2022, 214: 103851. |
22 | 张亚雄, 朱筱敏, 陈欢庆, 等. 琼东南盆地渐新统陵水组坡折带类型及层序地层样式[J]. 石油与天然气地质, 2014, 35(4): 473-479. |
ZHANG Yaxiong, ZHU Xiaomin, CHEN Huanqing, et al. Slope-break types and sequence stratigraphic styles of the Oligocene Lingshui Formation in Qiongdongnan Basin, South China Sea[J]. Oil & Gas Geology, 2014, 35(4): 473-479. | |
23 | LI Chao, CHEN Guojun, ZHOU Qianshan, et al. Multistage geomorphic evolution of the Central Canyon in the Qiongdongnan Basin, NW South China Sea[J]. Marine Geophysical Research, 2021, 42(3): 27. |
24 | GONG Chenglin, LI Dongwei, QI Kun, et al. Flow processes and sedimentation in a straight submarine channel on the Qiongdongnan margin, northwestern South China Sea[J]. Journal of Sedimentary Research, 2020, 90(10): 1372-1388. |
25 | 张功成, 曾清波, 苏龙, 等. 琼东南盆地深水区陵水17-2大气田成藏机理[J]. 石油学报, 2016, 37(): 34-46. |
ZHANG Gongcheng, ZENG Qingbo, SU Long, et al. Accumulation mechanism of LS 17-2 deep water giant gas field in Qiongdongnan Basin[J]. Acta Petrolei Sinica, 2016, 37(S1): 34-46. | |
26 | FU Chao, YU Xinghe, LI Shunli, et al. Multistage unidirectionally migrating canyons and the evolution of their trajectories in the canyon zone in the Baiyun Sag, northern South China Sea: Insights into canyon genesis[J]. Interpretation, 2021, 9(2): SB17-SB32. |
27 | STOW D A V, JOHANSSON M. Deep-water massive sands: Nature, origin and hydrocarbon implications[J]. Marine and Petroleum Geology, 2000, 17(2): 145-174. |
28 | MITCHELL W H, WHITTAKER A C, MAYALL M, et al. Quantifying structural controls on submarine channel architecture and kinematics[J]. GSA Bulletin, 2022, 134(3/4): 928-940. |
29 | MULDER T, ALEXANDER J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48(2): 269-299. |
30 | KNELLER B C, BRANNEY M J. Sustained high-density turbidity currents and the deposition of thick massive sands[J]. Sedimentology, 1995, 42(4): 607-616. |
31 | HOUSEKNECHT D W. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones[J]. AAPG Bulletin, 1987, 71(6): 633-642. |
32 | 李保华, 王晓燕, 龙江平. 海南岛近岸沉积物中的有孔虫特征与分布[J]. 微体古生物学报, 2008, 25(3): 225-234. |
LI Baohua, WANG Xiaoyan, LONG Jiangping. Foraminiferal characteristics and distribution in the sea surface sediments near Hainan Island[J]. Acta Micropalaeontologica Sinica, 2008, 25(3): 225-234. | |
33 | 马遵青, 陈国俊, 杨海长, 等. 大型有孔虫壳体对砂岩储集空间及物性的影响——以琼东南盆地松南凹陷三亚组一段为例[J]. 天然气地球科学, 2019, 30(5): 712-720. |
MA Zunqing, CHEN Guojun, YANG Haichang, et al. Effects of large-foraminiferal shells on sandstone reservoir space and physical properties: Case study of the 1st member of Sanya Formation, Songnan Sag, Qiongdongnan Basin[J]. Natural Gas Geoscience, 2019, 30(5): 712-720. | |
34 | 刘巍, 胡林, 廖仪, 等. 陵水凹陷中央峡谷水道砂体构型地震响应正演模拟及有利分布区预测[J]. 中国海上油气, 2020, 32(6): 43-53. |
LIU Wei, HU Lin, LIAO Yi, et al. Forward simulation on seismic response of channel sand body architecture in central canyon of Lingshui Sag and favorable zone prediction[J]. China Offshore Oil and Gas, 2020, 32(6): 43-53. | |
35 | 周展, 杨朝强, 洪楚侨, 等. 深水少井区重力流薄泥岩隔夹层预测方法[J]. 天然气工业, 2020, 40(12): 52-58. |
ZHOU Zhan, YANG Chaoqiang, HONG Chuqiao, et al. A prediction method of thin mudstone interlayers with gravity flow in deep water areas with fewer wells[J]. Natural Gas Industry, 2020, 40(12): 52-58. | |
36 | YU Xiaohang, STOW D, SMILLIE Z, et al. Contourite porosity, grain size and reservoir characteristics[J]. Marine and Petroleum Geology, 2020, 117: 104392. |
37 | BRACKENRIDGE R E, HERNÁNDEZ-MOLINA F J, STOW D A V, et al. A Pliocene mixed contourite-turbidite system offshore the Algarve Margin, Gulf of Cadiz: Seismic response, margin evolution and reservoir implications[J]. Marine and Petroleum Geology, 2013, 46: 36-50. |
38 | 王光绪, 吴伟, 林畅松, 等. 新西兰Taranaki 盆地第四系深水水道迁移规律与沉积模式[J]. 中国石油大学学报(自然科学版), 2022, 46(3): 13-24. |
WANG Guangxu, WU Wei, LIN Changsong, et al. Migration rules and depositional model of Quaternary deep-water channel in Taranaki Basin, New Zealand[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(3): 13-24. | |
39 | 单玄龙, 热西提·亚力坤, 刘培, 等. 珠江口盆地西江主洼珠琼运动的沉积响应及构造意义[J]. 吉林大学学报(地球科学版), 2023, 53(2): 329-342. |
SHAN Xuanlong, YALIKUN·Rexiti, LIU Pei, et al. Sedimentary Response and Tectonic Significance of Zhuqiong Movement in Xijiang Main Sag, Pearl River Mouth Basin. Journal of Jilin University (Earth Science Edition)[J]. 2023, 53(2): 329-342. | |
40 | 田兵, 郑有伟, 赵俊梅. 南海白云凹陷渐新统珠海组沉积相及其演化[J]. 断块油气田, 2022, 29(6): 800-806,836. |
TIAN Bing, ZHENG Youwei, ZHAO Junmei. Sedimentary facies and evolution of Oligocene Zhuhai Formation in Baiyun Sag, South China Sea[J]. Fault-Block Oil and Gas Field, 2022, 29(6): 800-806,836. | |
41 | 陈奎, 王雯娟, 徐万兴, 等. 琼东南盆地中央峡谷“深海一号”大气田周缘成藏条件与滚动勘探成效[J]. 石油实验地质, 2023, 45(5): 994-1006. |
CHEN Kui, WANG Wenjuan, XU Wanxing, et al. Accumulation conditions and rolling exploration results in the periphery of “Deep Sea No.1” giant gas field in central canyon of Qiongdongnan Basin[J]. Petroleum Geology & Experiment, 2023, 45(5): 994-1006. | |
42 | DOS ANJOS S M C, DE ROS L F, DE SOUZA R S, et al. Depositional and diagenetic controls on the reservoir quality of Lower Cretaceous Pendencia sandstones, Potiguar Rift Basin, Brazil[J]. AAPG Bulletin, 2000, 84(11): 1719-1742. |
[1] | 周荔青, 江东辉, 杨鹏程, 张如凤, 董鑫, 桑亚迪. 琼东南盆地陵水北坡LS13-2区勘探思路与突破方向[J]. 石油与天然气地质, 2024, 45(3): 673-683. |
[2] | 侯读杰, 吴克强, 尤丽, 张自鸣, 李雅君, 熊小峰, 徐敏, 严夏泽, 陈威合, 程熊. 琼东南盆地陆源海相烃源岩有机质富集机理[J]. 石油与天然气地质, 2024, 45(1): 31-43. |
[3] | 尤丽, 权永彬, 庹雷, 滕长宇, 左高昆. 琼东南盆地深水区宝岛21-1气田天然气来源及输导体系[J]. 石油与天然气地质, 2023, 44(5): 1270-1278. |
[4] | 吴克强, 解习农, 裴健翔, 任建业, 尤丽, 姜涛, 权永彬. 超伸展陆缘盆地深部结构及油气勘探意义[J]. 石油与天然气地质, 2023, 44(3): 651-661. |
[5] | 侯明才, 何小胡, 金秋月, 曹海洋, 贺礼文, 阙有缘, 陈安清. 琼东南盆地中生代潜山成储主控因素及分布规律[J]. 石油与天然气地质, 2023, 44(3): 637-650. |
[6] | 李东伟, 龚承林, 胡林, 何小胡, 罗泉源. 深水水道沉积内幕级次划分与精细刻画[J]. 石油与天然气地质, 2023, 44(3): 553-564. |
[7] | 李增学, 刘莹, 李晓静, 张功成, 孙瑞, 王东东, 尹露生, 刘佳敏. 琼东南盆地古近纪泥炭沼泽破坏与重建作用对煤型源岩物质形成的控制[J]. 石油与天然气地质, 2022, 43(6): 1309-1320. |
[8] | 刘莹, 刘海燕, 杨海长, 王东东, 宋广增, 吕大炜, 陈莹, 李增学. 琼东南盆地古近纪成煤沉积体系类型及特征[J]. 石油与天然气地质, 2019, 40(1): 142-151. |
[9] | 胡光义, 范廷恩, 陈飞, 井涌泉, 宋来明, 梁旭, 肖大坤. 复合砂体构型理论及其生产应用[J]. 石油与天然气地质, 2018, 39(1): 1-10. |
[10] | 童亨茂, 范彩伟, 童传新, 宋鹏, 张昊. 琼东南盆地宝岛变换带的特征、类型及其成因机制[J]. 石油与天然气地质, 2015, 36(6): 897-905. |
[11] | 张亚雄, 朱筱敏, 陈欢庆, 张功成. 琼东南盆地渐新统陵水组坡折带类型及层序地层样式[J]. 石油与天然气地质, 2014, 35(4): 473-479. |
[12] | 魏魁生, 楚美娟, 崔颖凯, 沈华, 梁建设, 杨国忠, 刘铁树. 琼东南盆地东部低位体系域的时空组合特征及油气勘探意义[J]. 石油与天然气地质, 2004, 25(6): 650-655. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||