石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (4): 1168-1179.doi: 10.11743/ogg20240419
王光付1,2(), 李阳3(), 王锐1, 周银邦1, 贾英1
收稿日期:
2024-05-15
修回日期:
2024-07-06
出版日期:
2024-09-05
发布日期:
2024-09-05
通讯作者:
李阳
E-mail:wanggf.syky@sinopec.com;liyang.syky@sinopec.com
第一作者简介:
王光付(1965—),男,博士、教授级高级工程师,油气田开发。E-mail:wanggf.syky@sinopec.com。
基金项目:
Guangfu WANG1,2(), Yang LI3(), Rui WANG1, Yingbang ZHOU1, Ying JIA1
Received:
2024-05-15
Revised:
2024-07-06
Online:
2024-09-05
Published:
2024-09-05
Contact:
Yang LI
E-mail:wanggf.syky@sinopec.com;liyang.syky@sinopec.com
摘要:
为了推动碳减排,实现碳中和目标,分析研究了CO2捕集、利用与封存(CCUS)技术进展,提出了存在问题和发展方向。研究表明:全球CCUS产业发展迅速,截至2023年底,全球大型CCUS项目数量达到392个,比2022年增加了一倍,已初步具备商业化运营的技术条件。CO2封存与利用研究应用不断取得新进展:①CO2地质封存体表征和建模采用表征体元(REV)技术,将微观尺度的属性应用于宏观尺度的地质模型,用应变张量数据进行封存体动态表征和监测。综合应用地球化学成像、微地震、地温以及大气监测技术方法进行封存体泄漏监测。建立不同沉积类型储层模拟技术,模拟封存体内不同CO2羽流迁移情景和封存潜力。②大数据和人工智能广泛应用于CCUS。建立了基于深度学习和耦合地质力学的CO2封存风险快速评估代理模型。用机器学习预测或评估剩余油区CO2提高采收率和封存效率。③CO2驱油新技术及应用新领域取得新进展。发展了CO2驱与低矿化度水驱交替注入、CO2微纳米气泡驱油、CO2加增黏剂驱油和CO2泡沫驱油等技术,应用于矿场试验取得良好效果。CO2驱油领域从中-低渗透砂岩油藏、致密砂岩油藏拓展到残余油带、页岩油藏及天然气藏。CCUS也面临长期封存安全性、经济性、技术不确定性等问题和挑战,需要进一步完善法律、法规,开展多学科研究与技术创新,加强国际合作,大力发展CO2地质封存与利用新技术,保障CO2长期封存安全性,提高商业运营经济性。
中图分类号:
1 | 李阳. 碳中和与碳捕集利用封存技术进展[M]. 北京: 中国石化出版社, 2021: 9. |
LI Yang. Progress in carbon neutralization, carbon capture, utilization and storage technology[M]. Beijing: China Petrochemical Press, 2021: 9. | |
2 | 张贤, 杨晓亮, 鲁玺, 等. 中国二氧化碳捕集利用与封存 (CCUS) 年度报告 (2023)[R]. 北京: 中国21世纪议程管理中心, 2023. |
ZHANG Xian, YANG Xiaoliang, LU Xi, et al. China carbon dioxide capture, utilization and storage annual report (2023)[R]. Beijing: The Administrative Center for China’s Agenda 21, 2023. | |
3 | IEA. CO2 emission in 2022[R]. Paris: IEA, 2023. |
4 | Global CCS Institute. Global status of CCS 2023[R]. Melbourne: Global CCS Institute, 2023. |
5 | 孙海萍, 孙洋洲, 周彦希, 等. 我国CCUS产业化发展前景分析与建议[J]. 现代化工, 2023, 43(12): 1-6, 10. |
SUN Haiping, SUN Yangzhou, ZHOU Yanxi, et al. Analysis and suggestions on development prospects of CCUS industrialization in China[J]. Modern chemical industry, 2023, 43(12): 1-6, 10. | |
6 | 肖贝, 陈磊, 杨皝, 等. 准噶尔盆地深部咸水层CO2地质封存适宜性及潜力评价[J/OL]. 大庆石油地质与开发: 1-8[网络访问日期缺失]. . |
XIAO Bei, CHEN Lei, YANG Huang, et al. Suitability and potential evaluation of CO2 geological storage in deep saline aquifers of Junggar Basin[J/OL]. Petroleum Geology & Oilfield Development in Daqing: 1-8[网络访问日期缺失]. . | |
7 | 王香增, 陈小凡, 李剑, 等. 一种基于 “四区” 的低渗透油藏CO2埋存量计算方法及应用[J]. 特种油气藏, 2024, 31(3): 78-84. |
WANG Xiangzeng, CHEN Xiaofan, LI Jian, et al. A calculation method of CO2 storage capacity in low permeability reservoirs based on “four-zone” method and its application[J]. Special Oil & Gas Reservoirs, 2024, 31(3): 78-84. | |
8 | 梁凯强, 王宏, 杨红, 等. 延长油田CO2非混相驱地质封存潜力初步评价[J]. 断块油气田, 2018, 25(1): 89-92. |
LIANG Kaiqiang, WANG Hong, YANG Hong, et al. Preliminary evaluation of CO2-EOR geological sequestration potential for Yanchang Oilfield[J]. Fault-Block Oil and Gas Field, 2018, 25(1): 89-92. | |
9 | 李阳, 王锐, 赵清民, 等. 含油气盆地咸水层二氧化碳封存潜力评价方法[J]. 石油勘探与开发, 2023, 50(2): 424-430. |
LI Yang, WANG Rui, ZHAO Qingmin, et al. A CO2 storage potential evaluation method for saline aquifers in a petroliferous basin[J]. Petroleum Exploration and Development, 2023, 50(2): 424-430. | |
10 | GANJDANESH R, HOSSEINI S A. Geologic carbon storage capacity estimation using enhanced analytical simulation tool (EASiTool)[J]. Energy Procedia, 2017, 114: 4690-4696. |
11 | GANJDANESH R, HOSSEINI S A. Development of an analytical simulation tool for storage capacity estimation of saline aquifers[J]. International Journal of Greenhouse Gas Control, 2018, 74: 142-154. |
12 | MIDDLETON R S, CHEN Bailian, HARP D R, et al. Great SCO2T! Rapid tool for carbon sequestration science, engineering, and economics[J]. Applied Computing and Geosciences, 2020, 7: 100035. |
13 | LENG Jianqiao, BUMP A, HOSSEINI S A, et al. A comprehensive review of efficient capacity estimation for large-scale CO2 geological storage[J]. Gas Science and Engineering, 2024, 126: 205339. |
14 | GORECKI C D, SORENSEN J A, BREMER J M, et al. Development of storage coefficients for determining the effective CO2 storage resource in deep saline formations[C]//SPE International Conference on CO2 Capture, Storage, and Utilization, San Diego, 2009. Houston: Society of Petroleum Engineers, 2009: SPE-126444-MS. |
15 | ZHENG Y, MCNEASE J, HUANG L B. Mapping small-scale fractures for geological carbon storage site selection using elastic P and S waves with double-beam neural network (DBNN) method[C]//Anon. CCUS Conference 2024. [S.l.]: [s.n.], 2024: 页码范围缺失. |
16 | YANG F, FRAILEY S, GRIGSBY N. CO2 enhanced oil recovery and storage potential in a tight and fractured greenfield residual oil zone[C]//Anon. CCUS Conference 2024. [S.l.]: [s.n.], 2024: 页码范围缺失. |
17 | 蔡勋育, 周德华, 赵培荣, 等. 中国石化深层、常压页岩气勘探开发进展与展望[J]. 石油实验地质, 2023, 45(6): 1039-1049. |
CAI Xunyu, ZHOU Dehua, ZHAO Peirong, et al. Development progress and outlook of deep and normal pressure shale gas of SINOPEC[J]. Petroleum Geology and Experiment, 2023, 45(6): 1039-1049. | |
18 | 赵珊, 刘华, 杨宪章, 等. 温-压耦合作用下深层盐岩盖层封闭能力演化特征[J]. 石油与天然气地质, 2023, 44(5): 1321-1332. |
ZHAO Shan, LIU Hua, YANG Xianzhang, et al. Evolutionary characteristics of sealing capacity of deep salt caprocks under temperature-pressure coupling[J]. Oil & Gas Geology, 2023, 44(5): 1321-1332. | |
19 | 郭旭升, 胡东风, 俞凌杰, 等. 页岩自封闭性与页岩气保存的微观机理研究[J]. 石油实验地质, 2023, 45(5): 821-831. |
GUO Xusheng, HU Dongfeng, YU Lingjie, et al. Study on the micro mechanism of shale self-sealing and shale gas preservation[J]. Petroleum Geology and Experiment, 2023, 45(5): 821-831. | |
20 | ALWAGDANI H, NADER F. Enhancing CO2 storage complex characterization in the Williston Basin: An integrated approach of petrophysical evaluation and core analysis[C]//Anon. CCUS Conference 2024. [S.l.]: [s.n.], 2024: 页码范围缺失. |
21 | EWING T E, GALLOWAY W E. Chapter 16-Evolution of the northern Gulf of Mexico Sedimentary Basin[M]//MIALL A D. The Sedimentary Basins of the United States and Canada. The Sedimentary Basins of the United States and Canada. 2nd ed. Amsterdam: Elsevier, 2019: 627-694. |
22 | SARWAR G. On the origin of mini-basins in the Gulf of Mexico[J]. Gulf Coast Association of Geological Societies Transactions, 2006, 56: 743. |
23 | FOOTE N, LOCHAN A, KOSTIC B. Characterization of a saline aquifer unit as a prime candidate for CCS: Case study of the basal Cambrian sandstone, Canada[C]//Anon. CCUS Conference 2024. [S.l.]: [s.n.], 2024: 页码范围缺失. |
24 | ALMASGARI A A, ELSAADANY M, ABDUL LATIFF A H, et al. Application of seismic attributes to delineate the geological features of the Malay Basin[J]. Bulletin of the Geological Society of Malaysia, 2020, 69: 97-110. |
25 | ABDOLHOSSEINI QOMI M J, MILLER Q R S, ZARE S, et al. Molecular-scale mechanisms of CO2 mineralization in nanoscale interfacial water films[J]. Nature Reviews Chemistry, 2022, 6(9): 598-613. |
26 | TANG H, TENG H, BU C. Chemostratigraphic analysis as a powerful tool for real-time reservoir characterization of injection wells: Enhancing data acquisition for EPA class I and class[C]//Anon. CCUS Conference 2024. [S.l.]: [s.n.], 2024: 页码范围缺失. |
27 | HERBERS D, HAUCK T, GORDON J. The effect of natural fractures on the CO2 injection and storage capacity in a tight sandstone reservoir, implication for the identification of new geological storage zones, St. Lawrence platform, Quebec[C]//Anon. CCUS Conference 2024. [S.l.]: [s.n.], 2024: 页码范围缺失. |
28 | MOOPEN S, SURYANARAYANA P V, JEPHSON J, et al. Stochastic leakage estimates from a carbon storage reservoir using NRAP-open-IAM[C]//SPE/AAPG/SEG Carbon, Capture, Utilization, and Storage Conference and Exhibition, Houston, 2024. Houston: SPE, 2024: SPE-CCUS-2024- 4014492. |
29 | MIDDLETON R S, YAW S P, HOOVER B A, et al. SimCCS: An open-source tool for optimizing CO2 capture, transport, and storage infrastructure[J]. Environmental Modelling & Software, 2020, 124: 104560. |
30 | 周银邦, 王锐, 何应付, 等. 咸水层CO2地质封存典型案例分析及对比[J]. 油气地质与采收率, 2023, 30(2): 162-167. |
ZHOU Yinbang, WANG Rui, ZHAO Shuxia, et al. Analysis and comparison of typical cases of CO2 geological storage in saline aquifer[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 162-167. | |
31 | 周银邦, 王锐, 程传捷, 等. 阿尔及利亚In Salah油田CO2地质封存示范工程的启示[J]. 地球科学与环境学报, 2023, 45(6): 1368-1379. |
ZHOU Yinbang, WANG Rui, CHENG Chuanjie, et al. Enlightenment of CO2 geological storage demonstration project in In Salah Oilfield, Algeria[J]. Journal of Earth Sciences and Environment, 2023, 45(6): 1368-1379. | |
32 | 于子望, 卢帅屹, 白林, 等. CO2地质封存岩石力学问题研究进展[J/OL]. 吉林大学学报(地球科学版): 1-15[网络访问日期缺失]. . |
YU Ziwang, LU Shuaiyi, BAI Lin, et al. Research progress on rock mechanics of CO2 geological sequestration[J/OL]. Journal of Jilin University(Earth Science Edition) : 1-15[网络访问日期缺失]. . | |
33 | 李颖, 李茂茂, 李海涛, 等. 纳米SiO2强化CO2地质封存页岩盖层封堵能力机制试验[J]. 中国石油大学学报(自然科学版), 2024, 48(2): 92-98. |
LI Ying, LI Maomao, LI Haitao, et al. Experiment on nano-SiO2 enhancing sealing capacity of shale caprocks for CO2 geological storage[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(2): 92-98. | |
34 | 李士伦, 汤勇, 段胜才, 等. CO2地质封存源汇匹配及安全性评价进展[J]. 油气藏评价与开发, 2023, 13(3): 269-279. |
LI Shilun, TANG Yong, DUAN Shengcai, et al. Progress in source-sink matching and safety evaluation of CO2 geological sequestration[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 269-279. | |
35 | ZHENG Fangning, JHA B, JAFARPOUR B. A deep learning-based surrogate model for rapid assessment of geomechanical risks in geologic CO2 storage[C]//SPE/AAPG/SEG Carbon, Capture, Utilization, and Storage Conference and Exhibition, Houston, 2024. Houston: SPE, 2024: SPE-CCUS-2024- 4003166. |
36 | SAKAI T, NAGAO M, CHAN C H, et al. CO2 plume imaging with accelerated deep learning-based data assimilation using distributed pressure and temperature measurements at the Illinois Basin-Decatur carbon sequestration project[C]//SPE/AAPG/SEG Carbon, Capture, Utilization, and Storage Conference and Exhibition, Houston, 2024. Houston: SPE, 2024: SPE-CCUS-2024- 4014874. |
37 | AL-MUDHAFAR W J, RAO D N, SRINIVASAN S, et al. Rapid evaluation and optimization of carbon dioxide-enhanced oil recovery using reduced-physics proxy models[J]. Energy Science & Engineering, 2022, 10(10): 4112-4135. |
38 | BAHRAMI P, SAHARI MOGHADDAM F, JAMES L A. A review of proxy modeling highlighting applications for reservoir engineering[J]. Energies, 2022, 15(14): 5247. |
39 | YANG F, FRAILEY S, GRIGSBY N. CO2 enhanced oil recovery and storage potential in a tight and fractured greenfield residual oil zone[C]//Anon. CCUS Conference 2024. [S.l.]: [s.n.], 2024: 页码范围缺失. |
40 | Advanced Resources International. The U.S. CO2 enhanced oil recovery survey[R]. [S.l.]: [s.n.], 出版年度缺失: 页码范围缺失. |
41 | 窦立荣, 孙龙德, 吕伟峰, 等. 全球二氧化碳捕集、利用与封存产业发展趋势及中国面临的挑战与对策[J]. 石油勘探与开发, 2023, 50(5): 1083-1096. |
DOU Lirong, SUN Longde, Weifeng LYU, et al. Trend of global carbon dioxide capture, utilization and storage industry and challenges and countermeasures in China[J]. Petroleum Exploration and Development, 2023, 50(5): 1083-1096. | |
42 | 金之钧, 张川, 王晓峰, 等. 关于中国碳中和与能源转型实现路径的思考[J]. 石油与天然气地质, 2024, 45(3): 593-599. |
JIN Zhijun, ZHANG Chuan, WANG Xiaofeng, et al. A pathway to China’s energy transition in a carbon neutrality vision[J]. Oil & Gas Geology, 2024, 45(3): 593-599. | |
43 | JARRELL P M, FOX C E, STEIN M H, et al. Practical aspects of CO2 flooding[M]. Richardson: Society of Petroleum Engineers, 2002. |
44 | KAKATI A, KUMAR G, SANGWAI J S. Oil recovery efficiency and mechanism of low salinity-enhanced oil recovery for light crude oil with a low acid number[J]. ACS Omega, 2020, 5(3): 1506-1518. |
45 | MA Shijia, JAMES L A. Literature review of hybrid CO2 low salinity water-alternating-gas injection and investigation on hysteresis effect[J]. Energies, 2022, 15(21): 7891. |
46 | CHATURVEDI K R, RAVILLA D, KELEEM W, et al. Impact of low salinity water injection on CO2 storage and oil recovery for improved CO2 utilization[J]. Chemical Engineering Science, 2021, 229: 116127. |
47 | MORGAN A, AMPOMAH W, CZARNOTA R, et al. Experimental study of brine compatibility on water-alternating-CO2 injection in low-permeability Morrowan sandstone reservoir[C]//SPE/AAPG/SEG Carbon, Capture, Utilization, and Storage Conference and Exhibition, Houston, 2024. Houston: SPE, 2024: SPE-CCUS-2024- 4015008. |
48 | LAWAL T, WANG Hao, MIRZAEI-PAIAMAN A, et al. Aqueous nanobubble dispersion of CO2 for enhanced oil recovery-coreflooding and huff-n-puff experiments[C]//SPE Improved Oil Recovery Conference, Tulsa, 2024. Houston: Society of Petroleum Engineers, 2024: SPE-218179-MS. |
49 | 尚祯浩, 伍家忠, 熊伟, 等. 水气分散体系驱油微观机理研究[J/OL]. 西南石油大学学报(自然科学版): 1-12[网络访问日期缺失]. . |
SHANG Zhenhao, WU Jiazhong, XIONG Wei, et al. Micro mechanism of oil displacement by water gas dispersion system[J/OL]. Journal of Southwest Petroleum University(Science & Technology Edition): 1-12[网络访问日期缺失]. . | |
50 | WANG Hao, CARRASCO-JAIM O A, OKUNO R, et al. Aqueous nanobubble dispersion of CO2 in sodium formate solution for enhanced CO2 mineralization using basaltic rocks[C]//SPE/AAPG/SEG Carbon, Capture, Utilization, and Storage Conference and Exhibition, Houston, 2024. Houston: SPE, 2024: SPE-CCUS-2024- 4016392. |
51 | MCCLAIN J B, BETTS D E, CANELAS D A, et al. Characterization of polymers and amphiphiles in supercritical CO2 using small angle neutron scattering and viscometry[C]//Anon. Spring Meeting of the ACS, Division of Polymer Material, New Orleans La: Science and Engineering. [S.l.]: [s.n.], 出版年度缺失: 234-235. |
52 | ENICK R M, BECKMAN E J, HAMILTON A. Novel CO2-thickeners for improved mobility control: DOE/BC/15108-6[R]. Tulsa: National Petroleum Technology Office, 2002. |
53 | BARADIE B, SHOICHET M S, SHEN Zhihao, et al. Synthesis and solubility of linear poly(tetrafluoroethylene-co-vinyl acetate) in dense CO2: Experimental and molecular modeling results[J]. Macromolecules, 2004, 37(20): 7799-7807. |
54 | KAR T, FIROOZABADI A. Effective viscosification of supercritical carbon dioxide by oligomers of 1-decene[J]. iScience, 2022, 25(5): 104266. |
55 | ALCORN Z P, GRAUE A, KARAKAS M. CO2 foam pilot in a heterogeneous carbonate reservoir: Analysis and results[C]//SPE Improved Oil Recovery Conference, Virtual, 2022. Houston: SPE, 2022: SPE-209359-MS. |
56 | TRIPATHI R, ALCORN Z P, GRAUE A, et al. Combination of non-ionic and cationic surfactants in generating stable CO2 foam for enhanced oil recovery and carbon storage[J]. Advances in Geo-Energy Research, 2024, 13(1): 42-55. |
57 | KARACAN C Ö, BRENNAN S T, BUURSINK M L, et al. A residual oil zone (ROZ) assessment methodology with application to the central basin platform (Permian Basin, USA) for enhanced oil recovery (EOR) and long-term geologic CO2 storage[J]. Geoenergy Science and Engineering, 2023, 230: 212275. |
58 | GAUTAM S, DINDORUK B, BEHM E, et al. Case study of gas injection and EOR potential in unconventional marginal Permian horizontal wells[C]//SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, 2023. Houston: SPE, 2023: URTEC-3860876-MS. |
59 | IINO A, ONISHI T, DATTA-GUPTA A. Optimizing CO2- and field-gas-injection EOR in unconventional reservoirs using the fast-marching method[J]. SPE Reservoir Evaluation & Engineering, 2020, 23(1): 261-281. |
60 | 丁帅伟, 张蒙, 李远铎, 等. 致密油藏CO2吞吐驱油和封存注采参数敏感性分析[J]. 新疆石油地质, 2024, 45(2): 181-188. |
DING Shuaiwei, ZHANG Meng, LI Yuanduo, et al. Sensitivity analysis of injection-production parameters for CO2 huff-n-puff flooding and storage in tight oil reservoirs: A case from typical tight reservoirs of Chang 7 member, Ordos Basin[J]. Xinjiang Petroleum Geology, 2024, 45(2): 181-188. | |
61 | 李一波, 陈耀旺, 赵金洲, 等. 超临界二氧化碳与页岩相互作用机制[J/OL]. 石油与天然气地质: 1-15[网络访问日期缺失]. . |
LI Yibo, CHEN Yaowang, ZHAO Jinzhou, et al. Interaction mechanism between supercritical carbon dioxide and shale[J/OL]. Oil & Gas Geology: 1-15[网络访问日期缺失]. . | |
62 | 柏明星, 张志超, 陈巧珍, 等. 二氧化碳置换法开采天然气水合物研究进展[J]. 石油与天然气地质, 2024, 45(2): 553-564. |
BAI Mingxing, ZHANG Zhichao, CHEN Qiaozhen, et al. Advances in research on CO2 replacement for natural gas hydrate exploitation[J]. Oil & Gas Geology, 2024, 45(2): 553-564. | |
63 | 史云清, 贾英, 潘伟义, 等. 低渗致密气藏注超临界CO2驱替机理[J]. 石油与天然气地质, 2017, 38(3): 610-616. |
SHI Yunqing, JIA Ying, PAN Weiyi, et al. Mechanism of supercritical CO2 flooding in low-permeability tight gas reservoirs[J]. Oil and Gas Geology, 2017, 38(3): 610-616. | |
64 | 蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存 (CCUS) 年度报告 (2021)——中国CCUS路径研究[R]. 北京: 生态环境部环境规划院, 2021. |
CAI Bofeng, LI Qi, ZHANG Xian, et al. China carbon dioxide capture, utilization and storage (CCUS) annual report (2021): China CCUS path study[R]. Beijing: Chinese Academy of Environmental Planning, 2021. | |
65 | 袁士义, 马德胜, 李军诗, 等. 二氧化碳捕集、驱油与埋存产业化进展及前景展望[J]. 石油勘探与开发, 2022, 49(4): 828-834. |
YUAN Shiyi, MA Desheng, LI Junshi, et al. Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization[J]. Petroleum Exploration and Development, 2022, 49(4): 828-834. |
[1] | 张莉. 中国石化东部老油田提高采收率技术进展及攻关方向[J]. 石油与天然气地质, 2022, 43(3): 717-723. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||