石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (4): 1180-1194.doi: 10.11743/ogg20240420
李一波1(), 陈耀旺1, 赵金洲1, 王志强2, 魏兵1, Valeriy Kadet3
收稿日期:
2024-03-05
修回日期:
2024-05-14
出版日期:
2024-09-05
发布日期:
2024-09-05
第一作者简介:
李一波(1986—),男,博士、教授,非常规油气提高采收率。E‑mail: liyibo@swpu.edu.cn。
基金项目:
Yibo LI1(), Yaowang CHEN1, Jinzhou ZHAO1, Zhiqiang WANG2, Bing WEI1, Kadet Valeriy3
Received:
2024-03-05
Revised:
2024-05-14
Online:
2024-09-05
Published:
2024-09-05
摘要:
超临界二氧化碳与页岩相互作用机制及规律对页岩油气开发非常重要。目前缺少对超临界二氧化碳注入页岩储层后页岩润湿性、孔隙度和渗透率变化规律的研究。为了明确在不同条件下经过超临界二氧化碳浸泡处理后页岩矿物成分和微观结构的变化规律,以四川盆地龙马溪地区页岩为研究对象,对其总有机碳含量、矿物成分、表面形貌及低压N2和CO2吸附进行了测试。通过对不同浸泡时间、压力和含水条件下页岩处理前、后的物理性质和微观结构进行定量表征,研究了超临界二氧化碳对页岩孔隙度、渗透率以及润湿性的影响。研究结果表明:①随着浸泡时间和浸泡压力的增加,页岩中的黏土矿物和碳酸盐矿物(方解石和白云石)含量降低,石英含量增加,有机质含量降低明显。②扫描电镜图像显示页岩中微观孔隙结构变化受萃取作用、溶蚀作用和吸附膨胀作用共同影响。页岩中微观孔隙结构的变化导致了页岩孔隙度和渗透率的改变。页岩渗透率变化受到黏土矿物、碳酸盐矿物和有机质含量的影响。③超临界二氧化碳浸泡处理后页岩的润湿性发生改变,随着浸泡时间和压力的增加,页岩-水接触角增大,页岩的润湿性由强水湿转变为弱水湿和中等润湿。
中图分类号:
1 | 殷宏. 超临界CO2与页岩相互作用机理的实验研究[D]. 重庆: 重庆大学, 2018. |
YIN Hong. Experimental study on the interaction mechanism between supercritical CO2 and shale[D]. Chongqing: Chongqing University, 2018. | |
2 | 李宁, 金之钧, 张士诚, 等. 水/超临界二 氧化碳作用下的页岩微观力学特性[J]. 石油勘探与开发, 2023, 50(4): 872-882. |
LI Ning, JIN Zhijun, ZHANG Shicheng, et al. Micro-mechanical properties of shale due to water/supercritical carbon dioxide-rock interaction[J]. Petroleum Exploration and Development, 2023, 50(4): 872-882. | |
3 | 曾凡辉, 张蔷, 陈斯瑜, 等. 水化作用下页岩微观孔隙结构的动态表征——以四川盆地长宁地区龙马溪组页岩为例[J]. 天然气工业, 2020, 40(10): 66-75. |
ZENG Fanhui, ZHANG Qiang, CHEN Siyu, et al. Dynamic characterization of microscopic pore structures of shale under the effect of hydration: A case study of Longmaxi Formation shale in the Changning area of the Sichuan Basin[J]. Natural Gas Industry, 2020, 40(10): 66-75. | |
4 | LAHANN R, MASTALERZ M, RUPP J A, et al. Influence of CO2 on New Albany shale composition and pore structure[J]. International Journal of Coal Geology, 2013, 108: 2-9. |
5 | YU Chunsheng, ZHAO Xiao, JIANG Qi, et al. Shale microstructure characteristics under the action of supercritical carbon dioxide (Sc-CO2)[J]. Energies, 2022, 15(22): 8354. |
6 | MENG Siwei, JIN Xu, TAO Jiaping, et al. Evolution characteristics of mechanical properties under supercritical carbon dioxide treatment in shale reservoirs[J]. ACS Omega, 2021, 6(4): 2813-2823. |
7 | 吴迪, 耿岩岩, 肖晓春, 等. 页岩储层超临界CO2增透规律实验[J]. 特种油气藏, 2022, 29(1): 66-72. |
WU Di, GENG Yanyan, XIAO Xiaochun, et al. Experimental study on variation pattern of enhanced permeability of supercritical CO2 in shale reservoirs[J]. Special Oil & Gas Reservoirs, 2022, 29(1): 66-72. | |
8 | 周冰, 金之钧, 刘全有, 等. 苏北盆地黄桥地区富CO2流体对油气储-盖系统的改造作用[J]. 石油与天然气地质, 2020, 41(6): 1151-1161. |
ZHOU Bing, JIN Zhijun, LIU Quanyou, et al. Alteration of reservoir-caprock systems by using CO2-rich fluid in the Huangqiao area, North Jiangsu Basin[J]. Oil & Gas Geology, 2020, 41(6): 1151-1161. | |
9 | YIN Hong, ZHOU Junping, JIANG Yongdong, et al. Physical and structural changes in shale associated with supercritical CO2 exposure[J]. Fuel, 2016, 184: 289-303. |
10 | PAN Yi, HUI Dong, LUO Pingya, et al. Experimental investigation of the geochemical interactions between supercritical CO2 and shale: Implications for CO2 storage in gas-bearing shale formations[J]. Energy & Fuels, 2018, 32(2): 1963-1978. |
11 | PAN Yi, HUI Dong, LUO Pingya, et al. Influences of subcritical and supercritical CO2 treatment on the pore structure characteristics of marine and terrestrial shales[J]. Journal of CO2 Utilization, 2018, 28: 152-167. |
12 | 李威, 徐建永, 刘志峰, 等. 幔源CO2对渤海海域秦皇岛29构造带油气成藏的影响[J]. 石油与天然气地质, 2023, 44(2): 418-428. |
LI Wei, XU Jianyong, LIU Zhifeng, et al. Influence of mantle-derived CO2 on hydrocarbon accumulation in Qinhuangdao 29 tectonic zone, Bohai Sea[J]. Oil & Gas Geology, 2023, 44(2): 418-428. | |
13 | 孙靖, 尤新才, 薛晶晶, 等. 准噶尔盆地异常压力特征及其对深层-超深层致密储层的影响[J]. 石油与天然气地质, 2023, 44(2): 350-365. |
SUN Jing, YOU Xincai, XUE Jingjing, et al. Characteristics of abnormal pressure and its influence on deep and ultra-deep tight reservoirs in the Junggar Basin[J]. Oil & Gas Geology, 2023, 44(2): 350-365. | |
14 | BAI Bing, NI Hongjian, SHI Xian, et al. The experimental investigation of effect of supercritical CO2 immersion on mechanical properties and pore structure of shale[J]. Energy, 2021, 228: 120663. |
15 | MEMON S, FENG Runhua, ALI M, et al. Supercritical CO2-shale interaction induced natural fracture closure: implications for scCO2 hydraulic fracturing in shales[J]. Fuel, 2022, 313: 122682. |
16 | ZHOU Junping, YIN Hong, TAN Jingqiang, et al. Pore structural characterization of shales treated by sub-critical and supercritical CO2 exposure[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9): 6603-6613. |
17 | JIA Yunzhong, LU Yiyu, ELSWORTH D, et al. Surface characteristics and permeability enhancement of shale fractures due to water and supercritical carbon dioxide fracturing[J]. Journal of Petroleum Science and Engineering, 2018, 165: 284-297. |
18 | AO Xiang, LU Yiyu, TANG Jiren, et al. Investigation on the physics structure and chemical properties of the shale treated by supercritical CO2 [J]. Journal of CO2 Utilization, 2017, 20: 274-281. |
19 | 陈钰婷. 超临界二氧化碳作用下页岩力学特性研究[D]. 重庆: 重庆大学, 2016. |
CHEN Yuting. Test study on the effects of supercritical CO2 on shale mechanical properties[D]. Chongqing: Chongqing University, 2016. | |
20 | KNEZ Ž, CÖR D, HRNČIČ M K. Solubility of solids in sub- and supercritical fluids: A review 2010—2017[J]. Journal of Chemical & Engineering Data, 2018, 63(4): 860-884. |
21 | OTA M, SATO Y, SMITH R L, Jr, et al. Predictive dimensionless solubility (pDS) model for solid solutes in supercritical CO2 that requires only pure-component physical properties[J]. Chemical Engineering Research & Design, 2018, 136: 251-261. |
22 | BIAN Xiaoqiang, DU Zhimin, TANG Yong. An improved density-based model for the solubility of some compounds in supercritical carbon dioxide[J]. Thermochimica Acta, 2011, 519(1/2): 16-21. |
23 | THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
24 | POLANYI M. The potential theory of adsorption: Authority in science has its uses and its dangers.[J]. Science, 1963, 141(3585): 1010-1013. |
25 | DAI Xuguang, WANG Meng, WEI Chongtao, et al. Factors affecting shale microscopic pore structure variation during interaction with supercritical CO2 [J]. Journal of CO2 Utilization, 2020, 38: 194-211. |
26 | IGLAUER S, PENTLAND C H, BUSCH A. CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration[J]. Water Resources Research, 2015, 51(1): 729-774. |
27 | ZHAO Jianfei, WANG Zhouhua, GUO Ping, et al. Molecular level investigation of methane and carbon dioxide adsorption on SiO2 surface[J]. Computational Materials Science, 2019, 168: 213-220. |
28 | YEKEEN N, PADMANABHAN E, SEVOO T A, et al. Wettability of rock/CO2/brine systems: A critical review of influencing parameters and recent advances[J]. Journal of Industrial and Engineering Chemistry, 2020, 88: 1-28. |
29 | AL-YASERI A Z, LEBEDEV M, BARIFCANI A, et al. Receding and advancing (CO2+brine+quartz) contact angles as a function of pressure, temperature, surface roughness, salt type and salinity[J]. The Journal of Chemical Thermodynamics, 2016, 93: 416-423. |
30 | ARIF M, ABU-KHAMSIN S A, ZHANG Yihuai, et al. Experimental investigation of carbonate wettability as a function of mineralogical and thermo-physical conditions[J]. Fuel, 2020, 264: 116846. |
31 | 史俊勤. 超临界二氧化碳溶胀原油及降低油水界面张力的分子模拟研究[D]. 青岛: 中国石油大学(华东), 2015. |
SHI Junqin. Molecular simulation studies of supercritical CO2 swelling oil and reducing oil/water interfacial tension[D]. Qingdao: China University of Petroleum(East China), 2015. | |
32 | SADLEJ J, MAKAREWICZ J, CHAŁASIŃSKI G. Ab initio study of energy, structure and dynamics of the water-carbon dioxide complex[J]. The Journal of Chemical Physics, 1998, 109(10): 3919-3927. |
[1] | 刘国勇, 薛建勤, 吴松涛, 伍坤宇, 张博策, 邢浩婷, 张娜, 庞鹏, 朱超. 柴达木盆地柴西坳陷古近系-新近系石油地质特征与油气环带状分布模式[J]. 石油与天然气地质, 2024, 45(4): 1007-1017. |
[2] | 解馨慧, 邓虎成, 胡蓝霄, 李勇, 毛金昕, 刘佳杰, 张鑫, 李柏洋. 湖相细粒沉积岩颗粒微观力学特征及类型划分[J]. 石油与天然气地质, 2024, 45(4): 1079-1088. |
[3] | 张琴, 卢东连, 王凯, 刘畅, 郭明强, 张梦婕, 郭超杰, 王颖, 胡文忠, 朱筱敏. 下扬子地区荷塘组细粒沉积岩岩相划分及微观孔隙发育特征[J]. 石油与天然气地质, 2024, 45(4): 1089-1105. |
[4] | 李倩文. 渤海湾盆地东营凹陷古近系沙河街组页岩储层润湿性及其主控因素[J]. 石油与天然气地质, 2024, 45(4): 1142-1154. |
[5] | 朱筱敏, 王晓琳, 张美洲, 林兴悦, 张琴. 中国典型陆相盆地细粒沉积环境和岩相特征[J]. 石油与天然气地质, 2024, 45(4): 873-892. |
[6] | 胡宗全, 刘忠宝, 李倩文, 吴舟凡. 基于变尺度岩相组合的陆相页岩源-储耦合机理探讨[J]. 石油与天然气地质, 2024, 45(4): 893-909. |
[7] | 叶玥豪, 陈伟, 汪华, 宋金民, 明盈, 戴鑫, 李智武, 孙豪飞, 马小刚, 刘婷婷, 唐辉, 刘树根. 四川盆地上二叠统大隆组页岩储层特征及其控制因素[J]. 石油与天然气地质, 2024, 45(4): 979-991. |
[8] | 张明何, 魏祥峰, 高波, 戎佳, 刘珠江, 燕继红, 杨琪航, 王佳乐, 刘慧萍, 游浪, 刘自亮. 川北山前带寒武系筇竹寺组富有机质页岩发育模式[J]. 石油与天然气地质, 2024, 45(4): 992-1006. |
[9] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[10] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[11] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[12] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[13] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[14] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[15] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||