石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (6): 1511-1523.doi: 10.11743/ogg20240601
郭旭升1,2,3,4,5(), 赵培荣2,3,4,5, 申宝剑2,3,4,5, 刘曾勤2,3,4,5(), 罗兵2,3,4,5,6, 赵石虎2,3,4,5, 张嘉琪2,3,4,5, 贺甲元2,3,4,5, 付维署2,3,4,5, 魏海鹏1, 刘炯2,3,4,5, 陈新军2,3,4,5, 叶金诚2,3,4,5
收稿日期:
2024-05-07
修回日期:
2024-10-26
出版日期:
2024-12-30
发布日期:
2024-12-31
通讯作者:
刘曾勤
E-mail:guoxs.syky@sinopec.com;liuzengqin.syky@sinopec.com
第一作者简介:
郭旭升(1965—),男,中国工程院院士,油气勘探研究与生产管理。E-mail:guoxs.syky@sinopec.com。
基金项目:
Xusheng GUO1,2,3,4,5(), Peirong ZHAO2,3,4,5, Baojian SHEN2,3,4,5, Zengqin LIU2,3,4,5(), Bing LUO2,3,4,5,6, Shihu ZHAO2,3,4,5, Jiaqi ZHANG2,3,4,5, Jiayuan HE2,3,4,5, Weishu FU2,3,4,5, Haipeng WEI1, Jiong LIU2,3,4,5, Xinjun CHEN2,3,4,5, Jincheng YE2,3,4,5
Received:
2024-05-07
Revised:
2024-10-26
Online:
2024-12-30
Published:
2024-12-31
Contact:
Zengqin LIU
E-mail:guoxs.syky@sinopec.com;liuzengqin.syky@sinopec.com
摘要:
中国深层煤层气资源丰富,近年勘探工作取得了积极进展,是非常规天然气的战略接替领域,但效益开发面临复杂的地质-工程挑战。本文研究了中国典型地区深层煤层气地质特征,总结了理论与技术研究进展,提出了深层煤层气的发展前景。研究结果表明:①与浅层对比,深层煤层气具有“非均质性强、游离气-吸附气双富、塑性强”的地质-工程特点。②深层中-低煤阶煤储集空间大,以原生植物组织孔为主,中-高煤阶煤微孔与裂隙发育,孔隙以有机质气孔为主,裂隙以割理和外生裂隙为主。③经过多年攻关,中国石化已经初步形成了深层煤层气选区评价、甜点预测、水平井钻井与有效支撑压裂改造技术系列,为深层煤层气的勘探突破提供了有效支撑。④建议进一步加强深层煤层气富集规律与“甜点”及开发技术政策与排采规律研究,研发薄煤层水平井优快钻完井与压裂改造降本增效技术。
中图分类号:
表1
全球深层煤层气典型井生产现状"
国家 | 盆地 | 主要目的层系 | 典型井生产情况 |
---|---|---|---|
中国 | 鄂尔多斯盆地 | 石炭系-二叠系 | 延川南区块Y3-P11井,埋深1 140 m,峰值日产气量6.7×104 m3 |
大吉区块JS6-7P01井,埋深2 200 m,峰值日产气量10.1×104 m3 | |||
榆林地区NL1H井,埋深3 222 m,峰值日产气量5.4×104 m3 | |||
大牛地区块YM1HF井,埋深2 880 m,峰值日产气量10.4×104 m3 | |||
四川盆地 | 二叠系 | 南川区块Y2井,埋深1 976 m,峰值日产气量1.8×104 m3 | |
准噶尔盆地 | 侏罗系 | 五彩湾地区CT1H井,埋深2 385 m,峰值日产气量5.7×104 m3 | |
美国 | 皮申思盆地 | 白垩系 | 以Williams Fork组煤层为目标的65口单井,埋深约2 560 m,井均日产气量1.1×104 m3 |
澳大利亚 | 库珀盆地 | 二叠系 | Rosewell-1井,埋深3 068 m,峰值日产气量2.8×104 m3 |
表2
鄂尔多斯盆地中-深层煤层气典型探区地质-工程特征对比"
样品 来源 | 煤层 | 延川南山西组2#煤层 | 大吉太原组8#煤层[ | 大牛地气田太原组8#煤层 |
---|---|---|---|---|
埋深/m | 800 ~ 1 500 | 1 500~2 500 | 2 500 ~ 3 000 | |
煤岩 煤质 | 煤岩类型 | 半亮煤为主 | 光亮煤-半亮煤为主 | 光亮煤-半亮煤为主 |
演化程度(Ro)/% | 2.45 | 2.70 | 1.50 | |
灰分产率/% | 13.60 | 11.70 | 17.86 | |
镜质组含量/% | 66.70 | 85.50 | 68.05 | |
储集性 | 煤层厚度/m | 3.3 ~ 6.5,平均4.7 | 4.0 ~ 12.0,平均7.8 | 5.0 ~ 16.0,平均9.4 |
裂隙线密度/(条/cm) | 0.8 ~ 5.0(面割理) | 1.2 ~ 2.0(面割理) | 0.6 ~ 1.0(面割理) | |
孔隙度/% | 4.00 | 3.13 | 4.68 | |
渗透率/(10-3 μm2) | 0.010 0 ~ 0.990 0 (注入/压降试井) | 0.053 0 ~ 0.054 0 (注入/压降试井) | 0.000 1 ~ 0.760 0 (气体法) | |
保存性 | 压力系数 | 平均0.790 | 0.902 ~ 0.936 | 平均1.030 |
顶板岩性 | 泥岩 | 灰岩 | 灰岩 | |
构造复杂程度 | 以单斜为主,断裂较发育 | 以单斜为主,断裂较发育 | 以单斜为主,断裂欠发育 | |
地层水矿化度(mg/L) | 3 000 ~ 80 000 | 72 029 ~ 223 378 | 70 258 ~ 153 239 | |
含气性 | 总含气量/(m3/t) | 8.0 ~ 21.0 | 18.0 ~ 26.0 | 16.5 ~ 26.0 |
吸附气饱和度/% | 41.48 ~ 92.19 | 97.99 ~ 100.00 | 100.00 | |
游离气占比/% | — | 平均值20 | 20 ~ 50 | |
可压性 | 煤体结构 | 原生-碎裂结构为主 | 原生结构为主 | 原生结构为主 |
垂向应力差/MPa | 2 ~ 6 | 11 ~ 31 | 7 ~ 16 | |
水平应力差异系数 | 0.10 | 0.13 | 0.15 | |
勘探 实例 | 典型井 | Y3-P11井 | JS6-7P01 井 | YM1HF井 |
钻完井关键参数 | 水平段长度1 453 m,排量18 ~ 22 m3/min,产砂量3 067 m3, 产液量31 596 m3 | 水平段长度1 000 m,排量16 ~ 18 m3/min,产砂量3 823 m3, 产液量31 892 m3 | 水平段长度1 030 m,排量15 ~ 22 m3/min,产砂量6 620 m3, 产液量54 589 m3 | |
生产特征 | 产气量峰值5×104 m3/d,年产气量> 1 000×104 m3,EUR>3 000×104 m3 | 产气量峰值10.1×104 m3/d,年产气量> 1 800×104 m3,EUR>5 500×104 m3 | 产气量峰值10.4×104 m3/d,年产气量> 2 300×104 m3,EUR>6 000×104 m3 |
表3
深层煤层气地质-工程一体化选区指标体系"
选区分类 | Ⅰ类区 | Ⅱ类区 | Ⅲ类区 | |
---|---|---|---|---|
煤岩煤质 | 煤岩类型 | 光亮煤-半亮煤 | 半亮煤-半暗煤 | 半暗煤-暗淡煤 |
演化程度(Ro)/% | ≥0.7 | 0.5 ~ 0.7 | <0.5 | |
灰分产率/% | ≤20 | 20 ~ 40 | >40 | |
镜质组含量/% | ≥60 | 40 ~ 60 | <40 | |
储集性 | 煤层厚度/m | 单层厚度≥4 | 单层厚度2 ~ 4 | 单层厚度<2 |
孔隙度/% | ≥4 | 2 ~ 4 | <2 | |
裂隙线密度/(条/cm) | ≥0.6 | 0.2 ~ 0.6 | <0.2 | |
保存性 | 压力系数/% | ≥0.8 | 0.6 ~ 0.8 | <0.6 |
顶板厚度/m | ≥6(灰岩或泥岩) | 2 ~ 6(灰岩或泥岩) | <2(灰岩或泥岩) | |
构造复杂程度 | 构造稳定区 | 构造较稳定区 | 构造复杂区 | |
水动力条件 | 滞留区 | 弱径流区 | 强径流区 | |
含气性 | 总含气量/(m3/t) | ≥12 | 4 ~ 12 | <4 |
游离气占比/% | ≥20 | 10 ~ 20 | <10 | |
可压性 | 煤体结构 | 原生结构 | 碎裂-碎粒结构 | 糜棱结构 |
地应力/MPa | ≤80 | 80 ~ 100 | >100 | |
垂向应力差/MPa | ≥8 | 4 ~ 8 | <4 | |
水平应力差异系数 | ≤0.2 | 0.2 ~ 0.3 | >0.3 |
1 | 徐凤银, 聂志宏, 孙伟, 等. 鄂尔多斯盆地东缘深部煤层气高效开发理论技术体系[J]. 煤炭学报, 2024, 49(1): 528-544. |
XU Fengyin, NIE Zhihong, SUN Wei, et al. Theoretical and technological system for Highly efficient development of deep coalbed methane in the eastern edge of Ordos Basin[J]. Journal of China Coal Society, 2024, 49(1): 528-544. | |
2 | 张群, 降文萍, 姜在炳, 等. 我国煤矿区煤层气地面开发现状及技术研究进展[J]. 煤田地质与勘探, 2023, 51(1): 139-158. |
ZHANG Qun, JIANG Wenping, JIANG Zaibing, et al. Present situation and technical research progress of coalbed methane surface development in coal mining areas of China[J]. Coal Geology & Exploration, 2023, 51(1): 139-158. | |
3 | 张宇, 赵培荣, 刘士林, 等. 中国石化 “十四五” 主要勘探进展与发展战略[J]. 中国石油勘探, 2024, 29(1): 14-31. |
ZHANG Yu, ZHAO Peirong, LIU Shilin, et al. Main exploration progress and development strategy of Sinopec during the 14th Five-Year Plan period[J]. China Petroleum Exploration, 2024, 29(1): 14-31. | |
4 | 张道勇, 朱杰, 赵先良, 等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报, 2018, 43(6): 1598-1604. |
ZHANG Daoyong, ZHU Jie, ZHAO Xianliang, et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society, 2018, 43(6): 1598-1604. | |
5 | 秦勇, 申建, 史锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报, 2022, 47(1): 371-387. |
QIN Yong, SHEN Jian, SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society, 2022, 47(1): 371-387. | |
6 | 毛新军, 李艳平, 梁则亮, 等. 准噶尔盆地侏罗系煤岩气成藏条件及勘探潜力[J]. 中国石油勘探, 2024, 29(4): 31-43. |
MAO Xinjun, LI Yanping, LIANG Zeliang, et al. Hydrocarbon accumulation conditions and exploration potential of the Jurassic coal measure gas in Junggar Basin[J]. China Petroleum Exploration, 2024, 29(4): 31-43.. | |
7 | 郭旭升, 周德华, 赵培荣, 等. 鄂尔多斯盆地石炭系-二叠系煤系非常规天然气勘探开发进展与攻关方向[J]. 石油与天然气地质, 2022, 43(5): 1013-1023. |
GUO Xusheng, ZHOU Dehua, ZHAO Peirong, et al. Progresses and directions of unconventional natural gas exploration and development in the Carboniferous-Permian coal measure strata, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(5): 1013-1023. | |
8 | 周德华, 陈刚, 陈贞龙, 等. 中国深层煤层气勘探开发进展、关键评价参数与前景展望[J]. 天然气工业, 2022, 42(6): 43-51. |
ZHOU Dehua, CHEN Gang, CHEN Zhenlong, et al. Exploration and development progress, key evaluation parameters and prospect of deep CBM in China[J]. Natural Gas Industry, 2022, 42(6): 43-51. | |
9 | 刘建忠, 朱光辉, 刘彦成, 等. 鄂尔多斯盆地东缘深部煤层气勘探突破及未来面临的挑战与对策——以临兴—神府区块为例[J]. 石油学报, 2023, 44(11): 1827-1839. |
LIU Jianzhong, ZHU Guanghui, LIU Yancheng, et al. Breakthrough, future challenges and countermeasures of deep coalbed methane in the eastern margin of Ordos Basin: A case study of Linxing-Shenfu block[J]. Acta Petrolei Sinica, 2023, 44(11): 1827-1839. | |
10 | 徐凤银, 侯伟, 熊先钺, 等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发, 2023, 50(4): 669-682. |
XU Fengyin, HOU Wei, XIONG Xianyue, et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development, 2023, 50(4): 669-682. | |
11 | 明盈, 孙豪飞, 汤达祯, 等. 四川盆地上二叠统龙潭组深-超深部煤层气资源开发潜力[J]. 煤田地质与勘探, 2024, 52(2): 102-112. |
MING Ying, SUN Haofei, TANG Dazhen, et al. Potential for the production of deep to ultradeep coalbed methane resources in the Upper Permian Longtan Formation, Sichuan Basin[J]. Coal Geology & Exploration, 2024, 52(2): 102-112. | |
12 | 国家能源局. 国家能源局2024年一季度新闻发布会文字实录[EB/OL]. (2024-01-25)[2024-01-25]. . |
National Energy Administration. Text transcript of the press conference of the National Energy Administration for the first quarter of 2024[EB/OL]. (2024-01-25)[2024-01-25]. . | |
13 | MOORE T A. Coalbed methane: A review[J]. International Journal of Coal Geology, 2012, 101: 36-81. |
14 | MILICI R C, HATCH J R, PAWLEWICZ M J. Coalbed methane resources of the Appalachian basin, eastern USA[J]. International Journal of Coal Geology, 2010, 82(3/4): 160-174. |
15 | SALMACHI A, RAJABI M, WAINMAN C, et al. History, geology, in situ stress pattern, gas content and permeability of coal seam gas basins in Australia: A review[J]. Energies, 2021, 14(9): 2651. |
16 | 邹才能, 翟光明, 张光亚, 等. 全球常规-非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发, 2015, 42(1): 13-25. |
ZOU Caineng, ZHAI Guangming, ZHANG Guangya, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1): 13-25. | |
17 | 孙钦平, 赵群, 姜馨淳, 等. 新形势下中国煤层气勘探开发前景与对策思考[J]. 煤炭学报, 2021, 46(1): 65-76. |
SUN Qinping, ZHAO Qun, JIANG Xinchun, et al. Prospects and strategies of CBM exploration and development in China under the new situation[J]. Journal of China Coal Society, 2021, 46(1): 65-76. | |
18 | 秦勇. 中国煤层气产业化面临的形势与挑战(Ⅰ)——当前所处的发展阶段[J]. 天然气工业, 2006, 26(1): 4-7. |
QIN Yong. Situations and challenges for coalbed methane industrialization in China (Ⅰ)—At the current stage of growing period[J]. Natural Gas Industry, 2006, 26(1): 4-7. | |
19 | 秦勇, 申建, 沈玉林, 等. 苏拉特盆地煤系气高产地质原因及启示[J]. 石油学报, 2019, 40(10): 1147-1157. |
QIN Yong, SHEN Jian, SHEN Yulin, et al. Geological causes and inspirations for high production of coal measure gas in Surat Basin[J]. Acta Petrolei Sinica, 2019, 40(10): 1147-1157. | |
20 | SHARMA R, SINGH S, ANAND S, et al. A review of coal bed methane production techniques and prospects in India[J/OL]. Materials Today: Proceedings: 1-15[2024-01-25]. . |
21 | 郭广山, 柳迎红, 吕玉民. 中国深部煤层气勘探开发前景初探[J]. 洁净煤技术, 2015, 21(1): 125-128. |
GUO Guangshan, LIU Yinghong, Yumin LYU. Preliminary exploration and development prospects on deep coalbed methane in China[J]. Clean Coal Technology, 2015, 21(1): 125-128. | |
22 | LANGENBERG C W, BEATON A, BERHANE H. Regional evaluation of the coalbed-methane potential of the Foothills/Mountains of Alberta, Canada[J]. International Journal of Coal Geology, 2006, 65(1/2): 114-128. |
23 | CAMAC B A, BENSON J, CHAN V, et al. Cooper basin deep coal-the new unconventional paradigm: Deepest producing coals in Australia[J]. ASEG Extended Abstracts, 2018, 2018(1): 1-7. |
24 | 吴裕根, 门相勇, 娄钰. 我国 “十四五” 煤层气勘探开发新进展与前景展望[J]. 中国石油勘探, 2024, 29(1): 1-13. |
WU Yugen, Xiangyong MEN, LOU Yu. New progress and prospect of coalbed methane exploration and development in China during the 14th Five-Year Plan period[J]. China Petroleum Exploration, 2024, 29(1): 1-13. | |
25 | 伏海蛟. 准噶尔盆地南缘中段煤层气富集成藏机制及有利区预测[D]. 北京: 中国地质大学(北京), 2017. |
FU Haijiao. CBM enrichment-accumulation mechanism and target zone prediction in the middle of the southern Junggar Basin[D]. Beijing: China University of Geosciences(Beijing), 2017. | |
26 | 石彦强, 石雅锟. 地史植物主导净积聚煤[J/OL]. 煤炭科学技术: 1-17[2024-01-25]. . |
SHI Yanqiang, SHI Yakun. Geological history plants dominated the net accumulation of coal[J/OL]. Coal Science and Technology: 1-17[2024-01-25]. . | |
27 | 邵龙义, 徐小涛, 王帅, 等. 中国含煤岩系古地理及古环境演化研究进展[J]. 古地理学报, 2021, 23(1): 19-38. |
SHAO Longyi, XU Xiaotao, WANG Shuai, et al. Research progress of palaeogeography and palaeoenvironmental evolution of coal-bearing series in China[J]. Journal of Palaeogeography(Chinese Edition), 2021, 23(1): 19-38. | |
28 | 刘炳强, 王敏, 王东东, 等. 巨厚煤层物质组成特征与成因机制——以柴北缘鱼卡地区中侏罗统为例[J]. 煤炭科学技术, 2024, 52(5): 176-190. |
LIU Bingqiang, WANG Min, WANG Dongdong, et al. Composition characteristics and genetic mechanism of ultra thick coal seams: A case study of Middle Jurassic in Yuqia area, northern Qaidam Basin[J]. Coal Science and Technology, 2024, 52(5): 176-190. | |
29 | 常嘉, 陈世悦, 王琼, 等. 陆表海背景下障壁海岸体系沉积层序及聚煤模式——以渤海湾地区晚古生代太原组为例[J]. 煤田地质与勘探, 2021, 49(4): 123-133. |
CHANG Jia, CHEN Shiyue, WANG Qiong, et al. Sequence stratigraphy and coal accumulation of barrier coastal system under epi-continental-sea environment: A case study of the Late Paleozoic Taiyuan Formation in Bohai Bay area[J]. Coal Geology & Exploration, 2021, 49(4): 123-133. | |
30 | 刘晓艳, 王子文, 庞雄奇. 褐煤前阶段煤气发生率数值模拟[J]. 石油勘探与开发, 1996, 23(2): 5-7. |
LIU Xiaoyan, WANG ZI Wen, PANG Xiongqi. Numerical simulation of coal-formed gas generating rate for lignite and its geological significance[J]. Petroleum Exploration and Development, 1996, 23(2): 5-7. | |
31 | 庞雄奇, 陈章明, 方祖康. 煤气发生率的数学模拟计算[J]. 大庆石油学院学报, 1985, 9(1): 52-67. |
PANG Xiongqi, CHEN Zhangming, FANG Zukang. Mathematical simulation calculation of coal gas generation rate[J]. Journal of Daqing Petroleum Institute, 1985, 9(1): 52-67. | |
32 | 何发岐, 董昭雄. 深部煤层气资源开发潜力——以鄂尔多斯盆地大牛地气田为例[J]. 石油与天然气地质, 2022, 43(2): 277-285. |
HE Faqi, DONG Zhaoxiong. Development potential of deep coalbed methane: A case study in the Daniudi Gas Field, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(2): 277-285. | |
33 | 吴云龙, 刘洛夫, 尚晓庆, 等. 准噶尔盆地白家海凸起三工河组储层流体包裹体特征与成藏时间[J]. 科学技术与工程, 2014, 14(17): 32-39. |
WU Yunlong, LIU Luofu, SHANG Xiaoqing, et al. Hydrocarbon accumulation orders and periods by fluid inclusion characteristics in sandstone reservoir of Sangonghe Formation of Baijiahai swell, Junggar Basin[J]. Science Technology and Engineering, 2014, 14(17): 32-39. | |
34 | 张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报, 2001, 26(1): 40-44. |
ZHANG Hui. Genetical type of proes in coal reservoir and its research significance[J]. Journal of China Coal Society, 2001, 26(1): 40-44. | |
35 | 韩德馨, 任德贻, 王延斌, 等. 中国煤岩学[M]. 徐州: 中国矿业大学出版社, 1996. |
HAN Dexin, REN Deyi, WANG Tingbin, et al. China coal petrology[M]. Xuzhou: China University of Mining and Technology Press, 1996. | |
36 | 郭旭升, 胡宗全, 李双建, 等. 深层—超深层天然气勘探研究进展与展望[J]. 石油科学通报, 2023, 8(4): 461-474. |
GUO Xusheng, HU Zongquan, LI Shuangjian, et al. Progress and prospect of natural gas exploration and research in deep and ultra-deep strata[J]. Petroleum Science Bulletin, 2023, 8(4): 461-474. | |
37 | HU Biao, CHENG Yuanping, PAN Zhejun. Classification methods of pore structures in coal: A review and new insight[J]. Gas Science and Engineering, 2023, 110: 204876. |
38 | 徐凤银, 闫霞, 李曙光, 等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探, 2023, 51(1): 115-130. |
XU Fengyin, YAN Xia, LI Shuguang, et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration, 2023, 51(1): 115-130. | |
39 | 赵喆, 徐旺林, 赵振宇, 等. 鄂尔多斯盆地石炭系本溪组煤岩气地质特征与勘探突破[J]. 石油勘探与开发, 2024, 51(2): 234-247, 259. |
ZHAO Zhe, XU Wanglin, ZHAO Zhenyu, et al. Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2024, 51(2): 234-247, 259. | |
40 | 张晓晴, 康玉国, 孙斌, 等. 勃利盆地七台河断陷煤层气富集特征及有利区优选[J]. 吉林大学学报(地球科学版), 2023, 53(4): 1033-1047. |
ZHANG Xiaoqing, KANG Yuguo, SUN Bin, et al. Enrichment Characteristics of Coalbed Methane and Optimization of Favorable Areas in Qitaihe Fault Depression, Boli Basin[J].Journal of Jilin University (Earth Science dition), 2023, 53(4): 1033-1047. | |
41 | 孙斌, 杨敏芳, 杨青, 等. 准噶尔盆地深部煤层气赋存状态分析[J]. 煤炭学报, 2017, 42(S1): 195-202. |
SUN Bin, YANG Minfang, YANG Qing, et al. Analysis on occurrence state of deep coalbed methane in Junggar basin[J]. Journal of China Coal Society, 2017, 42(S1): 195-202. | |
42 | 聂志宏, 时小松, 孙伟, 等. 大宁-吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探, 2022, 50(3): 193-200. |
NIE Zhihong, SHI Xiaosong, SUN Wei, et al. Production characteristics of deep coalbed methane gas reservoirs in Daning-Jixian Block and its development technology countermeasures[J]. Coal Geology & Exploration, 2022, 50(3): 193-200. | |
43 | 王成旺, 甄怀宾, 陈高杰, 等. 大宁—吉县区块深部8号煤储层特征及可压裂性评价[J]. 中国煤炭地质, 2022, 34(2): 1-5. |
WANG Chengwang, ZHEN Huaibin, CHEN Gaojie, et al. Assessment of coal No.8 reservoir features and fracturability in Da’ning-Jixian block deep part[J]. Coal Geology of China, 2022, 34(2): 1-5. | |
44 | 孙晗森. 我国煤层气压裂技术发展现状与展望[J]. 中国海上油气, 2021, 33(4): 120-128. |
SUN Hansen. Development status and prospect of CBM fracturing technology in China[J]. China Offshore Oil and Gas, 2021, 33(4): 120-128. | |
45 | 邱峰, 刘晋华, 蔡益栋, 等. 基于测井的煤层力学特性评价及煤层气开发有利区预测——以沁南郑庄区块3号煤层为例[J]. 煤田地质与勘探, 2023, 51(4): 46-56. |
QIU Feng, LIU Jinhua, CAI Yidong, et al. Mechanical property evaluation of coal bed and favorable area prediction of coalbed methane (CBM) development based on well logging: A case study of No. 3 coal bed in Zhengzhuang Block, southern Qinshui Basin[J]. Coal Geology & Exploration, 2023, 51(4): 46-56. | |
46 | 钱玉萍. 煤层可压性评价方法研究及应用[J]. 海洋石油, 2022, 42(1): 55-58. |
QIAN Yuping. Study and application of evaluation methods for the fracability in coal reservoirs[J]. Offshore Oil, 2022, 42(1): 55-58. | |
47 | 郭大立, 张书玲, 王璇, 等. 基于动态权函数的煤层可压性综合评价[J]. 西南石油大学学报(自然科学版), 2022, 44(2): 97-104. |
GUO Dali, ZHANG Shuling, WANG Xuan, et al. Comprehensive evaluation of coalbed fracability based on dynamic weight function[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(2): 97-104. | |
48 | LI Song, QIN Yong, TANG Dazhen, et al. A comprehensive review of deep coalbed methane and recent developments in China[J]. International Journal of Coal Geology, 2023, 279: 104369. |
49 | 杨永杰, 宋扬, 陈绍杰. 三轴压缩煤岩强度及变形特征的试验研究[J]. 煤炭学报, 2006, 31(2): 150-153. |
YANG Yongjie, SONG Yang, CHEN Shaojie. Test study of coal’s strength and deformation characteristics under triaxial compression[J]. Journal of China Coal Society, 2006, 31(2): 150-153. | |
50 | 高向东, 王延斌, 倪小明, 等. 临兴地区深部煤岩力学性质及其对煤储层压裂的影响[J]. 煤炭学报, 2020, 45(): 912-921. |
GAO Xiangdong, WANG Yanbin, NI Xiaoming, et al. Mechanical properties of deep coal and rock in Linxing area and its influences on fracturing of deep coal reservoir[J]. Journal of China Coal Society, 2020, 45(S2): 912-921. | |
51 | 郝宪杰, 刘继山, 魏英楠, 等. 2000m超深煤系储层力学及声发射特征的围压效应[J]. 中南大学学报(自然科学版), 2021, 52(8): 2611-2621. |
HAO Xianjie, LIU Jishan, WEI Yingnan, et al. Effects of confining pressure on mechanical responses and acoustic characteristics of coal gas seams deeper than 2000m[J]. Journal of Central South University (Science and Technology), 2021, 52(8): 2611-2621. | |
52 | 徐凤银, 王成旺, 熊先钺, 等. 鄂尔多斯盆地东缘深部煤层气成藏演化规律与勘探开发实践[J]. 石油学报, 2023, 44(11): 1764-1780. |
XU Fengyin, WANG Chengwang, XIONG Xianyue, et al. Evolution law of deep coalbed methane reservoir formation and exploration and development practice in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica, 2023, 44(11): 1764-1780. |
[1] | 赵石虎, 刘曾勤, 申宝剑, 罗兵, 陈刚, 陈新军, 张嘉琪, 万俊雨, 刘子驿, 刘友祥. 鄂尔多斯盆地东北部斜坡区深层煤层气地质特征与勘探潜力[J]. 石油与天然气地质, 2024, 45(6): 1628-1639. |
[2] | 李亚辉. 鄂尔多斯盆地大牛地气田深层中煤阶煤层气勘探实践及产能新突破[J]. 石油与天然气地质, 2024, 45(6): 1555-1566. |
[3] | 何发岐, 董昭雄. 深部煤层气资源开发潜力[J]. 石油与天然气地质, 2022, 43(2): 277-285. |
[4] | 庞小婷, 陈国辉, 许晨曦, 佟茂胜, 倪彬午, 包汉勇. 涪陵地区五峰组-龙马溪组页岩吸附-游离气定量评价及相互转化[J]. 石油与天然气地质, 2019, 40(6): 1247-1258. |
[5] | 杨金秀, Richard Davies, 肖佃师, 苗秀青, 张亚念. BSR及其下伏游离气区的分布特征与控制因素[J]. 石油与天然气地质, 2016, 37(1): 87-92. |
[6] | 薛冰, 张金川, 杨超, 张鹏, 裴松伟. 页岩含气量理论图版[J]. 石油与天然气地质, 2015, 36(2): 339-346. |
[7] | 谢晓安, 周卓明. 松辽盆地深层天然气勘探实践与勘探领域[J]. 石油与天然气地质, 2008, 29(1): 113-119. |
[8] | 邱荣华, 付代国, 万力. 泌阳凹陷南部陡坡带油气勘探实例分析[J]. 石油与天然气地质, 2007, 28(5): 605-609. |
[9] | 鲁国明, 刘魁元. 济阳坳陷高凸起斜坡带新近系油气成藏与勘探实践[J]. 石油与天然气地质, 2006, 27(2): 258-262. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||