石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (6): 1686-1704.doi: 10.11743/ogg20240615

• 油气地质 • 上一篇    下一篇

深部煤-岩组合体力学特征及裂隙扩展规律

蔡益栋1,2(), 李倩3(), 肖帆1,2, 刘大锰1,2, 邱峰1,2   

  1. 1.中国地质大学(北京) 能源学院,北京 100083
    2.非常规天然气地质评价与开发北京市重点实验室,北京 100083
    3.中国石化 石油勘探开发研究院,北京 102206
  • 收稿日期:2024-07-08 修回日期:2024-10-16 出版日期:2024-12-30 发布日期:2024-12-31
  • 通讯作者: 李倩 E-mail:yidong.cai@cugb.edu.cn;liqian2022.syky@sinopec.com
  • 第一作者简介:蔡益栋(1985—), 男, 博士研究生导师、教授, 煤层气地质与开发。E‑mail: yidong.cai@cugb.edu.cn
  • 基金项目:
    国家自然科学基金项目(42130806)

Mechanical characteristics and fracture propagation patterns of deep coal-rock assemblages: A case study of the Wuxiang block, Qinshui Basin

Yidong CAI1,2(), Qian LI3(), Fan XIAO1,2, Dameng LIU1,2, Feng QIU1,2   

  1. 1.School of Energy Resources,China University of Geosciences (Beijing),Beijing 100083,China
    2.Beijing Key Laboratory of Unconventional Natural Gas Geological Evaluation and Development Engineering,Beijing 100083,China
    3.Petroleum Exploration and Production Research Institute,SINOPEC,Beijing 102206,China
  • Received:2024-07-08 Revised:2024-10-16 Online:2024-12-30 Published:2024-12-31
  • Contact: Qian LI E-mail:yidong.cai@cugb.edu.cn;liqian2022.syky@sinopec.com

摘要:

煤层及其顶、底板的岩石力学性质是影响煤储层压裂、起裂和裂缝延伸的关键因素,制约深部煤层气的规模效益开发。为研究煤-岩组合体破裂过程中的力学特征及其裂隙扩展行为,根据声发射信号监测,开展了沁水盆地中、东部武乡区块煤-岩组合体的单轴压缩实验和有限元数值模拟计算,研究了煤-岩组合体中不同厚度比、不同岩性类别和不同交界面倾角对组合体抗压强度、弹性模量、声发射信号特征和破裂特征的影响规律,探究不同组合配置下的裂缝扩展行为。研究结果表明:①煤-岩组合体的抗压强度和弹性模量随煤-岩厚度比和煤-岩交界面接触倾角的增大而减小,不同岩性的组合体弹性模量介于1.75 ~ 5.44 GPa,抗压强度为11.20 ~ 20.60 MPa,其中煤岩-泥页岩组合体力学性质最弱,煤岩-砂岩组合体最强。②煤-岩厚度比增大会加剧组合体的破坏程度和裂隙数量,当煤-岩厚度比达到一定程度时,煤体发生破裂后能量会继续扩散到邻层,使整个组合体破碎。在不同岩性的组合体中,破坏难易程度为煤岩-砂岩组合>煤岩-灰岩组合>煤岩-泥页岩组合。随着煤-岩组合体交界面接触倾角增大,整体更容易被破坏失稳、产生裂隙。③随着组合体中煤岩厚度增大,发育的裂缝由张性裂隙演变为X型剪切裂隙,且由只在煤岩内部扩展逐渐过渡到整个组合体。不同岩性组合体的力学强度愈大,其裂隙越倾向于从X型剪切裂隙演变为张性裂隙,展布范围由整个组合体变为局限于煤岩内部。煤-岩交界面接触倾角的增大使组合体内部的X型剪切裂隙尺度相应增加,加剧破坏程度。

关键词: 单轴压缩实验, 声发射信号监测, 力学行为, 数值模拟, 裂隙扩展, 煤-岩组合体, 武乡区块, 沁水盆地

Abstract:

The rock mechanical properties of coal seams and their roofs and floors are critical factors influencing the initial cracking and fracture propagation of coal reservoirs during fracturing. However, a limited understanding of these properties has constrained the large-scale commercial production of deep coalbed methane (CBM). This study aims to investigate the mechanical characteristics and fracture propagation patterns of coal-rock assemblages during fracturing. Based on the acoustic emission signals monitored, we perform uniaxial compressive stress tests and finite element analysis (FEA) on coal-rock assemblages from the Wuxiang block in the east-central Qinshui Basin, with the impacts of different coal/rock thickness ratios, lithologies, and coal-rock interfacial angles on the compressive strength, elastic modulus, features of acoustic emission signals, and breakup characteristics of the coal-rock assemblages delved into. Additionally, we explore the fracture propagation behavior under varying coal-rock configurations. The results indicate that the compressive strength and elastic modulus of the coal-rock assemblages decrease with an increase in the coal-rock ratio in thickness and the coal-rock interfacial angle. The coal-rock assemblages with varying lithologies exhibit elastic modulus and compressive strength ranging from 1.75 to 5.44 GPa and from 11.20 to 20.60 MPa, respectively, with the coal-argillaceous shale and coal-sandstone assemblages displaying the weakest and strongest mechanical properties, respectively. A higher coal-rock thickness ratio tends to exacerbate the breakup of the coal-rock assemblages and results in more fractures within. At a given coal-rock ratio in thickness, the energy released from coal fracturing would continue to diffuse to adjacent layers, culminating in the breakup of the whole coal-rock assemblage. The susceptibility to failure among the various coal-rock assemblages decreases in the order of coal-sandstone, coal-limestone, and coal-argillaceous shale assemblages. The coal-rock assemblages are increasingly prone to failure, instability, and fracturing as the interfacial angle increases. As the coal thickness increases, fractures in the coal-rock assemblages evolve from tensile fissures to X-shaped shear fissures while gradually propagating from within coals to the entire assemblages. In contrast, with an increase in the mechanical strength of the coal-rock assemblages of diverse lithologies, fractures in the assemblages tend to evolve from X-shaped shear fissures to tensile fissures, with the propagation range shrinking from the entire assemblages to within coals. Besides, an increase in the interfacial angle between coals and rocks in the coal-rock assemblages leads to larger X-shaped shear fissures within, exacerbating the assemblage failure.

Key words: uniaxial compressive stress test, acoustic emission signal monitoring, mechanical behavior, numerical simulation, fracture propagation, coal-rock assemblage, Wuxiang block, Qinshui Basin

中图分类号: