石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (1): 178-185.doi: 10.11743/ogg20230114
许汇源1,2(), 刘全有1,3, 朱东亚1,2, 孟庆强1,2, 金之钧1,2,3
收稿日期:
2022-05-25
修回日期:
2022-10-12
出版日期:
2023-01-14
发布日期:
2023-01-13
第一作者简介:
许汇源(1989―),男,博士、副研究员,油气地球化学。E?mail: 基金项目:
Huiyuan XU1,2(), Quanyou LIU1,3, Dongya ZHU1,2, Qingqiang MENG1,2, Zhijun JIN1,2,3
Received:
2022-05-25
Revised:
2022-10-12
Online:
2023-01-14
Published:
2023-01-13
摘要:
中国南方盆地深部热液流体活跃区分布广泛,热液流体类型各有不同,滇西北兰坪地区幔源铅锌热液成矿流体尤为显著,形成了典型的超大型陆相沉积浅成矿床,其中古油气藏遗迹明显,深部铅锌热液流体活动对生烃及油藏热蚀变的影响显著。通过分析热蚀变后铅锌矿中伴生原油及固体沥青中生物标志物、烃类及杂环化合物的地球化学特征,发现随着深部热液流体作用增强,生物标志物(如正构烷烃、甾烷、藿烷等)相对含量逐渐降低,未分离复杂混合物(UCM)相对含量逐渐增加,弱偶碳数优势明显(CPI ≤ 1.0),多环芳烃(PAHs)相对含量逐渐降低,而链状苯基化合物(如联苯)与含S化合物(如噻吩类)相对含量逐渐增加。样品不存在明显的生物降解、蒸发分馏、硫酸盐热化学还原(TSR)及原油裂解等次生作用。兰坪地区铅锌矿中伴生原油和沥青的分子地球化学特征及其特殊的变化规律,可能是由于沉积有机质或古油藏与富催化剂的幔源铅锌热液流体发生热液催化反应导致的。本研究揭示了深部热液流体作用和分子地球化学特征的耦合关系,识别并提出了热液流体作用下杂环化合物形成的机制和原油热蚀变的指标。
中图分类号:
1 | SIMONEIT B R T. Hydrothermal petroleum[M]//Wilkes H. Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Cham: Springer, 2018: 1-35. |
2 | MCCOLLOM T M, SEEWALD J S, GERMAN C R. Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 2015, 156: 122-144. |
3 | HAWKES J A, HANSEN C T, GOLDHAMMER T, et al. Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions[J]. Geochimica et Cosmochimica Acta, 2016, 175: 68-85. |
4 | SIMONEIT B R T, LEIN A Y, PERESYPKIN V I, et al. Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow field (Mid-Atlantic Ridge at 36°N)[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2275-2294. |
5 | CLIFTON C G, WALTERS C C, SIMONEIT B R T. Hydrothermal petroleums from Yellowstone National Park, Wyoming, U.S.A.[J]. Applied Geochemistry, 1990, 5(1/2): 169-191. |
6 | SANDER S G, KOSCHINSKY A. Metal flux from hydrothermal vents increased by organic complexation[J]. Nature Geoscience, 2011, 4(3): 145-150. |
7 | SEEWALD J S. Evidence for metastable equilibrium between hydrocarbons under hydrothermal conditions[J]. Nature, 1994, 370(6487): 285-287. |
8 | MCCOLLOM T M, SEEWALD J S, SIMONEIT B R T. Reactivity of monocyclic aromatic compounds under hydrothermal conditions[J]. Geochimica et Cosmochimica Acta, 2001, 65(3): 455-468. |
9 | YAMANAKA T, ISHIBASHI J, HASHIMOTO J. Organic geochemistry of hydrothermal petroleum generated in the submarine Wakamiko caldera, southern Kyushu, Japan[J]. Organic Geochemistry, 2000, 31(11): 1117-1132. |
10 | VENKATESAN M I, RUTH E, RAO P S, et al. Hydrothermal petroleum in the sediments of the Andaman Backarc Basin, Indian Ocean[J]. Applied Geochemistry, 2003, 18(6): 845-861. |
11 | ZÁRATE-DEL VALLE P F, SIMONEIT B R T. Hydrothermal bitumen generated from sedimentary organic matter of rift lakes-Lake Chapala, Citala Rift, western Mexico[J]. Applied Geochemistry, 2005, 20(12): 2343-2350. |
12 | SIMONEIT B R, ABOUL-KASSIM T A, TIERCELIN J J. Hydrothermal petroleum from lacustrine sedimentary organic matter in the East African Rift[J]. Applied Geochemistry, 2000, 15(3): 355-368. |
13 | SUN Yuzhuang, PÜTTMANN W. Oxidation of organic matter in the transition zone of the Zechstein Kupferschiefer from the Sangerhausen Basin, Germany[J]. Energy & Fuels, 2001, 15(4): 817-829. |
14 | WANG Guangli, CHANG Xiangchun, WANG T G, et al. Pregnanes as molecular indicators for depositional environments of sediments and petroleum source rocks[J]. Organic Geochemistry, 2015, 78: 110-120. |
15 | SIMONEIT B R T. Hydrothermal alteration of organic matter in marine and terrestrial systems[M]//Engel M H, Macko S A. Organic Geochemistry: Principles and Applications. Boston: Springer, 1993: 397-418. |
16 | MARTIN W, BAROSS J, KELLEY D, et al. Hydrothermal vents and the origin of life[J]. Nature Reviews Microbiology, 2008, 6(11): 805-814. |
17 | ZHU Dongya, LIU Quanyou, MENG Qingqiang, et al. Enhanced effects of large-scale CO2 transportation on oil accumulation in oil-gas-bearing basins—Implications from supercritical CO2 extraction of source rocks and a typical case study[J]. Marine and Petroleum Geology, 2018, 92: 493-504. |
18 | ZHU Dongya, LIU Quanyou, JIN Zhijun, et al. Effects of deep fluids on hydrocarbon generation and accumulation in Chinese petroliferous basins[J]. Acta Geologica Sinica(English Edition), 2017, 91(1): 301-319. |
19 | LIU Quanyou, ZHU Dongya, JIN Zhijun, et al. Effects of deep CO2 on petroleum and thermal alteration: The case of the Huangqiao oil and gas field[J]. Chemical Geology, 2017, 469: 214-229. |
20 | 朱东亚, 孟庆强, 解启来, 等. 云南腾冲热液发育模式及其对塔里木盆地热液溶蚀改造的启示[J]. 石油与天然气地质, 2010, 31(3): 327-334. |
ZHU Dongya, MENG Qingqiang, XIE Qilai, et al. Development pattern of hydrothermal fluids in Tengchong, Yunnan Province and its implications for hydrothermal dissolution in the Tarim Basin[J]. Oil & Gas Geology, 2010, 31(3): 327-334. | |
21 | 张治波, 朱志军, 王文锋, 等. 滇西兰坪盆地中—新生代蒸发岩元素地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2019, 49(2): 356-379. |
ZHANG Zhibo, ZHU Zhijun, WANG Wenfeng, et al. Geochemical characteristics and formation environment of Mesozoic and Cenozoic evaporative rocks in Lanping Basin, western Yunnan[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 356-379. | |
22 | 薛春纪, 高永宝, Chi Guoxiang, 等. 滇西北兰坪金顶可能的古油气藏及对铅锌大规模成矿的作用[J]. 地球科学与环境学报, 2009, 31(3): 221-229. |
XUE Chunji, GAO Yongbao, CHI Guoxiang, et al. Possible former oil-gas reservoir in the giant Jinding Pb-Zn deposit, Lanping, NW-Yunnan: The role in the ore accumulation[J]. Journal of Earth Sciences and Environment, 2009, 31(3): 221-229. | |
23 | WILLIFORD K H, GRICE K, LOGAN G A, et al. The molecular and isotopic effects of hydrothermal alteration of organic matter in the Paleoproterozoic McArthur River Pb/Zn/Ag ore deposit[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 382-392. |
24 | CHEN Junhong, WALTER M R, LOGAN G A, et al. The Paleoproterozoic McArthur River (HYC) Pb/Zn/Ag deposit of northern Australia: Organic geochemistry and ore genesis[J]. Earth and Planetary Science Letters, 2003, 210(3/4): 467-479. |
25 | XUE Chunji, ZENG Rong, LIU Shuwen, et al. Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn-Pb deposit, western Yunnan, South China: A review[J]. Ore Geology Reviews, 2007, 31(1/4): 337-359. |
26 | DENG Jun, WANG Changming, BAGAS L, et al. Insights into ore genesis of the Jinding Zn-Pb deposit, Yunnan Province, China: Evidence from Zn and in-situ S isotopes[J]. Ore Geology Reviews, 2017, 90: 943-957. |
27 | TANG Yongyong, BI Xianwu, YIN Runsheng, et al. Concentrations and isotopic variability of mercury in sulfide minerals from the Jinding Zn-Pb deposit, southwest China[J]. Ore Geology Reviews, 2017, 90: 958-969. |
28 | WANG Changming, YANG Lifei, BAGAS L, et al. Mineralization processes at the giant Jinding Zn-Pb deposit, Lanping Basin, Sanjiang Tethys Orogen: Evidence from in situ trace element analysis of pyrite and marcasite[J]. Geological Journal, 2018, 53(4): 1279-1294. |
29 | 高永宝, 薛春纪, 曾荣. 滇西北兰坪金顶铅锌矿床有机物质地球化学[J]. 地球化学, 2008, 37(3): 223-232. |
GAO Yongbao, XUE Chunji, ZENG Rong. Geochemistry of organic matters in the Jinding zinc-lead deposit, Lanping Basin, northwest Yunnan Province[J]. Geochimica, 2008, 37(3): 223-232. | |
30 | 薛春纪, 高永宝, 曾荣, 等. 滇西北兰坪盆地金顶超大型矿床有机岩相学和地球化学[J]. 岩石学报, 2007, 23(11): 2889-2900. |
XUE Chunji, GAO Yongbao, ZENG Rong, et al. Organic petrography and geochemistry of the giant Jinding deposit, Lanping Basin, northwestern Yunnan, China[J]. Acta Petrologica Sinica, 2007, 23(11): 2889-2900. | |
31 | XU Huiyuan, LIU Quanyou, ZHU Dongya, et al. Hydrothermal catalytic conversion and metastable equilibrium of organic compounds in the Jinding Zn/Pb ore deposit[J]. Geochimica et Cosmochimica Acta, 2021, 307: 133-150. |
32 | WALTERS C C, QIAN Kuangnan, WU Chunping, et al. Proto-solid bitumen in petroleum altered by thermochemical sulfate reduction[J]. Organic Geochemistry, 2011, 42(9): 999-1006. |
33 | PÜTTMANN W, MERZ C, SPECZIK S. The secondary oxidation of organic material and its influence on Kupferschiefer mineralization of southwest Poland[J]. Applied Geochemistry, 1989, 4(2): 151-161. |
34 | MARYNOWSKI L, ROSPONDEK M J, MEYER Zu Reckendorf R, et al. Phenyldibenzofurans and phenyldibenzothiophenes in marine sedimentary rocks and hydrothermal petroleum[J]. Organic Geochemistry, 2002, 33(7): 701-714. |
35 | GRAFKA O, MARYNOWSKI L, SIMONEIT B R T. Phenyl derivatives of polycyclic aromatic compounds as indicators of hydrothermal activity in the Silurian black siliceous shales of the Bardzkie mountains, Poland[J]. International Journal of Coal Geology, 2015, 139: 142-151. |
36 | PÜTTMANN W, GOβEL W. The Permian Kupferschiefer of southwest Poland: A geochemical trap for migrating, metal-bearing solutions[J]. Applied Geochemistry, 1990, 5(1/2): 227-235. |
37 | WALTERS C C, WANG F C, QIAN Kuangnan, et al. Petroleum alteration by thermochemical sulfate reduction—A comprehensive molecular study of aromatic hydrocarbons and polar compounds[J]. Geochimica et Cosmochimica Acta, 2015, 153: 37-71. |
38 | ZHANG TONGWEI, ELLIS G S, WANG Kangshi, et al. Effect of hydrocarbon type on thermochemical sulfate reduction[J]. Organic Geochemistry, 2007, 38(6): 897-910. |
39 | WANG GUANGLI, LI NINGXI, GAO Bo, et al. Thermochemical sulfate reduction in fossil Ordovician deposits of the Majiang area: Evidence from a molecular-marker investigation[J]. Chinese Science Bulletin, 2013, 58(28): 3588-3594. |
40 | SHIPP J A, GOULD I R, SHOCK E L, et al. Sphalerite is a geochemical catalyst for carbon-hydrogen bond activation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(32): 11642-11645. |
41 | ASIF M, ALEXANDER R, FAZEELAT T, et al. Geosynthesis of dibenzothiophene and alkyl dibenzothiophenes in crude oils and sediments by carbon catalysis[J]. Organic Geochemistry, 2009, 40(8): 895-901. |
42 | ASIF M, ALEXANDER R, FAZEELAT T, et al. Sedimentary processes for the geosynthesis of heterocyclic aromatic hydrocarbons and fluorenes by surface reactions[J]. Organic Geochemistry, 2010, 41(5): 522-530. |
43 | 刘全有, 朱东亚, 孟庆强, 等. 深部流体及有机-无机相互作用下油气形成的基本内涵[J]. 中国科学: 地球科学, 2019, 49(3): 499-520. |
LIU Quanyou, ZHU Dongya, MENG Qingqiang, et al. The scientific connotation of oil and gas formations under deep fluids and organic-inorganic interaction[J]. Scientia Sinica(Terrae), 2019, 49(3): 499-520. | |
44 | VENTURA G T, SIMONEIT B R T, NELSON R K, et al. The composition, origin and fate of complex mixtures in the maltene fractions of hydrothermal petroleum assessed by comprehensive two-dimensional gas chromatography[J]. Organic Geochemistry, 2012, 45: 48-65. |
45 | 刘佳宜, 刘全有, 朱东亚, 等. 深部 流体对有机质生烃演化过程的影响[J]. 天然气地球科学, 2019, 30(4): 478-492. |
LIU Jiayi, LIU Quanyou, ZHU Dongya, et al. Influences of the deep fluid on organic matter during the hydrocarbon generation and evolution process[J]. Natural Gas Geoscience, 2019, 30(4): 478-492. | |
46 | 金之钧, 杨雷, 曾溅辉, 等. 东营凹陷深部流体活动及其生烃效应初探[J]. 石油勘探与开发, 2002, 29(2): 42-44. |
JIN Zhijun, YANG Lei, ZENG Jianhui, et al. Deep fluid activities and their effects on generation of hydrocarbon in Dongying Depression[J]. Petroleum Exploration and Development, 2002, 29(2): 42-44. | |
47 | 阎丽妮, 杨映涛, 蔡李梅, 等.储层流体特征在天然气运移中的示踪意义探讨[J]. 石油地质与工程, 2021, 35(2): 35-39. |
YAN Lini, YANG Yingtao, CAI Limei, et al. Tracer significance of reservoir fluid characteristics in natural gas migration[J]. Petroleum Geology & Engineering, 2021, 35(2): 35-39. | |
48 | 李平平, 王淳, 邹华耀, 等. 团簇同位素在白云岩化流体恢复中的应用与局限性[J]. 石油与天然气地质, 2021, 42(3): 738-746. |
LI Pingping, WANG Chun, ZOU Huayao, et al. Application of clumped isotopes to restoration of dolomitizing fluids and its limitations[J]. Oil & Gas Geology, 2021, 42(3): 738-746. | |
49 | 袁静, 周涛, 乔俊, 等. 深层砂砾岩中的深部热流体作用及其地质意义——以渤海湾盆地东营凹陷民丰—盐家地区古近系沙河街组四段为例[J]. 石油与天然气地质, 2022, 43(4): 929-942. |
YUAN Jing, ZHOU Tao, QIAO Jun, et al.Deep hydrothermalism of deep coarse-grained siliciclastic rocks and its geological significance: A case study of the 4th member of the Paleogene Shahejie Formation in Minfeng-Yanjia area, Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(4): 929-942. | |
50 | 白龙辉, 柳波, 迟亚奥, 等. 二维核磁共振技术表征页岩所含流体特征的应用[J]. 石油与天然气地质, 2021, 42(6): 1389-1400. |
BAI Longhui, LIU Bo, CHI Yaao, et al. 2D NMR studies of fluids in organic-rich shale from the Qingshankou Formation, Songliao Basin[J]. Oil & Gas Geology, 2021, 42(6): 1389-1400. | |
51 | 徐田武, 张成富, 金爱民, 等. 东濮凹陷北部流体作用与油气运聚[J]. 断块油气田, 2022, 29(2): 152-156. |
XU Tianwu, ZHANG Chengfu, JIN Aimin, et al. Fluid action and hydrocarbon migration and accumulation in the northern part of Dongpu Sag[J]. Fault-Block Oil and Gas Field, 2022, 29(2): 152-156. |
[1] | 刘成林, 丁振刚, 范立勇, 康锐, 洪思婕, 朱玉新, 陈践发, 王海东, 许诺. 鄂尔多斯盆地含氦天然气地球化学特征与富集影响因素[J]. 石油与天然气地质, 2024, 45(2): 384-392. |
[2] | 翟常博, 林良彪, 尤东华, 刘冯斌, 刘思雨. 川西南地区中二叠统茅口组一段沉积微相特征及有机质富集模式[J]. 石油与天然气地质, 2024, 45(2): 440-456. |
[3] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[4] | 侯佳凯, 张志遥, 师生宝, 朱光有. 全二维气相色谱技术在石油地球化学中的应用进展[J]. 石油与天然气地质, 2024, 45(2): 565-580. |
[5] | 高怡文, 郝世彦, 王庆, 王维波, 江绍静, 范庆雄, 陈治军, 周晔. 银额盆地巴北凹陷烃源岩地球化学特征与资源潜力[J]. 石油与天然气地质, 2022, 43(6): 1445-1458. |
[6] | 陈治军, 张春明, 贺永红, 文志刚, 马芳侠, 李渭, 高怡文, 陈义国, 张慧元, 魏东涛. 银额盆地古生界过成熟烃源岩特征及其地球化学意义[J]. 石油与天然气地质, 2022, 43(3): 682-695. |
[7] | 吴小奇, 陈迎宾, 翟常博, 周凌方, 周小进, 杨俊, 王彦青, 宋晓波. 川西坳陷中三叠统雷口坡组沥青地球化学特征及气源示踪[J]. 石油与天然气地质, 2022, 43(2): 407-418. |
[8] | 李天军, 黄志龙, 郭小波, 赵静, 蒋一鸣, 谭思哲. 东海盆地西湖凹陷平北斜坡带平湖组煤系原油地球化学特征与油-源精细对比[J]. 石油与天然气地质, 2022, 43(2): 432-444. |
[9] | 桂亚倩, 朱光有, 阮壮, 曹颖辉, 沈臻欢, 常秋红, 陈郭平, 于炳松. 塔里木盆地塔北隆起寒武系地层水化学特征、成因及矿物溶解-沉淀模拟[J]. 石油与天然气地质, 2022, 43(1): 196-206. |
[10] | 董庆民, 胡忠贵, 陈世悦, 李世临, 蔡家兰, 朱宜新, 张玉颖. 川东北地区长兴组-飞仙关组碳酸盐岩同位素地球化学响应及其地质意义[J]. 石油与天然气地质, 2021, 42(6): 1307-1320. |
[11] | 李美俊, 刘晓强, 韩秋雅, 肖洪, 方镕慧, 何大祥, 高志伟. 分子模拟在油气地球化学中的应用研究进展[J]. 石油与天然气地质, 2021, 42(4): 919-930. |
[12] | 钱一雄, 储呈林, 李曰俊, 张庆珍, 李王鹏, 杨鑫. 新疆若羌县红柳沟新元古界平洼沟组原生白云岩特征、沉积环境及年代厘定[J]. 石油与天然气地质, 2021, 42(3): 570-586. |
[13] | 金晓辉, 张军涛, 孙冬胜, 丁茜, 杨佳奇. 鄂尔多斯盆地南缘上奥陶统平凉组浅钻中古岩溶洞穴的发现及其意义[J]. 石油与天然气地质, 2021, 42(3): 595-603. |
[14] | 郭春涛, 宋海强, 梁洁, 倪玲梅. 塔东地区米兰1井寒武系白云岩成因及其对储层的影响[J]. 石油与天然气地质, 2020, 41(5): 953-964. |
[15] | 曹自成, 路清华, 顾忆, 吴鲜, 尤东华, 朱秀香. 塔里木盆地顺北油气田1号和5号断裂带奥陶系油气藏特征[J]. 石油与天然气地质, 2020, 41(5): 975-984. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||