石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (2): 565-580.doi: 10.11743/ogg20240219
收稿日期:
2023-12-28
修回日期:
2024-03-05
出版日期:
2024-04-30
发布日期:
2024-04-30
第一作者简介:
侯佳凯(1998—),男,博士研究生,矿产普查与勘探专业。E‑mail: geohjk@163.com。
基金项目:
Jiakai HOU1(), Zhiyao ZHANG2, Shengbao SHI3, Guangyou ZHU4
Received:
2023-12-28
Revised:
2024-03-05
Online:
2024-04-30
Published:
2024-04-30
摘要:
石油是一种多组分的复杂有机混合物,在形成、运移过程中较易受到各种物理、化学和生物作用的改造,其中含量极低的化合物或特殊化合物用常规一维气相色谱难以检测确定。因全二维气相色谱技术具有超高的分辨率和灵敏度、较大的峰容量及准确的定性和定量检测结果,可对复杂混合物进行分离与鉴定,从而解决了石油复杂成分的精确定量分析难题。研究结果表明:①全二维气相色谱分别与硫化学发光检测器、电子俘获检测器、氢火焰离子化检测器以及飞行时间质谱仪联用后,在原油馏分烃类组成分析及杂原子化合物分析检测方面的适用范围大、应用效果非常显著;②该技术可用于解析稠油的不可分离混合物成分(UCM)、评价原油裂解程度和判识超深层液态原油保存极限深度、定量评价硫酸盐热化学还原反应(TSR)蚀变强度以及识别原油中痕量分子化合物并进行结构鉴定;③该技术在石油地球化学科学问题研究中发挥了独特优势,今后将在页岩油气勘探以及深层-超深层液态原油运移、成藏保存和次生改造研究中发挥重要作用。
中图分类号:
表1
采用GC-MS 和GC×GC-TOFMS 两台仪器得到的地球化学参数对比(数据来源于文献[48])"
地球化学意义 | 地球化学参数 | 样品号 | |||||
---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | A5 | A6 | ||
成熟度判识 | Ts/Tm/% | 1.63 | 3.39 | 4.64 | 3.25 | 4.08 | 5.60 |
Ts/(Ts+Tm)/% | 0.65 | 0.78 | 2.54 | 6.43 | 2.03 | 2.79 | |
Ts/17α(H)-C30藿烷/% | 1.45 | 1.20 | 4.48 | 4.14 | 1.86 | 4.89 | |
ααα-C29甾烷20S/(20S+20R)/% | 1.03 | 2.72 | 15.12 | 8.01 | 4.71 | 6.56 | |
C29甾烷ββ/(ββ+αα)/% | 2.72 | 2.71 | 1.69 | 1.62 | 4.18 | 0.20 | |
碳优势指数(CPI)/% | 2.53 | 1.51 | 0.78 | 1.73 | 2.41 | 1.65 | |
奇偶优势(OEP)/% | 0.13 | 0.30 | 2.79 | 0.84 | 1.85 | 0.78 | |
MPⅠ/% | 3.17 | 4.27 | 3.07 | 2.01 | 3.07 | 3.44 | |
MPⅡ/% | 2.43 | 2.73 | 4.25 | 4.63 | 3.97 | 4.90 | |
甲基萘比(MNR)/% | 4.92 | 4.56 | 4.30 | 0.49 | 2.66 | 4.51 | |
乙基萘比(ENR)/% | 12.54 | 10.78 | 5.00 | 6.42 | 10.21 | 13.63 | |
二甲基萘比(DNR)/% | 13.53 | 6.87 | 10.13 | 18.39 | 4.03 | 11.12 | |
甲基菲比(MPR)/% | 3.10 | 4.63 | 3.58 | 3.87 | 4.06 | 7.59 | |
甲基菲指数(MPI)/% | 4.54 | 1.10 | 11.84 | 5.09 | 10.73 | 10.70 | |
MDI | — | — | — | — | — | — | |
MAI | — | — | — | — | — | — | |
DMAI | — | — | — | — | — | — | |
沉积环境、 物源判识 | 伽马蜡烷/α,β-藿烷/% | 4.76 | 11.59 | 10.09 | 17.10 | 9.70 | 32.95 |
Pr/Ph/% | 1.52 | 4.90 | 5.44 | 2.87 | 1.51 | 3.53 | |
1, 2, 5-三甲基萘/菲/% | 3.93 | 2.53 | 6.53 | 1.27 | 6.67 | 1.22 | |
二苯并噻吩/菲/% | 1.37 | 1.10 | 1.79 | 2.15 | 2.53 | 1.62 | |
三芳甾烷C28/(C26—C28)/% | 2.96 | 3.14 | 1.51 | 4.68 | 3.66 | 1.90 | |
ααα(20R)甾烷 C28/C29/% | 0.61 | 1.86 | 4.97 | 2.51 | 0.86 | 2.96 |
图6
金刚烷类化合物对于原油裂解程度的指示作用(据文献[72-73]修改)a.塔里木盆地巴楚隆起LS2井奥陶系蓬莱坝组油样在选择离子m/z为136,135下的长链烷基取代金刚烷谱图;b. 塔里木盆地巴楚隆起LS2井奥陶系蓬莱坝组油样在选择离子m/z 为239,240下的一至三笼金刚烷全二维谱图;c,d.分别为塔北隆起FY1井奥陶系鹰山组油样在选择离子m/z为135,136,149,163,177和m/z为188,187,201,215,229下的全二维谱图;e,f.分别为塔北隆起FY102井奥陶系鹰山组油样在选择离子m/z为135,136,149,163,177和m/z为188,187,201,215,229下的全二维谱图"
1 | FRANÇA D, PEREIRA V B, COUTINHO D M, et al. Speciation and quantification of high molecular weight paraffins in Brazilian whole crude oils using high-temperature comprehensive two-dimensional gas chromatography[J]. Fuel, 2018, 234: 1154-1164. |
2 | 魏彩云, 马行陟, 胡国艺, 等. 石油地质气相色谱及气相色谱-质谱实验室比对结果评价[J]. 石油实验地质, 2023, 45(3): 528-536. |
WEI Caiyun, MA Xingzhi, HU Guoyi, et al. Evaluation of laboratory comparison results of GC and GC-MS in petroleum geology industry[J]. Petroleum Geology & Experiment,2 023, 45(3): 528-536. | |
3 | 余晓, 马安来, 李贤庆, 等. 塔里木盆地顺南1井奥陶系原油中乙基桥键金刚烷化合物的二维气相色谱分析[J]. 石油实验地质, 2023, 45(2): 327-337. |
YU Xiao, MA Anlai, LI Xianqing, et al. GC×GC-TOFMS analysis of ethanodiamondoids in Ordovician oil from well SN1, Tarim Basin[J]. Petroleum Geology & Experiment, 2023, 45(2): 327-337. | |
4 | JIN Fuqiang, LIU Peng, CHEN Lei, et al. Study on the thermal stability of the bio-oil components by Py-GC/MS[J]. Energy Reports, 2023, 9(): 280-288. |
5 | MEI Mei, K K (Adry) BISSADA, MALLOY T B, et al. Improved method for simultaneous determination of saturated and aromatic biomarkers, organosulfur compounds and diamondoids in crude oils by GC-MS/MS[J]. Organic Geochemistry, 2018, 116: 35-50. |
6 | FRYSINGER G S, GAINES R B. Separation and identification of petroleum biomarkers by comprehensive two-dimensional gas chromatography[J].Journal of Separation Science, 2001,24(2): 87-96. |
7 | 周光甲. 石油地质实验分析仪器和应用研究[J]. 石油仪器, 1998(6): 1-6, 52. |
ZHOU Guangjia. Research on experimental analytical instruments and applications of petroleum geology[J]. Petroleum Instruments, 1998(6): 1-6, 52. | |
8 | MURRAY J A. Qualitative and quantitative approaches in comprehensive two-dimensional gas chromatography[J]. Journal of Chromatography A, 2012, 1261: 58-68. |
9 | BAHAGHIGHAT H D, FREYE C E, SYNOVEC R E. Recent advances in modulator technology for comprehensive two dimensional gas chromatography[J]. TrAC Trends in Analytical Chemistry, 2019, 113: 379-391. |
10 | BUSHEY M M, JORGENSON J W. Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography of proteins[J]. Analytical Chemistry, 1990, 62(2): 161-167. |
11 | LIU Zaiyou, PHILLIPS J B. Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface[J]. Journal of Chromatographic Science, 1991, 29(6): 227-231. |
12 | POLLO B J, ALEXANDRINO G L, AUGUSTO F, et al. The impact of comprehensive two-dimensional gas chromatography on oil & gas analysis: Recent advances and applications in petroleum industry[J]. TrAC Trends in Analytical Chemistry, 2018, 105: 202-217. |
13 | ZHANG Wanfeng, ZHU Shukui, HE Sheng, et al. Screening of oil sources by using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry and multivariate statistical analysis[J]. Journal of Chromatography A, 2015, 1380: 162-170. |
14 | DIJKMANS T, DJOKIC M R, VAN GEEM K M, et al. Comprehensive compositional analysis of sulfur and nitrogen containing compounds in shale oil using GC×GC-FID/SCD/NCD/TOF-MS[J]. Fuel, 2015, 140: 398-406. |
15 | TRAN T C, LOGAN G A, GROSJEAN E, et al. Use of comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for the characterization of biodegradation and unresolved complex mixtures in petroleum[J]. Geochimica et Cosmochimica Acta, 2010, 74(22): 6468-6484. |
16 | MOURA A K S, RIBEIRO D O, CARMO I S DO, et al. An assay on alkyl aromatic hydrocarbons: unexpected group-type separation of diaromatic hydrocarbons in Cretaceous crude oils from Brazilian Marginal Basin[J]. Energy & Fuels, 2019, 33(2): 691-699. |
17 | ZHANG Zhiyao, WANG Hua, ZHU Guangyou, et al. Phase fractionation and oil mixing as contributors to complex petroleum phase in deep strata: A case study from LG7 block in the Tarim Basin, China[J]. Marine and Petroleum Geology, 2022, 140: 105660. |
18 | ZHANG Zhiyao, ZHANG Yijie, ZHU Guangyou, et al. Variations of diamondoids distributions in petroleum fluids during migration induced phase fractionation: A case study from the Tazhong area, NW China[J]. Journal of Petroleum Science and Engineering, 2019, 179: 1012-1022. |
19 | DALLÜGE J, BEENS J, BRINKMAN U A T. Comprehensive two-dimensional gas chromatography: A powerful and versatile analytical tool[J]. Journal of Chromatography A, 2003, 1000(1/2): 69-108. |
20 | ZHU Guangyou, ZHANG Ying, WANG Meng, et al. Discovery of high-abundance diamondoids and thiadiamondoids and severe TSR alteration of Well ZS1C condensate, Tarim Basin, China[J]. Energy & Fuels, 2018, 32(7): 7383-7392. |
21 | 蒋启贵, 马媛媛, 钱门辉, 等. 石油地质样品全二维色谱与传统色谱技术地化分析比较[J]. 石油实验地质, 2012, 34(3): 303-308. |
JIANG Qigui, MA Yuanyuan, QIAN Menhui, et al. Comparison between comprehensive 2D gas chromatography and conventional gas chromatography in geochemical analysis of petroleum geology[J]. Petroleum Geology and Experiment, 2012, 34(3): 303-308. | |
22 | ÁVILA B M F, AGUIAR A, GOMES A O, et al. Characterization of extra heavy gas oil biomarkers using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry[J]. Organic Geochemistry, 2010, 41(9): 863-866. |
23 | LIANG Zhirong, YU Zhenhong, CHEN Longfei. Quantifying the contributions of diesel fuel and lubricating oil to the SVOC emissions from a diesel engine using GC×GC-ToFMS[J]. Fuel, 2022, 310(Part B): 122409. |
24 | BAI Ling, SMUTS J, SCHENK J, et al. Comparison of GC-VUV, GC-FID, and comprehensive two-dimensional GC-MS for the characterization of weathered and unweathered diesel fuels[J]. Fuel, 2018, 214: 521-527. |
25 | HAMILTON J F, LEWIS A C. Monoaromatic complexity in urban air and gasoline assessed using comprehensive GC and fast GC-TOF/MS[J]. Atmospheric Environment, 2003, 37(5): 589-602. |
26 | 王汇彤, 张水昌, 翁娜, 等. 凝析油全二维气相色谱分析[J]. 石油勘探与开发, 2012, 39(1): 123-128. |
WANG Huitong, ZHANG Shuichang, WENG Na, et al. Analysis of condensate oil by comprehensive two-dimensional gas chromatography[J]. Petroleum Exploration and Development, 2012, 39(1): 123-128. | |
27 | 蒋启贵, 王强, 马媛媛, 等. 全二维色谱飞行时间质谱在石油地质样品分析中的应用[J]. 石油实验地质, 2009, 31(6): 627-632. |
JIANG Qigui, WANG Qiang, MA Yuanyuan, et al. Analysis application of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry in petroleum geology[J]. Petroleum Geology and Experiment, 2009, 31(6): 627-632. | |
28 | KIDA Y, CARR A G, GREEN W H. Cleavage of side chains on thiophenic compounds by supercritical water treatment of crude oil quantified by two-dimensional gas chromatography with sulfur chemiluminescence detection[J]. Energy & Fuels, 2014, 28(10): 6589-6595. |
29 | ZENG Xiaolan, LIN Jun, LIU Jianhua, et al. Speciation distribution of polycyclic aromatic sulfur heterocycles in crude oil[J]. Chinese Journal of Analytical Chemistry, 2006, 34(11): 1546-1551. |
30 | BEHBEHANI H, AL-QALLAF M A, EL-DUSOUQUI O M E. Comparison study for the distribution of organo-sulfur containing compounds of two Kuwaiti crude oil distillates[J]. Petroleum Science and Technology, 2005, 23(3/4): 219-233. |
31 | GÜZEL B, CANLI O. An environmental friendly and stable analytical method for the determination of indicator polychlorinated biphenyls (PCBs) in solid and waste oil samples by gas chromatography-electron capture detector (GC-ECD)[J]. Microchemical Journal, 2022, 178: 107325. |
32 | HAGLUND P, KORYTÁR P, DANIELSSON C, et al. GC×GC-ECD: A promising method for the determination of dioxins and dioxin-like PCBs in food and feed[J]. Analytical and Bioanalytical Chemistry, 2008, 390(7): 1815-1827. |
33 | LI Aimin, HUANG Xiaolan, YAN Ling, et al. Pseudo-template molecularly imprinted polymeric fiber solid-phase microextraction coupled to gas chromatography for ultrasensitive determination of 2,4,6-trihalophenol disinfection by-products[J]. Journal of Chromatography A, 2022, 1678: 463322. |
34 | ZARGARI S, PRASAD M, MBA K C, et al. Organic maturity, elastic properties, and textural characteristics of self resourcing reservoirs[J]. Geophysics, 2013, 78(4): D223-D235. |
35 | 许国旺, 叶芬, 孔宏伟, 等. 全二维气相色谱技术及其进展[J]. 色谱, 2001, 19(2): 132-136. |
XU Guowang, YE Fen, KONG Hongwei, et al. Technique and advance of comprehensive Two-Dimensional gas chromatography[J]. Chinese Journal of Chromatography, 2001, 19(2): 132-136. | |
36 | ADAHCHOUR M, BEENS J, VREULS R J J, et al. Recent developments in comprehensive two-dimensional gas chromatography (GC×GC): IV. Further applications, conclusions and perspectives[J]. TrAC Trends in Analytical Chemistry, 2006, 25(8): 821-840. |
37 | TRANCHIDA P Q, ALOISI I, MONDELLO L. Chapter three-Heart-cutting and comprehensive multidimensional gas chromatography: Basic principles[J]. Comprehensive Analytical Chemistry, 2022, 96: 69-92. |
38 | BLOMBERG J, RIEMERSMA T, VAN ZUIJLEN M, et al. Comprehensive two-dimensional gas chromatography coupled with fast sulphur-chemiluminescence detection: Implications of detector electronics[J]. Journal of Chromatography A, 2004, 1050(1): 77-84. |
39 | HEGAZI A H, ANDERSSON J T. 6-Polycyclic aromatic sulfur heterocycles as source diagnostics of petroleum pollutants in the marine environment[M]//STOUT S A, WANG Zhendi. Standard Handbook Oil Spill Environmental Forensics. 2nd ed. Boston: Academic press, 2016: 313-342. |
40 | ALAM M S, HARRISON R M. Recent advances in the application of 2-dimensional gas chromatography with soft and hard ionisation time-of-flight mass spectrometry in environmental analysis[J]. Chemical Science, 2016, 7(7): 3968-3977. |
41 | 杨经敏, 孙丽敏, 王杉, 等. 硫化学发光检测器型气相色谱仪校准方法探讨[J]. 石油与天然气化工, 2018, 47(4): 90-93, 100. |
YANG Jingmin, SUN Limin, WANG Sha, et al. Discussion on calibration method of gas chromatograph with sulfur chemiluminescence detector[J]. Chemical Engineering of Oil and Gas, 2018, 47(4): 90-93, 100. | |
42 | MCWILLIAM I G, DEWAR R A. Flame ionization detector for gas chromatography[J]. Nature, 1958, 181(4611): 760. |
43 | WALTERS C C, WANG F C, HIGGINS M B, et al. Universal biomarker analysis using GC×GC with dual FID and ToF-MS (EI/FI) detection[J]. Organic Geochemistry, 2018, 115: 57-66. |
44 | WILLIAMS B J, GOLDSTEIN A H, KREISBERG N M, et al. An in-situ instrument for speciated organic composition of atmospheric aerosols: Thermal desorption aerosol GC/MS-FID (TAG)[J]. Aerosol Science and Technology, 2006, 40(8): 627-638. |
45 | TRANCHIDA P Q, GIOCASTRO B, MONDELLO L. Chapter Four-Multidimensional gas chromatography: Hyphenation with mass spectrometry[J]. Comprehensive Analytical Chemistry, 2022, 96: 93-118. |
46 | ADAHCHOUR M, BEENS J, BRINKMAN U A T. Recent developments in the application of comprehensive two-dimensional gas chromatography[J]. Journal of Chromatography A, 2008, 1186(1/2): 67-108. |
47 | BOJKOVIC A, VERMEIRE F H, KUZMANOVIĆ M, et al. Analytics driving kinetics: Advanced mass spectrometric characterization of petroleum products[J]. Energy & Fuels, 2022, 36(1): 6-59. |
48 | WANG Huitong, WENG Na, ZHANG Shuichang, et al. Comparison of geochemical parameters derived from comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry and conventional gas chromatography-mass spectrometry[J]. Science China Earth Sciences, 2011, 54(12): 1892-1901. |
49 | SHI Quan, ZHANG Yahe, CHUNG K H, et al. Molecular characterization of fossil and alternative fuels using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry: Recent advances and perspectives[J]. Energy & Fuels, 2021, 35(22): 18019-18055. |
50 | SHAN Chao, YE Jiaren, SCARLETT A, et al. Molecular and isotopic characteristics of mature condensates from the east China sea shelf basin using GC×GC-TOFMS and GC-IRMS[J]. Journal of Earth Science, 2019, 30(2): 376-386. |
51 | WANG Guangli, SIMONEIT B R T, SHI Shengbao, et al. A GC×GC-ToFMS investigation of the unresolved complex mixture and associated biomarkers in biodegraded petroleum[J]. Acta Geologica Sinica(English Edition), 2018, 92(5): 1959-1972. |
52 | LIANG Zhirong, CHEN Longfei, ALAM M S, et al. Comprehensive chemical characterization of lubricating oils used in modern vehicular engines utilizing GC×GC-TOFMS[J]. Fuel, 2018, 220: 792-799. |
53 | SHELLIE R, MARRIOTT P, LEUS M, et al. Retention time reproducibility in comprehensive two-dimensional gas chromatography using cryogenic modulation: II. An interlaboratory study[J]. Journal of Chromatography A, 2003, 1019(1/2): 273-278. |
54 | MARRIOTT P, SHELLIE R. Principles and applications of comprehensive two-dimensional gas chromatography[J]. TrAC Trends in Analytical Chemistry, 2002, 21(9/10): 573-583. |
55 | EISERBECK C, NELSON R K, GRICE K, et al. Comparison of GC-MS, GC-MRM-MS, and GC×GC to characterise higher plant biomarkers in Tertiary oils and rock extracts[J]. Geochimica et Cosmochimica Acta, 2012, 87: 299-322. |
56 | VENTURA G T, KENIG F, REDDY C M, et al. Analysis of unresolved complex mixtures of hydrocarbons extracted from Late Archean sediments by comprehensive two-dimensional gas chromatography (GC×GC)[J]. Organic Geochemistry, 2008, 39(7): 846-867. |
57 | 王汇彤, 翁娜, 张水昌, 等. 石油样品中金刚烷类化合物的定量分析新方法[J]. 石油实验地质, 2019, 41(3): 443-450. |
WANG Huitong, WENG Na, ZHANG Shuichang, et al. A novel method for quantitative analysis of diamondoids in petroleum samples[J]. Petroleum Geology and Experiment, 2019, 41(3): 443-450. | |
58 | CRUCELLO J, DE AGUIAR PORTO N, CARVALHO R M, et al. Chapter 25-petrochemical applications of gas chromatography[M]//POOLE C F. Gas Chromatography. 2nd ed. Amsterdam: Elsevier, 2021: 655-673. |
59 | JACOBS M R, EDWARDS M, GÓRECKI T, et al. Evaluation of a miniaturised single-stage thermal modulator for comprehensive two-dimensional gas chromatography of petroleum contaminated soils[J]. Journal of Chromatography A, 2016, 1463: 162-168. |
60 | QIAN Kuangnan, WANG F C. Compositional analysis of heavy petroleum distillates by comprehensive two-dimensional gas chromatography, field ionization and high-resolution mass spectrometry[J]. Journal of the American Society for Mass Spectrometry, 2019, 30(12): 2785-2794. |
61 | 王伟, 李芸, 熊永强, 等. 金刚烷类化合物的热稳定性研究及其地质意义[J]. 地球化学, 2023, 52(1): 29-40. |
WANG Wei, LI Yun, XIONG Yongqiang, et al. Thermal stability of diamondoids and their geological significance[J]. Geochimica, 2023, 52(1): 29-40. | |
62 | 关文龙, 蒋有伟, 郭二鹏, 等. “双碳” 目标背景下的稠油开发对策[J]. 石油学报, 2023, 44(5): 826-840. |
GUAN Wenlong, JIANG Youwei, GUO Erpeng, et al. Heavy oil development strategy under the “Carbon Peaking and Carbon Neutrality” target[J]. Acta Petrolei Sinica, 2023, 44(5): 826-840. | |
63 | BAGI A, KNAPIK K, BAUSSANT T. Abundance and diversity of n-alkane and PAH-degrading bacteria and their functional genes-Potential for use in detection of marine oil pollution[J]. Science of the Total Environment, 2022, 810: 152238. |
64 | XU Chunyan, QARIA M A, XU Qi, et al. The role of microorganisms in petroleum degradation: Current development and prospects[J]. Science of the Total Environment, 2023, 865: 161112. |
65 | AMARAL M S S, NOLVACHAI Y, MARRIOTT P J. Comprehensive two-dimensional gas chromatography advances in technology and applications: Biennial update[J]. Analytical Chemistry, 2020, 92(1): 85-104. |
66 | LI Shuifu, CAO Jian, HU Shouzhi, et al. Analysis of terpanes in biodegraded oils from China using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry[J]. Fuel, 2014, 133: 153-162. |
67 | 李二庭, 靳军, 陈俊, 等. 生物降解稠油沥青质热解产物中生物标志化合物与单体烃碳同位素组成研究[J]. 地球化学, 2019, 48(3): 284-292. |
LI Erting, JIN Jun, CHEN Jun, et al. Study on biomarkers and carbon isotopic compositions of monomer hydrocarbons in asphaltene pyrolysis products from biodegraded heavy oil[J]. Geochimica, 2019, 48(3): 284-292. | |
68 | 王汇彤, 张水昌, 翁娜, 等. 稠油中饱和烃复杂混合物成分解析及其意义[J]. 中国科学: 化学, 2012, 42(10): 1469-1478. |
WANG Huitong, ZHANG Shuichang, WENG Na, et al. Composition analysis of complex saturated hydrocarbon mixtures in heavy oil and its significance[J]. Scientia Sinica Chimica, 2012, 42(10): 1469-1478. | |
69 | ZHANG Zhiyao, ZHU Guangyou, HAN Jianfa, et al. Tectono-thermal impacts on the formation of a heavy oil in the eastern Tarim Basin (China): Implications for oil and gas potential[J]. Journal of Petroleum Science and Engineering, 2022, 208(Part A): 109353. |
70 | 马安来. 金刚烷类化合物在有机地球化学中的应用进展[J]. 天然气地球科学, 2016, 27(5): 851-860. |
MA Anlai. New advancement in application of diamondoids on organic geochemistry[J]. Natural Gas Geoscience, 2016, 27(5): 851-860. | |
71 | ZHANG Zhiyao, ZHANG Yijie, ZHU Guangyou, et al. Impacts of thermochemical sulfate reduction, oil cracking, and gas mixing on the petroleum fluid phase in the Tazhong area, Tarim Basin, China[J]. Energy & Fuels, 2019, 33(2): 968-978. |
72 | ZHU Guangyou, ZHANG Ying, ZHANG Zhiyao, et al. High abundance of alkylated diamondoids, thiadiamondoids and thioaromatics in recently discovered sulfur-rich LS2 condensate in the Tarim Basin[J]. Organic Geochemistry, 2018, 123: 136-143. |
73 | ZHU Guangyou, MILKOV A V, CHEN Feiran, et al. Non-cracked oil in ultra-deep high-temperature reservoirs in the Tarim Basin, China[J]. Marine and Petroleum Geology, 2018, 89(Part 2): 252-262. |
74 | ZHU Guangyou, WANG Meng, ZHANG Ying, et al. Higher ethanodiamondoids in petroleum[J]. Energy & Fuels, 2018, 32(4): 4996-5000. |
75 | ZHU Guangyou, LI Jingfei, WANG Meng, et al. Formation and distribution of ethanodiamondoids in deeply buried marine oil from the Tarim Basin, China[J]. Organic Geochemistry, 2021, 162: 104327. |
76 | WANG Meng, ZHU Guangyou, MILKOV A V, et al. Comprehensive molecular compositions and origins of DB301 crude oil from deep strata, Tarim Basin, China[J]. Energy & Fuels, 2020, 34(6): 6799-6810. |
77 | ZHU Guangyou, LI Jingfei, ZHANG Zhiyao, et al. Stability and cracking threshold depth of crude oil in 8000 m ultra-deep reservoir in the Tarim Basin[J]. Fuel, 2020, 282: 118777. |
78 | ZHANG Zhiyao, ZHU Guangyou, HAN Jianfa, et al. Genesis and preservation of the giant ultradeep Hadexun petroleum accumulation in the Tarim Basin, China[J]. Journal of Petroleum Science and Engineering, 2022, 208, Part E: 109249. |
79 | NADEAU P H, BJØRKUM B A, WALDERHAUG O. Petroleum system analysis: Impact of shale diagenesis on reservoir fluid pressure, hydrocarbon migration, and biodegradation risks[C]//DORÉ A G, VINING B A. Petroleum Geology: North-West Europe and Global Perspectives—Proceedings of the 6th Petroleum Geology Conference. London: Geological Society of London, 2005: 1267-1274. |
80 | WAPLES D W, WAPLES J S. A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: Minerals and nonporous rocks[J]. Natural Resources Research, 2004, 13(2): 97-122. |
81 | PAYZANT J D, MCINTYRE D D, MOJELSKY T W, et al. The identification of homologous series of thiolanes and thianes possessing a linear carbon framework from petroleums and their interconversion under simulated geological conditions[J]. Organic Geochemistry, 1989, 14(4): 461-473. |
82 | MABERY C F, SMITH A W. On the composition of certain petroleum oils, and of refining residues[J]. Proceedings of the American Academy of Arts and Sciences, 1889, 25: 218-228. |
83 | SINNINGHE DAMSTE J S, DE LEEUW J W. Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: State of the art and future research[J]. Organic Geochemistry, 1990, 16(4/6): 1077-1101. |
84 | SCHMID J C, CONNAN J, ALBRECHT P. Occurrence and geochemical significance of long-chain dialkylthiacyclopentanes[J]. Nature, 1987, 329(6134): 54-56. |
85 | SHENG Guoying, FU Jiamo, BRASSELL S C, et al. Sulphur-containing compounds in sulphur-rich crude oils from hypersaline lake sediments and their geochemical implications[J]. Chinese Journal of Geochemistry, 1987, 6(2): 115-126. |
86 | SCHOUTEN S, VAN DRIEL G B, SINNINGHE DAMSTÉ J S, et al. Natural sulphurization of ketones and aldehydes: A key reaction in the formation of organic sulphur compounds[J]. Geochimica et Cosmochimica Acta, 1993, 57(23/24): 5111-5116. |
87 | WU Jianxun, MA Chao, ZHANG Weilai, et al. Molecular characterization of non-polar sulfur compounds in the full boiling range crude oil fractions[J]. Fuel, 2023, 338: 127323. |
88 | ZHU Guangyou, WANG Meng, ZHANG Ying, et al. Low-molecular-weight organic polysulfanes in petroleum[J]. Energy & Fuels, 2018, 32(6): 6770-6773. |
89 | WEI Zhibin, WALTERS C C, MICHAEL MOLDOWAN J, et al. Thiadiamondoids as proxies for the extent of thermochemical sulfate reduction[J]. Organic Geochemistry, 2012, 44: 53-70. |
90 | WEI Zhibin, MANKIEWICZ P, WALTERS C, et al. Natural occurrence of higher thiadiamondoids and diamondoidthiols in a deep petroleum reservoir in the Mobile Bay gas field[J]. Organic Geochemistry, 2011, 42(2): 121-133. |
91 | WALTERS C C, WANG F C, QIAN Kuangnan, et al. Petroleum alteration by thermochemical sulfate reduction-A comprehensive molecular study of aromatic hydrocarbons and polar compounds[J]. Geochimica et Cosmochimica Acta, 2015, 153: 37-71. |
92 | NEKHAEV A I, MAKSIMOV A L. Diamondoids in oil and gas condensates (review)[J]. Petroleum Chemistry, 2019, 59(10): 1108-1117. |
93 | LIANG Qianyong, XIONG Yongqiang, FANG Chenchen, et al. Quantitative analysis of diamondoids in crude oils using gas chromatography-triple quadrupole mass spectrometry[J]. Organic Geochemistry, 2012, 43: 83-91. |
94 | ZHU Guangyou, WANG Ping, WANG Meng, et al. Occurrence and origins of thiols in deep strata crude oils, Tarim Basin, China[J]. ACS Earth and Space Chemistry, 2019, 3(11): 2499-2509. |
95 | WANG Meng, ZHAO Suoqi, LIU Xuxia, et al. Molecular characterization of thiols in fossil fuels by Michael addition reaction derivatization and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Analytical Chemistry, 2016, 88(19): 9837-9842. |
96 | 韩云浩, 朱光有, 张志遥, 等. 原油中痕量化合物的研究进展[J/OL]. 吉林大学学报(地球科学版). . DOI: 10.13278/j.cnki.jjuese.20220314 . |
HAN Yunhao, ZHU Guangyou, ZHANG Zhiyao, et al. Progress in the study of trace compounds in crude oil[J/OL]. Journal of Jilin University(Earth Science Edition). . DOI: 10.13278/j.cnki.jjuese.20220314 . | |
97 | ZHU Guangyou, WANG Huitong, WENG Na, et al. Use of comprehensive two-dimensional gas chromatography for the characterization of ultra-deep condensate from the Bohai Bay Basin, China[J]. Organic Geochemistry, 2013, 63: 8-17. |
98 | WANG Huitong, ZHANG Shuichang, WENG Na, et al. Discovery and identification of a series of alkyl decalin isomers in petroleum geological samples[J]. The Analyst, 2015, 140(13): 4694-4701. |
99 | ZHU Guangyou, WANG Meng, CHI Linxian, et al. Discovery and molecular characterization of organic caged compounds and polysulfanes in Zhongba81 crude oil, Sichuan Basin, China[J]. Energy & Fuels, 2020, 34(6): 6811-6821. |
100 | 徐学敏, 陈践发, 师生宝, 等. 原油不同极性含氮化合物的氮同位素组成特征[J]. 矿物岩石地球化学通报, 2017, 36(1): 150-153. |
XU Xuemin, CHEN Jianfa, SHI Shengbao, et al. Nitrogen isotope distribution characteristics of different polar nitrogen compounds in crude oil[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(1): 150-153. | |
101 | 冯子辉, 黄春艳, 孙永红, 等. 松辽盆地西部斜坡区原油含氧化合物分布特征[J]. 石油勘探与开发, 2005, 32(3): 48-50, 75. |
FENG Zihui, HUANG Chunyan, SUN Yonghong, et al. Distribution of oxygenated compounds in oils from the west slope of Songliao Basin[J]. Petroleum Exploration and Development, 2005, 32(3): 48-50, 75. | |
102 | TORAMAN H E, FRANZ K, RONSSE F, et al. Quantitative analysis of nitrogen containing compounds in microalgae based bio-oils using comprehensive two-dimensional gas-chromatography coupled to nitrogen chemiluminescence detector and time of flight mass spectrometer[J]. Journal of Chromatography A, 2016, 1460: 135-146. |
103 | YANG Lu, LI Meijun, WANG T G, et al. Dibenzothiophenes and benzonaphthothiophenes in oils, and their application in identifying oil filling pathways in Eocene lacustrine clastic reservoirs in the Beibuwan Basin, South China Sea[J]. Journal of Petroleum Science and Engineering, 2016, 146: 1026-1036. |
104 | GENG Cengceng, LI Shuyuan, MA Yue, et al. Analysis and identification of oxygen compounds in Longkou shale oil and Shenmu coal tar[J]. Oil Shale, 2012, 29(4): 322-333. |
105 | ČERNÝ J, PAVLÍKOVÁ H, MACHOVIČ V. Compound-class fractionation of coal-derived liquids by extrography[J]. Fuel, 1990, 69(8): 966-971. |
106 | GRANDA M, BERMEJO J, MOINELO S R, et al. Application of extrography for characterization of coal tar and petroleum pitches[J]. Fuel, 1990, 69(6): 702-705. |
107 | LI Meijun, LIU Xiaoqiang, WANG T G, et al. Fractionation of dibenzofurans during subsurface petroleum migration: Based on molecular dynamics simulation and reservoir geochemistry[J]. Organic Geochemistry, 2018, 115: 220-232. |
[1] | 史玉玲, 龙祖烈, 张向涛, 温华华, 马晓楠. 珠江口盆地恩平凹陷恩平17洼油气动态成藏过程[J]. 石油与天然气地质, 2023, 44(5): 1279-1289. |
[2] | 黄越义, 廖玉宏, 陈承声, 史树勇, 王云鹏, 彭平安. 塔里木盆地顺南1井和顺南4井油气相态演化的数值模拟与预测[J]. 石油与天然气地质, 2023, 44(1): 138-149. |
[3] | 刘博通, 程鹏, 盖海峰, 周秦, 李腾飞, 田辉. 原油热裂解过程中的红外光谱演化特征及其主控因素[J]. 石油与天然气地质, 2023, 44(1): 150-163. |
[4] | 许汇源, 刘全有, 朱东亚, 孟庆强, 金之钧. 深部铅锌热液流体作用下的原油地球化学特征[J]. 石油与天然气地质, 2023, 44(1): 178-185. |
[5] | 张莉. 中国石化东部老油田提高采收率技术进展及攻关方向[J]. 石油与天然气地质, 2022, 43(3): 717-723. |
[6] | 李天军, 黄志龙, 郭小波, 赵静, 蒋一鸣, 谭思哲. 东海盆地西湖凹陷平北斜坡带平湖组煤系原油地球化学特征与油-源精细对比[J]. 石油与天然气地质, 2022, 43(2): 432-444. |
[7] | 孙焕泉. 薄储层超稠油热化学复合采油方法与技术[J]. 石油与天然气地质, 2020, 41(5): 1100-1106. |
[8] | 王希贤. EBANO油田裂缝-孔隙型灰岩稠油油藏特征及油气富集规律[J]. 石油与天然气地质, 2020, 41(2): 416-422. |
[9] | 汤国民, 王飞龙, 王清斌, 万琳, 燕歌. 渤海海域莱州湾凹陷高硫稠油成因及其成藏模式[J]. 石油与天然气地质, 2019, 40(2): 284-293. |
[10] | 李玉宏, 高岗, 王行运, 屈童, 韩伟, 宫振奇, 张文, 党文龙. 渭河盆地新发现原油的特征及其油气地质意义[J]. 石油与天然气地质, 2019, 40(2): 346-353. |
[11] | 苏洲, 张慧芳, 韩剑发, 刘永福, 孙琦, 白银, 段云江, 屈洋. 塔里木盆地库车坳陷中、新生界高蜡凝析油和轻质油形成及其控制因素[J]. 石油与天然气地质, 2018, 39(6): 1255-1269. |
[12] | 马安来, 金之钧, 朱翠山, 顾忆, 李慧莉, 路清华. 塔里木盆地麦盖提斜坡罗斯2井奥陶系油气藏的TSR作用:来自分子标志物的证据[J]. 石油与天然气地质, 2018, 39(4): 730-737,748. |
[13] | 周健, 单玄龙, 郝国丽, 赵荣生, 陈鹏. 松江盆地白垩系烃源岩地球化学特征及油源对比[J]. 石油与天然气地质, 2018, 39(3): 578-586. |
[14] | 付金刚, 杜殿发, 郑洋, 巴忠臣, 李冬冬. 超稠油油藏蒸汽驱动态预测模型[J]. 石油与天然气地质, 2018, 39(1): 192-197. |
[15] | 张淑霞, 刘帆, 沐宝泉. 蒸汽驱及化学辅助蒸汽驱提高稠油采收率实验[J]. 石油与天然气地质, 2017, 38(5): 1000-1004. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||