石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (1): 231-242.doi: 10.11743/ogg20240116
牛月萌1,2(), 韩俊3, 余一欣1,2(), 黄诚3, 林波3, 杨帆1,2, 余浪1,2, 陈俊宇1,2
收稿日期:
2023-08-02
修回日期:
2023-12-16
出版日期:
2024-02-01
发布日期:
2024-02-29
通讯作者:
余一欣
E-mail:2425538777@qq.com;yuxin0707@163.com
第一作者简介:
牛月萌(1998—),女,硕士研究生,含油气盆地分析。E-mail: 2425538777@qq.com。
基金项目:
Yuemeng NIU1,2(), Jun HAN3, Yixin YU1,2(), Cheng Huang3, Bo Lin3, Fan YANG1,2, Lang YU1,2, Junyu CHEN1,2
Received:
2023-08-02
Revised:
2023-12-16
Online:
2024-02-01
Published:
2024-02-29
Contact:
Yixin YU
E-mail:2425538777@qq.com;yuxin0707@163.com
摘要:
塔里木盆地顺北西部地区火成岩侵入体分布广泛,对地层和含油气系统改造作用明显,但该地区火成岩侵入体发育特征及其与深部走滑断裂带之间的耦合关系并不十分清楚。基于顺北西部地区最新二维和三维地震资料,精细刻画了火成岩侵入体形态特征,划分了火成岩侵入体不同类型及组合关系,判别了火成岩侵入体发育期次,确定了火成岩侵入体与深部走滑断裂耦合关系。结果表明:①顺北西部地区火成岩侵入体具有“一”字形、舌形、碟形以及半碟形几种形态类型。②单一侵入岩床通过相接、相连及错断组合形成岩床复合体。③火成岩侵入体主要分布于中-下奥陶统顶面至中-下泥盆统顶面之间,侵入岩床活动类型包括单期单层、单期多层和多期多层3类。④不整合面和断裂作为岩浆侵入的通道,控制了火成岩侵入体发育数量和规模,导致研究区南部和北部侵入作用存在明显差异。⑤研究区北部深部走滑断裂作为岩浆主要侵入通道,纵向侵入作用较强;南部岩浆以不整合面为主要侵入通道,横向侵入作用更强。
中图分类号:
表1
顺北西部地区钻遇侵入岩岩石类型统计"
井号 | 侵入岩岩性 | 钻遇深度/m | 钻遇层系 | 岩石类型划分 |
---|---|---|---|---|
A1 | 辉绿岩 | 6 630 ~ 6 635 7 415 ~ 7 520 | 志留系、 上奥陶统 | 基性侵入岩 |
A2 | 辉绿岩 | 6 899 ~ 6 908 7 065 ~ 7 067 7 371 ~ 7 373 | 上奥陶统 | 基性侵入岩 |
A3 | 辉绿岩 | 6 612 ~ 6 736 | 上奥陶统 | 基性侵入岩 |
A4 | 辉绿岩 | 6 244 ~ 6 271 6 503 ~ 6 606 7 434 ~ 7 471 7 582 ~ 7 583 7 601 ~ 7 630 7 736 ~ 7 739 8 118 ~ 8 121 7 309 ~ 7 348 8 125 ~ 8 135 8 151 ~ 8 155 | 志留系、上奥陶统 | 基性侵入岩 |
A5 | 辉绿岩 | 6 739 ~ 6 818 6 889 ~ 6 899 7 199 ~ 7 203 7 206 ~ 7 210 7 421 ~ 7 455 | 上奥陶统 | 基性侵入岩 |
A6 | 辉绿岩 | 7 521 ~ 7 527 | 上奥陶统 | 基性侵入岩 |
1 | 闫磊, 李明, 潘文庆. 塔里木盆地二叠纪火成岩分布特征——基于高精度航磁资料[J]. 地球物理学进展, 2014, 29(4): 1843-1848. |
YAN Lei, LI Ming, PAN Wenqing. Distribution characteristics of Permian igneous rock in Tarim Basin——Based on the high-precision aeromagnetic data[J]. Progress in Geophysics, 2014, 29(4): 1843-1848. | |
2 | 刘雨晴, 邓尚, 张荣, 等. 深层火成岩侵入体和相关构造发育特征及其石油地质意义——以塔里木盆地顺北地区为例[J]. 石油与天然气地质, 2022, 43(1): 105-117. |
LIU Yuqing, DENG Shang, ZHANG Rong, et al. Characterization and petroleum geological significance of deep igneous intrusions and related structures in the Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 105-117. | |
3 | 望畅, 孙启良, 解习农, 等. 白云凹陷浅成岩浆侵入体发育特征、成因及油气地质意义[J]. 地球科学, 2022, 47(2): 505-517. |
WANG Chang, SUN Qiliang, XIE Xinong, et al. Characteristics and mechanisms of shallow igneous intrusions and their implications on hydrocarbon geology in the Baiyun Sag[J]. Earth Science, 2022, 47(2): 505-517. | |
4 | DENG Peng, MEI Lianfu, LIU Jun, et al. Episodic normal faulting and magmatism during the syn-spreading stage of the Baiyun Sag in Pearl River Mouth Basin: Response to the multi-phase seafloor spreading of the South China Sea[J]. Marine Geophysical Research, 2019, 40(1): 33-50. |
5 | 魏玉鹏, 傅德龙, 刘洋廷, 等. 多道地震成像方法在台西南盆地断层与岩浆侵入体识别中的应用研究[J]. 海洋科学进展, 2023, 41(2): 257-272. |
WEI Yupeng, FU Delong, LIU Yangting, et al. Application of multichannel seismic imaging methods in the identification of faults and magmatic intrusions in southwest Taiwan Basin[J]. Advances in Marine Science, 2023, 41(2): 257-272. | |
6 | GUO Rui, ZHANG Gongcheng, ZHANG Jinwei, et al. Fingered intrusion of shallow saucer-shaped igneous sills: Insights from the Jiaojiang Sag, East China Sea[J]. Acta Geologica Sinica (English Edition), 2013, 87(5): 1306-1318. |
7 | 梁锋, 吕庆田, 严加永, 等. 宁芜盆地深部地壳结构和岩浆侵入体形态特征及其对成矿的启示[J]. 地学前缘, 2017, 24(5): 138-148. |
LIANG Feng, Qingtian LYU, YAN Jiayong, et al. Crustal structure and shape of deep magma intrusion, and their implications for mineralization in Ningwu Basin[J]. Earth Science Frontiers, 2017, 24(5): 138-148. | |
8 | HANSEN D M, CARTWRIGHT J. The three-dimensional geometry and growth of forced folds above saucer-shaped igneous sills[J]. Journal of Structural Geology, 2006, 28(8): 1520-1535. |
9 | SMALLWOOD J R, MARESH J. The properties, morphology and distribution of igneous sills: Modelling, borehole data and 3D seismic from the Faroe-Shetland area[J]. Geological Society, London, Special Publications, 2002, 197(1): 271-306. |
10 | HANSEN D M Ø, CARTWRIGHT J A, THOMAS D. 3D seismic analysis of the geometry of igneous sills and sill junction relationships[J]. Geological Society, London, Memoirs, 2004, 29(1): 199-208. |
11 | 温声明, 王建忠, 王贵重, 等. 塔里木盆地火成岩发育特征及对油气成藏的影响[J]. 石油地球物理勘探, 2005, 40(): 33-39, 68. |
WEN Shengming, WANG Jianzhong, WANG Guichong, et al. Development characteristics of igneous rocks and their influence on hydrocarbon accumulation in Tarim Basin[J]. Oil Geophysical Prospecting, 2005, 40(S1): 33-39, 68. | |
12 | 邬光辉, 马兵山, 韩剑发, 等. 塔里木克拉通盆地中部走滑断裂形成与发育机制[J]. 石油勘探与开发, 2021, 48(3): 510-520. |
WU Guanghui, MA Bingshan, HAN Jianfa, et al. Origin and growth mechanisms of strike-slip faults in the central Tarim cratonic basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(3): 510-520. | |
13 | 邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878-888. |
DENG Shang, LI Huili, ZHANG Zhongpei, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878-888. | |
14 | 贾承造, 马德波, 袁敬一, 等. 塔里木盆地走滑断裂构造特征、形成演化与成因机制[J]. 天然气工业, 2021, 41(8): 81-91. |
JIA Chengzao, MA Debo, YUAN Jingyi, et al. Structural characteristics, formation & evolution and genetic mechanisms of strike-slip faults in the Tarim Basin[J]. Natural Gas Industry, 2021, 41(8): 81-91. | |
15 | 姚泽伟. 塔里木盆地二叠纪隐伏火成岩时空分布与构造-岩浆作用模型——以塔中及其邻区为例[D]. 杭州: 浙江大学, 2016. |
YAO Zewei. Spatial and temperal distribution of unexposed Permian igneous rocks in the Tarim Basin and model of structural-magmatic activities: Case study from the Tazhong and adjacent area[D]. Hangzhou: Zhejiang University, 2016. | |
16 | GALLAND O, BERTELSEN H S, EIDE C H, et al. Chapter 5-Storage and transport of magma in the layered crust—formation of sills and related flat-lying intrusions[M]//BURCHARDT S. Volcanic and Igneous Plumbing Systems. Amsterdam: Elsevier, 2018: 113-138. |
17 | 何登发, 贾承造, 李德生, 等. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质, 2005, 26(1): 64-77. |
HE Dengfa, JIA Chengzao, LI Desheng, et al. Formation and evolution of polycyclic superimposed Tarim Basin[J]. Oil & Gas Geology, 2005, 26(1): 64-77. | |
18 | 罗彩明, 梁鑫鑫, 黄少英, 等. 塔里木盆地塔中隆起走滑断裂的三层结构模型及其形成机制[J]. 石油与天然气地质, 2022, 43(1): 118-131, 148. |
LUO Caiming, LIANG Xinxin, HUANG Shaoying, et al. Three-layer structure model of strike-slip faults in the Tazhong uplift and its formation mechanism[J]. Oil & Gas Geology, 2022, 43(1): 118-131, 148. | |
19 | 吴鲜, 李丹, 朱秀香, 等. 塔里木盆地顺北油气田地温场对奥陶系超深层油气的影响——以顺北5号走滑断裂带为例[J]. 石油实验地质, 2022, 44(3): 402-412. |
WU Xian, LI Dan, ZHU Xiuxiang, et al. Influence of geothermal field on ultra-deep Ordovician oil and gas in Shunbei field, Tarim Basin: A case study of Shunbei No. 5 strike-slip fault[J]. Petroleum Geology and Experiment, 2022, 44(3): 402-412. | |
20 | 杨赟昊, 高志前, 樊太亮, 等. 下寒武统黑色岩系沉积环境与控烃差异——以塔里木盆地西北缘和东北缘为例[J]. 断块油气田, 2022, 29(1): 47-52. |
YANG Yunhao, GAO Zhiqian, FAN Tailiang, et al. The differences of sedimentary environment and hydrocarbon control of Lower Cambrian black rock series: A case study of northwestern and northeastern margin, Tarim Basin[J]. Fault-Block Oil and Gas Field, 2022, 29(1): 47-52. | |
21 | 史江涛, 郝君明, 王小雷. 塔河地区奥陶系鹰山组储层特征及其主控因素[J]. 吉林大学学报(地球科学版), 2022, 52(2): 348-362. |
SHI Jiangtao, HAO Junming, WANG Xiaolei. Reservoir characteristics and controlling factors of Lower-Middle Ordovician Yingshan Formation in Tahe area[J]. Journal of Jilin University(Earth Science Edition), 2022, 52(2): 348-362. | |
22 | 朱毅秀, 金之钧, 林畅松, 等. 塔里木盆地塔中地区早二叠世岩浆岩及油气成藏关系[J]. 石油实验地质, 2005, 27(1): 50-54, 61. |
ZHU Yixiu, JIN Zhijun, LIN Changsong, et al. Relations between the early Permian magmatic rocks and hydrocarbon accumulation in the central Tarim[J]. Petroleum Geology & Experiment, 2005, 27(1): 50-54, 61. | |
23 | 马德波, 崔文娟, 陶小晚, 等. 塔北隆起轮南低凸起断裂构造特征与形成演化[J]. 天然气地球科学, 2020, 31(5): 647-657. |
MA Debo, CUI Wenjuan, TAO Xiaowan, et al. Structural characteristics and evolution process of faults in the Lunnan low uplift, Tabei uplift in the Tarim Basin, NW China[J]. Natural Gas Geoscience, 2020, 31(5): 647-657. | |
24 | QIU Huabiao, DENG Shang, CAO Zicheng, et al. The evolution of the complex anticlinal belt with crosscutting strike-slip faults in the central Tarim Basin, NW China[J]. Tectonics, 2019, 38(6): 2087-2113. |
25 | 宋兴国, 陈石, 谢舟, 等. 塔里木盆地富满油田东部走滑断裂发育特征与油气成藏[J]. 石油与天然气地质, 2023, 44(2): 335-349. |
SONG Xingguo, CHEN Shi, XIE Zhou, et al. Strike-slip faults and hydrocarbon accumulation in the eastern part of Fuman oilfield, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(2): 335-349. | |
26 | 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839. |
JIAO Fangzheng. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5): 831-839. | |
27 | 刘建章, 蔡忠贤, 滕长宇, 等. 塔里木盆地顺北地区克拉通内走滑断裂带中-下奥陶统储集体方解石脉形成及其与油气充注耦合关系[J]. 石油与天然气地质, 2023, 44(1): 125-137. |
LIU Jianzhang, CAI Zhongxian, TENG Changyu, et al. Coupling relationship between formation of calcite veins and hydrocarbon charging in Middle-Lower Ordovician reservoirs in strike-slip fault zones within craton in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(1): 125-137. | |
28 | 程小鑫, 吴鸿翔, 孙大亥, 等. 塔里木盆地西北缘二叠纪基性岩浆侵入事件及其构造意义[J]. 岩石学报, 2022, 38(3): 743-764. |
CHENG Xiaoxin, WU Hongxiang, SUN Dahai, et al. The Permian mafic intrusive events in the northwestern margin of the Tarim Basin and their tectonic significance[J]. Acta Petrologica Sinica, 2022, 38(3): 743-764. | |
29 | TRUDE J, CARTWRIGHT J, DAVIES R J, et al. New technique for dating igneous sills[J]. Geology, 2003, 31(9): 813-816. |
30 | 刘亚雷, 胡秀芳, 黄智斌, 等. 塔里木盆地塔北隆起西部火山岩40Ar-39Ar年代学和地球化学特征[J]. 岩石学报, 2012, 28(8): 2423-2434. |
LIU Yalei, HU Xiufang, HUANG Zhibin, et al. 40Ar-39Ar geochronology and geochemistry of the volcanic rocks from the west segment of Tabei uplift, Tarim Basin[J]. Acta Petrologica Sinica, 2012, 28(8): 2423-2434. | |
31 | 马中远, 任丽丹, 黄苇, 等. 塔里木盆地塔中地区火成岩的基本特征[J]. 特种油气藏, 2013, 20(3): 64-67. |
MA Zhongyuan, REN Lidan, HUANG Wei, et al. Basic characteristics of igneous rock in the middle area of Tarim Basin[J]. Special Oil & Gas Reservoirs, 2013, 20(3): 64-67. | |
32 | DENG Shang, LI Huili, ZHANG Zhongpei, et al. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J]. AAPG Bulletin, 2019, 103(1): 109-137. |
[1] | 韩鹏远, 丁文龙, 杨德彬, 张娟, 马海陇, 王生晖. 塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J]. 石油与天然气地质, 2024, 45(3): 770-786. |
[2] | 张艳秋, 陈红汉, 王燮培, 王彭, 苏丹梅, 谢舟. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800. |
[3] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[4] | 徐海轩, 李江海. 断裂岩石排替压力预测方法的改进及其应用[J]. 石油与天然气地质, 2024, 45(3): 866-872. |
[5] | 曹自成, 云露, 漆立新, 李海英, 韩俊, 耿锋, 林波, 陈菁萍, 黄诚, 毛庆言. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356. |
[6] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[7] | 张长建, 杨德彬, 蒋林, 姜应兵, 昌琪, 马雪健. 塔里木盆地塔河北部“过溶蚀残留型”断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383. |
[8] | 江同文, 邓兴梁, 曹鹏, 常少英. 塔里木盆地富满断控破碎体油藏储集类型特征与注水替油效果[J]. 石油与天然气地质, 2024, 45(2): 542-552. |
[9] | 曾联波, 巩磊, 宿晓岑, 毛哲. 深层-超深层致密储层天然裂缝分布特征及发育规律[J]. 石油与天然气地质, 2024, 45(1): 1-14. |
[10] | 潘虹, 于庆森, 李晓山, 宋俊强, 蒋志斌, 王丽, 罗官幸, 徐文秀, 尤浩宇. 准噶尔盆地红车断裂带石炭系重新认识及油气成藏特征[J]. 石油与天然气地质, 2024, 45(1): 215-230. |
[11] | 张三, 金强, 史今雄, 胡明毅, 段梦悦, 李永强, 张旭栋, 程付启. 塔北地区奥陶系地下河溶洞充填规律与储集性能[J]. 石油与天然气地质, 2023, 44(6): 1582-1594. |
[12] | 赵耀, 潘虹, 骆飞飞, 李亮, 李丹杨, 谢宗瑞, 卢东连, 张琴. 准噶尔盆地红车断裂带石炭系火山岩储层特征及质量控制因素[J]. 石油与天然气地质, 2023, 44(5): 1129-1140. |
[13] | 康志江, 张冬梅, 张振坤, 王睿奇, 姜文斌, 刘坤岩. 深层缝洞型油藏井间连通路径智能预测技术[J]. 石油与天然气地质, 2023, 44(5): 1290-1299. |
[14] | 何春波, 张亚雄, 于英华, 袁红旗. 断裂诱发砂体输导油气变径部位预测方法及其应用[J]. 石油与天然气地质, 2023, 44(5): 1300-1307. |
[15] | 胡伟, 徐婷, 杨阳, 伦增珉, 李宗宇, 康志江, 赵瑞明, 梅胜文. 塔里木盆地超深油气藏流体相行为变化特征[J]. 石油与天然气地质, 2023, 44(4): 1044-1053. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||