石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (1): 256-280.doi: 10.11743/ogg20240118
张益1,2(), 张斌1,2, 刘帮华3, 柳洁4, 魏千盛4, 张歧5, 陆红军6, 朱鹏宇1,2, 王瑞1,2,7
收稿日期:
2023-11-10
修回日期:
2024-01-14
出版日期:
2024-02-01
发布日期:
2024-02-29
第一作者简介:
张益(1979—),男,教授,油气藏渗流理论与数值模拟技术、油气田开发理论与方法。E-mail: zhy@xsyu.edu.cn。
基金项目:
Yi ZHANG1,2(), Bin ZHANG1,2, Banghua LIU3, Jie LIU4, Qiansheng WEI4, Qi ZHANG5, Hongjun LU6, Pengyu ZHU1,2, Rui WANG1,2,7
Received:
2023-11-10
Revised:
2024-01-14
Online:
2024-02-01
Published:
2024-02-29
摘要:
针对页岩气藏有机微纳米级孔隙中吸附气大量赋存以及有机质以“镶嵌”形式赋存于无机质中的特点,分析了目前页岩气吸附渗流的表征方法,并对影响吸附渗流的重要因素如气体吸附层厚度变化、无机孔水膜厚度变化和气体解吸导致孔隙变化的数学表达方法进行了归纳,接着指出了目前表观渗透率计算模型中存在的主要问题:①储层孔隙结构表征不够准确;②固溶态气体分子解吸对吸附渗流流量的影响尚无表征方法;③对页岩气储层有机质的离散分布刻画不完善;④直接应用室内等温吸附实验参数不合理,忽视了吸附态和固溶态页岩气的吸附-解吸差异性。然后分析了利用分子模拟技术研究页岩气的吸附渗流相较于物理实验的优点,总结了应用该技术对页岩气吸附渗流进行建模和模拟的方法及模拟结果,并就页岩气吸附渗流的分子模拟技术未来发展提出了建议:①基于常规无机孔和有机孔分子模型,继续改进多介质、多尺度建模方法,以符合页岩气储层实际情况;②开发更符合实际页岩气吸附渗流过程的页岩气吸附渗流模拟方法。
中图分类号:
表1
典型文献中的页岩气吸附渗流模拟方法"
作者 | 年份 | 模拟方法 | 孔隙类型 | 模拟气体 |
---|---|---|---|---|
Jin[ | 2015 | DCV-GCMD | 石墨烯狭缝 | CH4单相流 |
Chen[ | 2017 | EF-NEMD | 碳原子狭缝 | CH4单相流 |
He[ | 2017 | BD-NEMD | 蒙脱石狭缝 | CH4单相流 |
Okamoto[ | 2017 | EF-NEMD | 石英狭缝、干酪根狭缝 | CH4单相流 |
Martín[ | 2019 | 压板法B | 碳原子圆形孔 | CH4单相流 |
Sun[ | 2019 | DCV-GCMD | 碳纳米管圆形孔 | CH4单相流 |
Yun[ | 2019 | EF-NEMD | 碳原子狭缝、圆形孔、三角形孔、正方形孔 | CH4单相流 |
Sun[ | 2020 | EF-NEMD | 干酪根圆形孔 | CH4单相流 |
Duan[ | 2020 | EF-NEMD | 石墨烯狭缝 | CH4单相流 |
Wang[ | 2021 | EF-NEMD | 伊利石狭缝 | CH4单相流 |
Zhan[ | 2021 | EF-NEMD | 石墨烯狭缝、无羟基化石英狭缝 | CH4单相流 |
Zhang[ | 2021 | EF-NEMD | 石墨烯狭缝 | CH4单相流、CO2单相流、CH4/CO2/H2O三相流 |
Deng[ | 2022 | BD-NEMD | 石墨烯狭缝 | CO2驱替CH4 |
Guan[ | 2022 | EF-NEMD、DGD-NEMD | 石墨烯狭缝 | CH4单相流 |
Huang[ | 2022 | EF-NEMD | 干酪根狭缝 | CH4单相流 |
Li[ | 2022 | EF-NEMD、压板法A | 干酪根圆形孔 | CH4单相流、CO2驱替CH4 |
Sang[ | 2022 | EF-NEMD | 石英狭缝、干酪根狭缝 | CH4/H2O两相流 |
Song[ | 2022 | EF-NEMD | 干酪根圆形孔 | CH4单相流 |
Wu[ | 2022 | EF-NEMD | 干酪根狭缝 | CH4单相流 |
Yong[ | 2022 | EF-NEMD | 石墨烯狭缝 | CH4/H2O两相流 |
Zhang[ | 2022 | DGD-NEMD | 石英圆形孔、锥形孔 | CH4单相流 |
Zhao[ | 2022 | EF-NEMD | 碳原子狭缝 | CH4单相流 |
Bonnaud[ | 2023 | DCV-GCMD | 干酪根狭缝 | CH4/CO2两相流 |
Cui[ | 2023 | EF-NEMD | 石墨烯狭缝 | CH4单相流 |
Deng[ | 2023 | EF-NEMD | 石墨烯狭缝 | CH4单相流 |
Lyu[ | 2023 | EF-NEMD | 石英狭缝 | CH4/H2O两相流 |
Sun[ | 2023 | 压板法B | 石墨烯上壁、石英下壁狭缝 | CO2驱替CH4 |
Wu[ | 2023 | EF-NEMD | 干酪根狭缝 | CH4/CO2两相流 |
Zhou[ | 2023 | EF-NEMD | 石英狭缝、石墨烯狭缝 | CH4单相流、CH4/H2O两相流 |
1 | 肖舒月. 中国页岩产业面临诸多挑战[J]. 天然气勘探与开发, 2021, 44(2): 43. |
XIAO Shuyue. China’s shale industry faces many challenges[J]. Natural Gas Exploration and Development, 2021, 44(2): 43. | |
2 | 郭彤楼, 熊亮, 雷炜, 等. 四川盆地南部威荣、永川地区深层页岩气勘探开发进展、挑战与思考[J]. 天然气工业, 2022, 42(8): 45-59. |
GUO Tonglou, XIONG Liang, LEI Wei, et al. Deep shale gas exploration and development in the Weirong and Yongchuan areas, South Sichuan Basin: Progress, challenges and prospect[J]. Natural Gas Industry, 2022, 42(8): 45-59. | |
3 | 赵全民, 张金成, 刘劲歌. 中国页岩气革命现状与发展建议[J]. 探矿工程(岩土钻掘工程), 2019, 46(8): 1-9. |
ZHAO Quanmin, ZHANG Jincheng, LIU Jinge. Status of Chinese shale gas revolution and development proposal[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2019, 46(8): 1-9. | |
4 | 周立宏, 陈长伟, 韩国猛, 等. 渤海湾盆地歧口凹陷陆相湖盆页岩气富集条件及勘探潜力[J]. 天然气工业, 2021, 41(5): 1-10. |
ZHOU Lihong, CHEN Changwei, HAN Guomeng, et al. Enrichment conditions and exploration potential of shale gas in continental lake basins in Qikou Sag, Bohai Bay Basin[J]. Natural Gas Industry, 2021, 41(5): 1-10. | |
5 | 王鹏, 谢丹, 罗乃菲. 长宁地区页岩气地质特征与勘探开发前景[J]. 宜宾学院学报, 2020, 20(12): 10-15, 99. |
WANG Peng, XIE Dan, LUO Naifei. Geological characteristics of shale gas and prospects for exploration and development in Changning area[J]. Journal of Yibin University, 2020, 20(12): 10-15, 99. | |
6 | 张益, 刘帮华, 胡均志, 等. 苏里格气田苏14井区二叠系下石盒子组盒8段多期叠置砂体储层合理开发方式研究[J]. 中国石油勘探, 2021, 26(6): 165-174. |
ZHANG Yi, LIU Banghua, HU Junzhi, et al. Study on development mode of multi-stage superimposed sandstone reservoir of He 8 member of the Permian Lower Shihezi Formation in Su 14 well block of Sulige Gasfield[J]. China Petroleum Exploration, 2021, 26(6): 165-174. | |
7 | ZHANG Yi, BAI Baojun, SHEN Lei, et al. Research and application on simulation of oilfield 3D in-situ stress field by multi-information co-processing[J]. Arabian Journal of Geosciences, 2019, 12(2): 67. |
8 | 陈维堃, 腾格尔, 张春贺, 等. 页岩纳米有机孔结构表征技术研究进展[J]. 岩矿测试, 2022, 41(6): 906-919. |
CHEN Weikun, TENGER, ZHANG Chunhe, et al. A review of research progress on characterization technology of nano organic pore structure in shale[J]. Rock and Mineral Analysis, 2022, 41(6): 906-919. | |
9 | ZHANG Yi, ZHU Pengyu, WEI Feng, et al. Study on damage mechanism of waterflooding development in Weizhou 11-4N low-permeability oilfield[J]. Geofluids, 2023, 2023: 4981874. |
10 | ZHANG Yi, LIU Banghua, GAN Qingmin, et al. Study on the methods of layer adjustment in gas dynamic reserve measurement[J]. Advanced Materials Research, 2013, 671/674: 142-145. |
11 | 王瑞, 张宁生, 刘晓娟, 等. 页岩气吸附与解吸附机理研究进展[J]. 科学技术与工程, 2013, 13(19): 5561-5567. |
WANG Rui, ZHANG Ningsheng, LIU Xiaojuan, et al. Research progress of mechanism of adsorption and desorption of gas in shale[J]. Science Technology and Engineering, 2013, 13(19): 5561-5567. | |
12 | CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938. |
13 | CHEN Guohui, LU Shuangfang, ZHANG Junfang, et al. Keys to linking GCMC simulations and shale gas adsorption experiments[J]. Fuel, 2017, 199: 14-21. |
14 | 黄亮. 基于分子模拟的页岩气多组分竞争吸附机理研究[D]. 北京: 中国石油大学(北京), 2020. |
HUANG Liang. Molecular simulation study on competitive adsorption mechanism of multi-components in shale gas reservoir[D]. Beijing: China University of Petroleum(Beijing), 2020. | |
15 | 孙菁悦. CO2、CH4在纳米孔隙内吸附特性分子模拟[D]. 大连: 大连理工大学, 2020. |
SUN Jingyue. Molecular simulation of adsorption characteristics of CO2 and CH4 in nanopores[D]. Dalian: Dalian University of Technology, 2020. | |
16 | DEVEGOWDA D, PEREZ F. Chapter 12-Application of molecular dynamics simulations for shale gas systems[M]//MOGHANLOO R G. Unconventional Shale Gas Development. Cambridge: Gulf Professional Publishing, 2022: 323-343. |
17 | BRACE W F, WALSH J B, FRANGOS W T. Permeability of granite under high pressure[J]. Journal of Geophysical Research, 1968, 73(6): 2225-2236. |
18 | 张开洪, 陈一健, 徐海莹. 测量低渗岩心液体渗透率的压力脉冲技术[J]. 石油仪器, 1998, 12(3): 12-14, 52. |
ZHANG Kaihong, CHEN Yijian, XU Haiying. A pressure pulse technique to test liquid permeability of core with low permeability[J]. Petroleum Instruments, 1998, 12(3): 12-14, 52. | |
19 | CUI X, BUSTIN A M M, BUSTIN R M. Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications[J]. Geofluids, 2009, 9(3): 208-223. |
20 | SANDER R, PAN Zhejun, CONNELL L D. Laboratory measurement of low permeability unconventional gas reservoir rocks: A review of experimental methods[J]. Journal of Natural Gas Science and Engineering, 2017, 37: 248-279. |
21 | 汪勇, 孙业恒, 梁栋, 等. 基于数字岩心与格子Boltzmann方法的致密砂岩自发渗吸模拟研究[J]. 石油科学通报, 2020, 5(4): 458-466. |
WANG Yong, SUN Yeheng, LIANG Dong, et al. Spontaneous imbibition simulation of tight sandstone based on digital rock and Lattice Boltzmann method[J]. Petroleum Science Bulletin, 2020, 5(4): 458-466. | |
22 | 王瀚, 苏玉亮, 王文东, 等. 基于格子Boltzmann方法的页岩纳米多孔介质流体流动模拟[J]. 石油学报, 2023, 44(3): 534-544. |
WANG Han, SU Yuliang, WANG Wendong, et al. Simulation on liquid flow in shale nanoporous media based on lattice Boltzmann method[J]. Acta Petrolei Sinica, 2023, 44(3): 534-544. | |
23 | 冯弋秦. 鄂尔多斯盆地西北缘乌拉力克组泥页岩储层特征及成藏模式研究[D]. 成都: 成都理工大学, 2020. |
FENG Yiqin. Reservoir characteristics and accumulation model of mud shale of Wulalik Formation in northwestern margin of Ordos Basin[D]. Chengdu: Chengdu University of Technology, 2020. | |
24 | 张金川, 姜生玲, 唐玄, 等. 我国页岩气富集类型及资源特点[J]. 天然气工业, 2009, 29(12): 109-114. |
ZHANG Jinchuan, JIANG Shengling, TANG Xuan, et al. Accumulation types and resources characteristics of shale gas in China[J]. Natural Gas Industry, 2009, 29(12): 109-114. | |
25 | 杨卫超. 我国页岩气的研究进展与展望[J]. 现代盐化工, 2021, 48(5): 96-97. |
YANG Weichao. Research progress and prospects of shale gas in my country[J]. Modern Salt and Chemical Industry, 2021, 48(5): 96-97. | |
26 | 蔡潇, 靳雅夕, 叶建国, 等. 一种页岩有机孔与无机孔定量表征的方法[J]. 油气藏评价与开发, 2020, 10(1): 30-36, 63. |
CAI Xiao, JIN Yaxi, YE Jianguo, et al. A quantitative characterization method for organic and inorganic pores in shale[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(1): 30-36, 63. | |
27 | 赵迪斐. 川东下古生界五峰组--龙马溪组页岩储层孔隙结构精细表征[D]. 徐州: 中国矿业大学, 2020. |
ZHAO Difei. Quantitative characterization of pore structure of shale reservoirs in the Lower Paleozoic Wufeng-Longmaxi Formation of the East Sichuan area[D]. Xuzhou: China University of Mining and Technology, 2020. | |
28 | DUAN Xianggang, HU Zhiming, SHAO Nan, et al. Establishment of a new slip permeability model of gas flow in shale nanopores based on experimental and molecular dynamics simulations studies[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107365. |
29 | 王子涵, 高平, 冯越, 等. 川东地区五峰—龙马溪组超深层页岩孔隙结构特征及主控因素[J]. 东北石油大学学报, 2023, 47(1): 57-69. |
WANG ZI Han, GAO Ping, FENG Yue, et al. Pore structure characteristics and main controlling factors of the ultra-deep shales of the Wufeng-Longmaxi Formation in eastern Sichuan Basin[J]. Journal of Northeast Petroleum University, 2023, 47(1): 57-69. | |
30 | KUILA U, MCCARTY D K, DERKOWSKI A, et al. Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mudrocks[J]. Fuel, 2014, 135: 359-373. |
31 | 张征, 商少石, 张志炳, 等. 基于氮吸附法的页岩有机孔隙结构表征[J]. 地质与勘探, 2021, 57(6): 1408-1415. |
ZHANG Zheng, SHANG Shaoshi, ZHANG Zhibing, et al. Characterization of shale organic-pore structure using the nitrogen adsorption method[J]. Geology and Exploration, 2021, 57(6): 1408-1415. | |
32 | 李靖, 李相方, 王香增, 等. 页岩无机质孔隙含水饱和度分布量化模型[J]. 石油学报, 2016, 37(7): 903-913. |
LI Jing, LI Xiangfang, WANG Xiangzeng, et al. A quantitative model to determine water-saturation distribution characteristics inside shale inorganic pores[J]. Acta Petrolei Sinica, 2016, 37(7): 903-913. | |
33 | NARAGHI M E, JAVADPOUR F. A stochastic permeability model for the shale-gas systems[J]. International Journal of Coal Geology, 2015, 140: 111-124. |
34 | YASSIN M R, DEHGHANPOUR H, WOOD J, et al. A theory for relative permeability of unconventional rocks with dual-wettability pore network[J]. SPE Journal, 2016, 21(6): 1970-1980. |
35 | ZHANG Tao, LI Xiangfang, SUN Zheng, et al. An analytical model for relative permeability in water-wet nanoporous media[J]. Chemical Engineering Science, 2017, 174: 1-12. |
36 | WANG Shan, SHI Juntai, WANG Ke, et al. New coupled apparent permeability models for gas transport in inorganic nanopores of shale reservoirs considering multiple effects[J]. Energy & Fuels, 2017, 31(12): 13545-13557. |
37 | WANG Shan, SHI Juntai, WANG Ke, et al. Apparent permeability model for gas transport in shale reservoirs with nano-scale porous media[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 508-519. |
38 | 李玉丹, 董平川, 张荷, 等. 基于分形理论的页岩基质表观渗透率研究[J]. 油气地质与采收率, 2017, 24(1): 92-99, 105. |
LI Yudan, DONG Pingchuan, ZHANG He, et al. Analysis on apparent permeability of shale matrix based on fractal theory[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1): 92-99, 105. | |
39 | 王付勇, 曾繁超, 赵久玉. 低渗透/致密油藏驱替-渗吸数学模型及其应用[J]. 石油学报, 2020, 41(11): 1396-1405. |
WANG Fuyong, ZENG Fanchao, ZHAO Jiuyu. A mathematical model of displacement and imbibition of low-permeability/tight reservoirs and its application[J]. Acta Petrolei Sinica, 2020, 41(11): 1396-1405. | |
40 | SHENG Guanglong, JAVADPOUR F, SU Yuliang. Dynamic porosity and apparent permeability in porous organic matter of shale gas reservoirs[J]. Fuel, 2019, 251: 341-351. |
41 | 李丹龙, 伏美燕, 邓虎成, 等. 上扬子地区下寒武统牛蹄塘组富有机质页岩岩相及沉积环境分析——以贵州温水村剖面为例[J]. 天然气地球科学, 2023, 34(3): 445-459. |
LI Danlong, FU Meiyan, DENG Hucheng, et al. Analysis of lithofacies and sedimentary environment of shale deposited in shelf facies: A case study of the Wenshuicun section in Guizhou Province, South China[J]. Natural Gas Geoscience, 2023, 34(3): 445-459. | |
42 | 朱宽亮, 吴晓红, 贾善坡, 等. 力—化耦合作用下泥页岩井眼动态破坏分析[J]. 广西大学学报(自然科学版), 2019, 44(4): 1052-1061. |
ZHU Kuanliang, WU Xiaohong, JIA Shanpo, et al. Progressive failure evolution analysis of mudstone wellbore under chemo-mechanical coupling[J]. Journal of Guangxi University(Natural Science Edition), 2019, 44(4): 1052-1061. | |
43 | TIAN Yuanyuan, YAN Changhui, JIN Zhehui. Characterization of methane excess and absolute adsorption in various clay nanopores from molecular simulation[J]. Scientific Reports, 2017, 7(1): 12040. |
44 | ONAWOLE A T, NASSER M S, HUSSEIN I A, et al. Theoretical studies of methane adsorption on silica-kaolinite interface for shale reservoir application[J]. Applied Surface Science, 2021, 546: 149164. |
45 | 游利军, 康毅力, 周洋, 等. 油气储层氧敏性概念、机理与意义[J]. 石油学报, 2021, 42(2): 186-197. |
YOU Lijun, KANG Yili, ZHOU Yang, et al. Concept, mechanism and significance of oxidation sensitivity of oil and gas reservoirs[J]. Acta Petrolei Sinica, 2021, 42(2): 186-197. | |
46 | 熊健. 页岩对甲烷吸附性能影响因素研究[D]. 成都: 西南石油大学, 2015. |
XIONG Jian. Investigation of the influences of the methane adsorption capacity on the shales[D]. Chengdu: Southwest Petroleum University, 2015. | |
47 | 熊健, 林海宇, 李原杰, 等. 富有机质页岩中不同矿物的解吸规律[J]. 石油学报, 2022, 43(7): 989-997. |
XIONG Jian, LIN Haiyu, LI Yuanjie, et al. The desorption laws of different minerals in the organic-rich shale[J]. Acta Petrolei Sinica, 2022, 43(7): 989-997. | |
48 | 李维, 张海杰, 罗彤彤, 等. 渝西地区页岩储层微观孔隙结构对页岩气赋存影响[J]. 天然气地球科学, 2022, 33(6): 873-885. |
LI Wei, ZHANG Haijie, LUO Tongtong, et al. Influence of micro pore structure of shale reservoir on shale gas occurrence in western Chongqing[J]. Natural Gas Geoscience, 2022, 33(6): 873-885. | |
49 | 陈国辉, 卢双舫, 刘可禹, 等. 页岩气在孔隙表面的赋存状态及其微观作用机理[J]. 地球科学, 2020, 45(5): 1782-1790. |
CHEN Guohui, LU Shuangfang, LIU Keyu, et al. Occurrence state and micro mechanisms of shale gas on pore walls[J]. Earth Science, 2020, 45(5): 1782-1790. | |
50 | SUN Zheng, LI Xiangfang, LIU Wenyuan, et al. Molecular dynamics of methane flow behavior through realistic organic nanopores under geologic shale condition: Pore size and kerogen types[J]. Chemical Engineering Journal, 2020, 398: 124341. |
51 | LI Yaxiong, HU Zhiming, LIU Xiangui, et al. Insights into interactions and microscopic behavior of shale gas in organic-rich nano-slits by molecular simulation[J]. Journal of Natural Gas Science and Engineering, 2018, 59: 309-325. |
52 | 何佳伟, 谢渊, 刘建清, 等. 四川盆地西南缘深层龙马溪组页岩储层地质特征——以昭通页岩气示范区雷波地区为例[J]. 天然气地球科学, 2023, 34(7): 1260-1273. |
HE Jiawei, XIE Yuan, LIU Jianqing, et al. Geological characteristics of ultra-deep Longmaxi Formation shale reservoirs in the southwest margin of Sichuan Basin: Case study of Leibo Block in Zhaotong National Shale Gas Demonstration area[J]. Natural Gas Geoscience, 2023, 34(7): 1260-1273. | |
53 | 刘香禺, 张烈辉, 李树新, 等. 考虑页岩多重吸附机制的超临界甲烷等温吸附模型[J]. 石油学报, 2022, 43(10): 1487-1499. |
LIU Xiangyu, ZHANG Liehui, LI Shuxin, et al. Supercritical methane isothermal adsorption model considering multiple adsorption mechanisms in shale[J]. Acta Petrolei Sinica, 2022, 43(10): 1487-1499. | |
54 | WANG Rui, LIU Hua, DOU Liangbin, et al. Effect of adsorption phase and matrix deformation on methane adsorption isotherm of Fuling shale[J]. Journal of Natural Gas Science and Engineering, 2021, 95: 104018. |
55 | 陈军斌, 熊鹏辉, 索根喜, 等. 吸附性气体对煤岩基质变形和渗透率的影响[J]. 大庆石油地质与开发, 2021, 40(1): 146-153. |
CHEN Junbin, XIONG Penghui, SUO Genxi, et al. Effects of the adsorbed gas on the deformation and permeability of the coal matrix[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(1): 146-153. | |
56 | 王瑞, 雷虎林, 吴繁华, 等. 页岩气吸附实验中自由空间体积的变化及其对吸附的影响[J]. 西安石油大学学报(自然科学版), 2022, 37(2): 39-44, 58. |
WANG Rui, LEI Hulin, WU Fanhua, et al. Change of void volume in shale gas adsorption experiment and its influence on adsorption[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2022, 37(2): 39-44, 58. | |
57 | 王瑞, 杨晨曦, 茹瀚昱, 等. 页岩和煤在容量法等温吸附实验中的误差对比[J]. 非常规油气, 2021, 8(3): 43-48, 57. |
WANG Rui, YANG Chenxi, RU Hanyu, et al. Comparison of error in methane isotherm adsorption by volumetric method for shale and coal[J]. Unconventional Oil & Gas, 2021, 8(3): 43-48, 57. | |
58 | LI Zheng, YAO Jun, FIROOZABADI A. Kerogen swelling in light hydrocarbon gases and liquids and validity of Schroeder’s paradox[J]. The Journal of Physical Chemistry C, 2021, 125(15): 8137-8147. |
59 | ZHANG Decheng, TANG Hao, ZHANG Xiaogang, et al. Molecular simulation of methane adsorption in nanoscale rough slits[J]. Journal of Natural Gas Science and Engineering, 2022, 102: 104608. |
60 | JAVADPOUR F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone)[J]. Journal of Canadian Petroleum Technology, 2009, 48(8): 16-21. |
61 | 李玉丹. 页岩气藏多尺度渗流规律研究及产能评价[D]. 北京: 中国石油大学(北京), 2020. |
LI Yudan. Multi-scale flow mechanism analysis and productivity evaluation of shale gas[D]. Beijing: China University of Petroleum,(Beijing), 2020. | |
62 | 李晶辉, 韩鑫, 黄思婧, 等. 页岩干酪根吸附规律的分子模拟研究[J]. 油气藏评价与开发, 2022, 12(3): 455-461. |
LI Jinghui, HAN Xin, HUANG Sijing, et al. Molecular simulation of adsorption law for shale kerogen[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 455-461. | |
63 | ZENG Kecheng, JIANG Peixue, XU Ruina. Restricted CO2/CH4 diffusion in nanopores: A quantitative framework to characterize nanoconfinement effect of shale organic pore[J]. International Journal of Heat and Mass Transfer, 2023, 210: 124178. |
64 | 吴克柳, 李相方, 陈掌星. 页岩气纳米孔气体传输模型[J]. 石油学报, 2015, 36(7): 837-848, 889. |
WU Keliu, LI Xiangfang, CHEN Zhangxing. A model for gas transport through nanopores of shale gas reservoirs[J]. Acta Petrolei Sinica, 2015, 36(7): 837-848, 889. | |
65 | 王瑞, 张宁生, 刘晓娟, 等. 页岩气扩散系数和视渗透率的计算与分析[J]. 西北大学学报(自然科学版), 2013, 43(1): 75-80, 88. |
WANG Rui, ZHANG Ningsheng, LIU Xiaojuan, et al. The calculation and analysis of diffusion coefficient and apparent permeability of shale gas[J]. Journal of Northwest University(Natural Science Edition), 2013, 43(1): 75-80, 88. | |
66 | 李智锋. 页岩气藏孔渗特征与微观渗流机理研究[D]. 北京: 中国地质大学(北京), 2013. |
LI Zhifeng. Research of shale pore-permeability characteristic and microscopic gas slippage mechanism in shale gas reservoir[D]. Beijing: China University of Geosciences(Beijing), 2013. | |
67 | SONG Wenhui, YAO Jun, LI Yang, et al. Apparent gas permeability in an organic-rich shale reservoir[J]. Fuel, 2016, 181: 973-984. |
68 | 吴克柳, 陈掌星. 页岩气纳米孔气体传输综述[J]. 石油科学通报, 2016, 1(1): 91-127. |
WU Keliu, CHEN Zhangxing. Review of gas transport in nanopores in shale gas reservoirs[J]. Petroleum Science Bulletin, 2016, 1(1): 91-127. | |
69 | KLINKENBERG L J. The permeability of porous media to liquids and gases[J]. Drilling and Production Practice, 1941(2): 200-213. |
70 | BESKOK A, KARNIADAKIS G E. Report: A model for flows in channels, pipes, and ducts at micro and nano scales[J]. Microscale Thermophysical Engineering, 1999, 3(1): 43-77. |
71 | NAZARI MOGHADDAM R, JAMIOLAHMADY M. Study of slip flow in unconventional shale rocks using lattice Boltzmann method: Effects of boundary conditions and TMAC[J]. Transport in Porous Media, 2017, 120(1): 115-139. |
72 | WU Keliu, LI Xiangfang, WANG Chenchen, et al. A model for gas transport in micro fractures of shale and tight gas reservoirs[C]//SPE/CSUR Unconventional Resources Conference, Calgary, 2015. Houston: Society of Petroleum Engineers, 2015: SPE-175906-MS. |
73 | WU Keliu, CHEN Zhangxin, LI Xiangfang. Real gas transport through nanopores of varying cross-section type and shape in shale gas reservoirs[J]. Chemical Engineering Journal, 2015, 281: 813-825. |
74 | SHI Juntai, ZHANG Lei, LI Yuansheng, et al. Diffusion and flow mechanisms of shale gas through matrix pores and gas production forecasting[C]//SPE Unconventional Resources Conference Canada, Calgary, 2013. Houston: Society of Petroleum Engineers, 2013: SPE-167226-MS. |
75 | 王瑞, 袁晨雨, 刘文博, 等. 鄂尔多斯盆地长7段页岩中甲烷解吸与扩散影响因素分析[J]. 非常规油气, 2022, 9(6): 67-74. |
WANG Rui, YUAN Chenyu, LIU Wenbo, et al. Analysis of influencing factors of methane desorption and diffusion in shale of Chang 7 member in Ordos Basin[J]. Unconventional Oil & Gas, 2022, 9(6): 67-74. | |
76 | 邹雨, 王国建, 卢丽, 等. 纳米孔隙中页岩气扩散模拟实验和数学模型分析[J]. 石油实验地质, 2021, 43(5): 844-854. |
ZOU Yu, WANG Guojian, LU Li, et al. Simulation experiment and mathematical model analysis for shale gas diffusion in nano-scale pores[J]. Petroleum Geology and Experiment, 2021, 43(5): 844-854. | |
77 | ZHONG Ying, SHE Jiping, ZHANG Hao, et al. Experimental and numerical analyses of apparent gas diffusion coefficient in gas shales[J]. Fuel, 2019, 258: 116123. |
78 | 胡世旺, 张赛, 汪振毅. 考虑多层吸附诱导流的页岩微纳米孔道渗流分形模型[J]. 特种油气藏, 2023, 30(1): 139-146. |
HU Shiwang, ZHANG Sai, WANG Zhenyi. Fractal model of micro-nano pore seepage in shale considering the multi-layer adsorption induced flow[J]. Special Oil & Gas Reservoirs, 2023, 30(1): 139-146. | |
79 | XIONG X, DEVEGOWDA D, MICHEL G G, et al. A fully-coupled free and adsorptive phase transport model for shale gas reservoirs including non-Darcy flow effects[C]//SPE Annual Technical Conference and Exhibition, San Antonio, 2012. Houston: Society of Petroleum Engineers, 2012: SPE-159758-MS. |
80 | ABOLGHASEMI E, ØSTEBØ ANDERSEN P. Influence of adsorption layer thickness and pore geometry in tight compressible shales subject to gas production[C]//SPE Asia Pacific Oil & Gas Conference and Exhibition, Virtual, 2020. Houston: Society of Petroleum Engineers, 2020: SPE-202309-MS. |
81 | WEI Mingyao, LIU Jishan, FENG Xiating, et al. Evolution of shale apparent permeability from stress-controlled to displacement-controlled conditions[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 1453-1460. |
82 | 何坚. 页岩有机质纳米孔隙中CO2/CH4置换及运移机理研究[D]. 徐州: 中国矿业大学, 2019. |
HE Jian. Study on the displacement and transportation mechanism of CO2/CH4 in organic nanopores of shale[D]. Xuzhou: China University of Mining and Technology, 2019. | |
83 | 穆中奇, 宁正福, 吕方涛, 等. 页岩气多层吸附的分子模拟与理论模型[J]. 西安石油大学学报(自然科学版), 2023, 38(1): 69-76, 84. |
MU Zhongqi, NING Zhengfu, Fangtao LYU, et al. Molecular simulation and theoretical model of shale gas multilayer adsorption[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2023, 38(1): 69-76, 84. | |
84 | SHEN Yinghao, PANG Yu, SHEN Ziqi, et al. Multiparameter analysis of gas transport phenomena in shale gas reservoirs: Apparent permeability characterization[J]. Scientific Reports, 2018, 8(1): 2601. |
85 | 王登科, 李文睿, 浦海, 等. 考虑气体多层吸附的表面扩散传输模型[J]. 中国石油大学学报(自然科学版), 2020, 44(1): 115-123. |
WANG Dengke, LI Wenrui, PU Hai, et al. A surface diffusion transport model considering multilayer adsorption behavior of gas[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(1): 115-123. | |
86 | 王珊. 页岩基质孔隙气体吸附/解吸与流动机理研究[D]. 北京: 中国石油大学(北京), 2019. |
WANG Shan. Gas adsorption/desorption and flow mechanism in shale matrix pores[D]. Beijing: China University of Petroleum(Beijing), 2019. | |
87 | ZHANG Tao, LI Xiangfang, WANG Xiangzeng, et al. A discrete model for apparent gas permeability in nanoporous shale coupling initial water distribution[J]. Journal of Natural Gas Science and Engineering, 2018, 59: 80-96. |
88 | WU Yu, LIU Jishan, ELSWORTH D, et al. Evolution of coal permeability: Contribution of heterogeneous swelling processes[J]. International Journal of Coal Geology, 2011, 88(2/3): 152-162. |
89 | 汤积仁, 王相成, 卢义玉, 等. 页岩-煤吸附CO2时间效应及变形各向异性试验研究[J]. 煤炭学报, 2018, 43(8): 2288-2295. |
TANG Jiren, WANG Xiangcheng, LU Yiyu, et al. Experimental study on time effect and deformation anisotropy of shale and coal under CO2 [J]. Journal of China Coal Society, 2018, 43(8): 2288-2295. | |
90 | CHEN Tianyu, FENG Xiating, PAN Zhejun. Experimental study of swelling of organic rich shale in methane[J]. International Journal of Coal Geology, 2015, 150/151: 64-73. |
91 | SHOVKUN I, ESPINOZA D N. Coupled fluid flow-geomechanics simulation in stress-sensitive coal and shale reservoirs: Impact of desorption-induced stresses, shear failure, and fines migration[J]. Fuel, 2017, 195: 260-272. |
92 | WU Keliu, CHEN Zhangxin, LI Xiangfang, et al. A model for multiple transport mechanisms through nanopores of shale gas reservoirs with real gas effect-adsorption-mechanic coupling[J]. International Journal of Heat and Mass Transfer, 2016, 93: 408-426. |
93 | 谈慕华, 黄蕴元. 表面物理化学[M]. 北京: 中国建筑工业出版社, 1985. |
TAN Muhua, HUANG Yunyuan. Surface physical chemistry[M]. Beijing: China Architecture & Building Press, 1985. | |
94 | SEIDLE J P, HUITT L G. Experimental measurement of coal matrix shrinkage due to gas desorption and implications for cleat permeability increases[C]//International Meeting on Petroleum Engineering, Beijing, 1995. Houston: Society of Petroleum Engineers, 1995: SPE-30010-MS. |
95 | 曹成, 郭浩, 张亮. 考虑有机质和无机质差异的多因素耦合页岩渗透率计算模型[J]. 大庆石油地质与开发, 2022, 41(5): 160-167. |
CAO Cheng, GUO Hao, ZHANG Liang. Calculating model of shale permeability with multi-factor coupling considering difference between organic matter and inorganic matter[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(5): 160-167. | |
96 | 赵谦平, 王博涛, 姜磊, 等. 页岩气多场耦合渗透率计算模型[J]. 特种油气藏, 2017, 24(2): 125-130. |
ZHAO Qianping, WANG Botao, JIANG Lei, et al. Computational model for multi-field coupling permeability of shale gas[J]. Special Oil & Gas Reservoirs, 2017, 24(2): 125-130. | |
97 | ZHANG Rui, NING Zhengfu, YANG Feng, et al. A laboratory study of the porosity-permeability relationships of shale and sandstone under effective stress[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 81: 19-27. |
98 | 李晓平, 刘蜀东, 李纪, 等. 考虑应力敏感效应和含水影响的页岩基质表观渗透率模型[J]. 天然气地球科学, 2021, 32(6): 861-870. |
LI Xiaoping, LIU Shudong, LI Ji, et al. Apparent gas permeability model of shale matrix coupling stress sensitivity and water saturation[J]. Natural Gas Geoscience, 2021, 32(6): 861-870. | |
99 | 付永红, 蒋裕强, 董大忠, 等. 渝西区块页岩气储集层微观孔-缝配置类型及其地质意义[J]. 石油勘探与开发, 2021, 48(5): 916-927. |
FU Yonghong, JIANG Yuqiang, DONG Dazhong, et al. Microscopic pore-fracture configuration and gas-filled mechanism of shale reservoirs in the western Chongqing area, Sichuan Basin, China[J]. Petroleum Exploration and Development, 2021, 48(5): 916-927. | |
100 | 宋文辉, 姚军, 张凯. 页岩有机质纳米孔隙气体吸附与流动规律研究[J]. 力学学报, 2021, 53(8): 2179-2192. |
SONG Wenhui, YAO Jun, ZHANG Kai. Study on gas adsorption and transport behavior in shale organic nanopore[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2179-2192. | |
101 | AFSHARPOOR A, JAVADPOUR F. Liquid slip flow in a network of shale noncircular nanopores[J]. Fuel, 2016, 180: 580-590. |
102 | SUI Hongguang, ZHANG Fengyun, WANG Ziqiang, et al. Effect of kerogen maturity, water content for carbon dioxide, methane, and their mixture adsorption and diffusion in kerogen: A computational investigation[J]. Langmuir, 2020, 36(33): 9756-9769. |
103 | 隋宏光. 基于分子模拟的页岩气藏吸附规律研究[D]. 青岛: 中国石油大学(华东), 2016. |
SUI Hongguang. Molecular simulation studies of shale gas adsorption behavior in reservoir[D]. Qingdao: China University of Petroleum(East China), 2016. | |
104 | ZHANG Yi, WANG Rui, ZHANG Bin, et al. Numerical simulation of coalbed methane under the mining conditions based on dynamic virtual well and variable permeability field[J]. Energy Exploration & Exploitation, 2023, 41(1): 170-186. |
105 | 杨术刚. 页岩中水、氯化钠溶液和液体二氧化碳渗流对比研究[D]. 北京: 中国地质大学(北京), 2021. |
YANG Shugang. Comparative investigation on flow characteristics of water, NaCl solution and liquid CO2 in shale[D]. Beijing: China University of Geosciences(Beijing), 2021. | |
106 | LIN Kui, YUAN Quanzi, ZHAO Yapu. Using graphene to simplify the adsorption of methane on shale in MD simulations[J]. Computational Materials Science, 2017, 133: 99-107. |
107 | 陈正隆, 徐为人, 汤立达. 分子模拟的理论与实践[M]. 北京: 化学工业出版社, 2007. |
CHEN Zhenglong, XU Weiren, TANG Lida. Theory and practice of molecular simulation[M]. Beijing: Chemical Industry Press, 2007. | |
108 | 刘峰, 杨飞, 陆红军, 等. 分子动力学在页岩气吸附研究中的应用进展与展望[J]. 应用化工, 2023, 52(1): 181-185, 192. |
LIU Feng, YANG Fei, LU Hongjun, et al. Application progress and prospect of molecular dynamics in shale gas adsorption[J]. Applied Chemical Industry, 2023, 52(1): 181-185, 192. | |
109 | 陈敏伯. 计算化学——从理论化学到分子模拟[M]. 北京: 科学出版社, 2009. |
CHEN Minbo. Computational chemistry-From theoretical chemistry to molecular simulations[M]. Beijing: Science Press, 2009. | |
110 | 张博. 基于分子模拟技术的页岩气吸附能力定量评价[D]. 北京: 中国石油大学(北京), 2018. |
ZHANG Bo. The quantitative evaluation of shale gas adsorption capacity based on molecular simulation[D]. Beijing: China University of Petroleum(Beijing), 2018. | |
111 | 林轩. 甲烷在不同基质孔隙中赋存状态模拟研究[D]. 大庆: 东北石油大学, 2022. |
LIN Xuan. Simulation study on the occurrence state of methane in different matrix pores[D]. Daqing: Northeast Petroleum University, 2022. | |
112 | 方思冬, 孙敬, 黄涛. 页岩储层压裂液返排过程中气水扩散规律模拟[J]. 中国科技论文, 2021, 16(9): 1004-1009. |
FANG Sidong, SUN Jing, HUANG Tao. Simulation of methane and water diffusion in the process of fluid flowback of shale reservoir[J]. China Sciencepaper, 2021, 16(9): 1004-1009. | |
113 | WANG Shimeng, ZHOU Guanggang, MA Yue, et al. Molecular dynamics investigation on the adsorption behaviors of H2O, CO2, CH4 and N2 gases on calcite (1 1 ¯ 0) surface[J]. Applied Surface Science, 2016, 385: 616-621. |
114 | LIU Bing, QI Chao, ZHAO Xiangbin, et al. Nanoscale two-phase flow of methane and water in shale inorganic matrix[J]. The Journal of Physical Chemistry C, 2018, 122(46): 26671-26679. |
115 | 汪周华, 赵建飞, 白银, 等. 不同润湿性修饰石英吸附甲烷的模拟研究[J]. 西南石油大学学报(自然科学版), 2019, 41(6): 28-34. |
WANG Zhouhua, ZHAO Jianfei, BAI Yin, et al. Simulation of methane adsorption of quartz with different wettability[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(6): 28-34. | |
116 | 熊健, 刘向君, 梁利喜. 甲烷在官能团化石墨中吸附的分子模拟[J]. 石油学报, 2016, 37(12): 1528-1536. |
XIONG Jian, LIU Xiangjun, LIANG Lixi. Molecular simulation for methane adsorption in surface functionalized graphite[J]. Acta Petrolei Sinica, 2016, 37(12): 1528-1536. | |
117 | 王晓琦, 翟增强, 金旭, 等. 页岩气及其吸附与扩散的研究进展[J]. 化工学报, 2015, 66(8): 2838-2845. |
WANG Xiaoqi, ZHAI Zengqiang, JIN Xu, et al. Progress in adsorption and diffusion of shale gas[J]. CIESC Journal, 2015, 66(8): 2838-2845. | |
118 | RAMÍREZ M M, CASTEZ M F, SÁNCHEZ V M, et al. Methane transport through distorted nanochannels: Surface roughness beats tortuosity[J]. ACS Applied Nano Materials, 2019, 2(3): 1325-1332. |
119 | UNGERER P, COLLELL J, YIANNOURAKOU M. Molecular modeling of the volumetric and thermodynamic properties of kerogen: Influence of organic type and maturity[J]. Energy & Fuels, 2015, 29(1): 91-105. |
120 | 刘向君, 罗丹序, 熊健, 等. 龙马溪组页岩干酪根平均分子结构模型的构建[J]. 化工进展, 2017, 36(2): 530-537. |
LIU Xiangjun, LUO Danxu, XIONG Jian, et al. Construction of the average molecular modeling of the kerogen from the Longmaxi Formation[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 530-537. | |
121 | 罗丹序. 龙马溪组页岩气层干酪根吸附甲烷性能的分子模拟[D]. 成都: 西南石油大学, 2017. |
LUO Danxu. Molecular simulation of methane adsorption performance of kerogen extracted from shale in Longmaxi Formation[D]. Chengdu: Southwest Petroleum University, 2017. | |
122 | GAO Kai, GUO Guangjun, ZHANG Mingmin, et al. Nanopore surfaces control the shale gas adsorption via roughness and layer-accumulated adsorption potential: A molecular dynamics study[J]. Energy & Fuels, 2021, 35(6): 4893-4900. |
123 | WANG Lu, Weifeng LYU, JI Zemin, et al. Molecular dynamics insight into the CO2 flooding mechanism in wedge-shaped pores[J]. Molecules, 2022, 28(1): 188. |
124 | 陈佳乐, 马妮萍, 国建华, 等. 页岩气在粗糙纳米孔中吸附和输运的分子模拟[J]. 原子与分子物理学报, 2024, 41(5): 67-74. |
CHEN Jiale, MA Niping, GUO Jianhua, et al. Molecular simulation of shale gas adsorption and transport in rough nanopores[J]. Journal of Atomic and Molecular Physics, 2024, 41(5): 67-74. | |
125 | 何映颉, 杨洋, 张廷山, 等. 石墨狭缝吸附页岩气的分子模拟[J]. 岩性油气藏, 2016, 28(6): 88-94. |
HE Yingjie, YANG Yang, ZHANG Tingshan, et al. Molecular simulation of shale gas adsorption in graphite slit-pores[J]. Lithologic Reservoirs, 2016, 28(6): 88-94. | |
126 | HE Jian, JU Yang, LAMMERS L, et al. Tortuosity of kerogen pore structure to gas diffusion at molecular- and nano-scales: A molecular dynamics simulation[J]. Chemical Engineering Science, 2020, 215: 115460. |
127 | PATHAK M, HUANG Hai, MEAKIN P, et al. Molecular investigation of the interactions of carbon dioxide and methane with kerogen: Application in enhanced shale gas recovery[J]. Journal of Natural Gas Science and Engineering, 2018, 51: 1-8. |
128 | TESSON S, FIROOZABADI A. Methane adsorption and self-diffusion in shale kerogen and slit nanopores by molecular simulations[J]. The Journal of Physical Chemistry C, 2018, 122(41): 23528-23542. |
129 | 李田田. 页岩气在纳米孔隙中吸附扩散行为的模拟研究[D]. 大庆: 东北石油大学, 2023. |
LI Tiantian. Simulation study on the adsorption-diffusion behavior of shale gas in nanopores[D]. Daqing: Northeast Petroleum University, 2023. | |
130 | RANALLO S, AMODIO A, IDILI A, et al. Electronic control of DNA-based nanoswitches and nanodevices[J]. Chemical Science, 2016, 7(1): 66-71. |
131 | DENG Jia, ZHANG Qi, HE Jiujiu, et al. Effects of competitive adsorption on production capacity during CO2 displacement of CH4 in shale[J]. Physics of Fluids, 2022, 34(11): 116104. |
132 | JIN Zhehui, FIROOZABADI A. Flow of methane in shale nanopores at low and high pressure by molecular dynamics simulations[J]. The Journal of Chemical Physics, 2015, 143(10): 104315. |
133 | CHEN Jie, YU Hao, FAN Jingcun, et al. Channel-width dependent pressure-driven flow characteristics of shale gas in nanopores[J]. AIP Advances, 2017, 7(4): 045217. |
134 | HE Shuai, PALMER J C, QIN Guan. A non-equilibrium molecular dynamics study of methane transport in clay nano-pores[J]. Microporous and Mesoporous Materials, 2017, 249: 88-96. |
135 | OKAMOTO N, KOBAYASHI K, LIANG Yunfeng, et al. Slip velocity of methane flow in nanopores with kerogen and quartz surfaces[J]. SPE Journal, 2017, 23(1): 102-116. |
136 | 孙晶晶. 页岩气在页岩纳米孔隙中行为的分子模拟[D]. 北京: 北京化工大学, 2019. |
SUN Jingjing. Molecular simulation of the behavior of shale gas in nanopores of shale[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
137 | YU Hao, ZHU Yinbo, JIN Xu, et al. Multiscale simulations of shale gas transport in micro/nano-porous shale matrix considering pore structure influence[J]. Journal of Natural Gas Science and Engineering, 2019, 64: 28-40. |
138 | WANG Dongbo, ZHANG Li, CAI Changhong, et al. Molecular modeling on the pressure-driven methane desorption in illite nanoslits[J]. Journal of Molecular Modeling, 2021, 27(3): 83. |
139 | ZHAN Shiyuan, SU Yuliang, LU Mingjing, et al. Effect of surface type on the flow characteristics in shale nanopores[J]. Geofluids, 2021, 2021: 6641922. |
140 | ZHANG Lu, LI Qibin, LIU Chao, et al. Molecular insight of flow property for gas-water mixture (CO2/CH4-H2O) in shale organic matrix[J]. Fuel, 2021, 288: 119720. |
141 | GUAN Qingshan, SHAN Baochao, WANG Runxi, et al. Evaluation of different particle-actuation modes in molecular dynamics and their impact on nanoscale flow behaviors[J]. Physics of Fluids, 2022, 34(7): 072006. |
142 | HUANG Pengyu, SHEN Luming, MAGGI F, et al. Influence of surface roughness on methane flow in shale kerogen nano-slits[J]. Journal of Natural Gas Science and Engineering, 2022, 103: 104650. |
143 | LI Yang, LU Lize, ZHU Jingyi, et al. Molecular simulation of CH4 nanoscale behavior and enhanced gas recovery in organic-rich shale[J]. Geofluids, 2022, 2022: 2420869. |
144 | SANG Qian, ZHAO Xinyi, DONG Mingzhe. Effects of water on gas flow in quartz and kerogen nano-slits in shale gas formations[J]. Journal of Natural Gas Science and Engineering, 2022, 107: 104770. |
145 | SUN Zheng, HUANG Bingxiang, LI Yaohui, et al. Nanoconfined methane flow behavior through realistic organic shale matrix under displacement pressure: A molecular simulation investigation[J]. Journal of Petroleum Exploration and Production Technology, 2022, 12(4): 1193-1201. |
146 | WU Jian, HUANG Pengyu, MAGGI F, et al. Effect of sorption-induced deformation on methane flow in kerogen slit pores[J]. Fuel, 2022, 325: 124886. |
147 | YONG Wei, ZHOU Yingfang. A molecular dynamics investigation on methane flow and water droplets sliding in organic shale pores with nano-structured roughness[J]. Transport in Porous Media, 2022, 144(1): 69-87. |
148 | ZHANG Lu, LIU Chao, LI Qibin, et al. Shale gas transport through the inorganic cylindrical and conical nanopores: A density gradient driven molecular dynamics[J]. International Journal of Heat and Mass Transfer, 2022, 183(Part B): 122126. |
149 | ZHAO Yulong, LUO Mingyao, LIU Lingfu, et al. Molecular dynamics simulations of shale gas transport in rough nanopores[J]. Journal of Petroleum Science and Engineering, 2022, 217: 110884. |
150 | BONNAUD P A, OULEBSIR F, GALLIERO G, et al. Modeling competitive adsorption and diffusion of CH4/CO2 mixtures confined in mature type-Ⅱ kerogen: Insights from molecular dynamics simulations[J]. Fuel, 2023, 352: 129020. |
151 | CUI Chunming, WANG Dongbo, ZHANG Li, et al. Molecular simulation on the desorption and extraction of methane in the slits with varying surface activity[J]. Chemical Physics, 2023, 572: 111975. |
152 | DENG Jia, ZHANG Qi, ZHANG Lan, et al. Investigation on the adsorption properties and adsorption layer thickness during CH4 flow driven by pressure gradient in nano-slits[J]. Physics of Fluids, 2023, 35(1): 016104. |
153 | Fangtao LYU, NING Zhengfu, JIA Zejiang, et al. Investigation on gas/water two-phase flow in quartz nanopores from molecular perspectives[J]. Journal of Molecular Liquids, 2023, 371: 121145. |
154 | SUN Jingyue, CHEN Zherui, WANG Xi, et al. Displacement characteristics of CO2 to CH4 in heterogeneous surface slit pores[J]. Energy & Fuels, 2023, 37(4): 2926-2944. |
155 | WU Jian, SHEN Luming, HUANG Pengyu, et al. Selective adsorption and transport of CO2-CH4 mixture under nano-confinement[J]. Energy, 2023, 273: 127224. |
156 | ZHOU Jun, ZHANG Chengpeng, RANJITH P G. Behaviours of methane and water in heterogeneous shale nanopores: Effect of water saturation and pore size[J]. Fuel, 2023, 335: 126675. |
157 | 管清杉. 页岩气吸附和流动驱动方法及表观渗透率的分子动力学模拟研究[D]. 武汉: 华中科技大学, 2022. |
GUAN Qingshan. Molecular dynamics simulation of adsorption and flow driving methods and apparent permeability of shale gas[D]. Wuhan: Huazhong University of Science and Technology, 2022. | |
158 | SONG Haosheng, LI Bobo, LI Jianhua, et al. An apparent permeability model in organic shales: Coupling multiple flow mechanisms and factors[J]. Langmuir, 2023, 39(11): 3951-3966. |
159 | LI Ran, CHEN Zhangxin, WU Keliu, et al. Shale gas transport in nanopores with mobile water films and water bridge[J]. Petroleum Science, 2023, 20(2): 1068-1076. |
160 | CHEN Siyuan, LIU Jiangfeng, ZHANG Qi, et al. A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112537. |
161 | 邓佳, 吕子健, 张奇, 等. 页岩储层纳微米孔隙CO2/CH4吸附及驱替特性研究进展[J]. 力学学报, 2021, 53(10): 2880-2890. |
DENG Jia, Zijian LYU, ZHANG Qi, et al. Review on CO2/CH4 adsorption and displacement characteristics of micro-nano pores in shale reservoir[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2880-2890. | |
162 | DUAN Shuo, GU Min, DU Xidong, et al. Adsorption equilibrium of CO2 and CH4 and their mixture on Sichuan Basin shale[J]. Energy & Fuels, 2016, 30(3): 2248-2256. |
163 | HE Jian, JU Yang, HOU Peng. Thermal diffusion and flow property of CO2/CH4 in organic nanopores with fractal rough surface[J]. Thermal Science, 2019, 23(3 Part A): 1577-1583. |
164 | LIU Jian, XIE Hui, WANG Qin, et al. Influence of pore structure on shale gas recovery with CO2 sequestration: Insight into molecular mechanisms[J]. Energy & Fuels, 2020, 34(2): 1240-1250. |
165 | 穆中奇, 宁正福, 吕方涛, 等. 页岩气多层吸附的分子模拟与理论模型[J]. 西安石油大学学报(自然科学版), 2023, 38(1): 69-76+84. |
MU Zhongqi, NING Zhengfu, Fangtao LYU, et al. Molecular simulation and theoretical Model of shale gas multilaver adsorption [J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2023, 38(1): 69-76+84. | |
166 | 王民, 余昌琦, 费俊胜, 等. 页岩油在干酪根中吸附行为的分子动力学模拟与启示[J]. 石油与天然气地质, 2023, 44(6): 1442-1452. |
WANG Min, YU Changqi, FEI Junsheng, et al. Molecular dynamics simulation of shale oil adsorption in kerogen and its implications [J]. Oil & Gas Geology, 2023, 44(6): 1442-1452. |
[1] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[2] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[3] | 王光付, 李凤霞, 王海波, 周彤, 张亚雄, 王濡岳, 李宁, 陈昱辛, 熊晓菲. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
[4] | 胡东风, 魏志红, 刘若冰, 魏祥峰, 王威, 王庆波. 川东南盆缘复杂构造区綦江页岩气田的发现与启示[J]. 石油与天然气地质, 2023, 44(6): 1418-1429. |
[5] | 王红岩, 周尚文, 赵群, 施振生, 刘德勋, 焦鹏飞. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
[6] | 边瑞康, 孙川翔, 聂海宽, 刘珠江, 杜伟, 李沛, 王濡岳. 四川盆地东南部五峰组-龙马溪组深层页岩气藏类型、特征及勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1515-1529. |
[7] | 冯动军. 川东南二叠系龙潭组海-陆过渡相页岩气甜点评价及意义[J]. 石油与天然气地质, 2023, 44(3): 778-788. |
[8] | 严刚, 徐耀辉, 刘保磊, 孙砚泽, 李姗姗, 赵守钰, 钟鸣. 烷基二苯并噻吩类化合物的运移示踪:基于驱替实验和分子模拟的研究[J]. 石油与天然气地质, 2023, 44(2): 510-520. |
[9] | 王光付, 李凤霞, 王海波, 李军, 张宏, 周彤, 商晓飞, 潘林华, 沈云琦. 四川盆地非常规气藏地质-工程一体化压裂实践与认识[J]. 石油与天然气地质, 2022, 43(5): 1221-1237. |
[10] | 刘双莲. 页岩气“双甜点”参数测井评价方法[J]. 石油与天然气地质, 2022, 43(4): 1005-1012. |
[11] | 王永诗, 李政, 王民, 包友书, 朱日房, 刘军, 吴连波, 于利民. 渤海湾盆地济阳坳陷陆相页岩油吸附控制因素[J]. 石油与天然气地质, 2022, 43(3): 489-498. |
[12] | 张心罡, 庞宏, 庞雄奇, 陈君青, 吴松, 马奎友, 张思玉. 四川盆地上二叠统龙潭组烃源岩生、排烃特征及资源潜力[J]. 石油与天然气地质, 2022, 43(3): 621-632. |
[13] | 王濡岳, 胡宗全, 龙胜祥, 杜伟, 吴靖, 邬忠虎, 聂海宽, 王鹏威, 孙川翔, 赵建华. 四川盆地上奥陶统五峰组-下志留统龙马溪组页岩储层特征与演化机制[J]. 石油与天然气地质, 2022, 43(2): 353-364. |
[14] | 王鹏威, 陈筱, 刘忠宝, 杜伟, 李东晖, 金武军, 王濡岳. 海相富有机质页岩储层压力预测方法——以涪陵页岩气田上奥陶统五峰组-下志留统龙马溪组页岩为例[J]. 石油与天然气地质, 2022, 43(2): 467-476. |
[15] | 王妍妍, 王卫红, 胡小虎, 刘华, 蒋晓蓉, 戴城, 方思冬. 基于脉冲注入理论的页岩储层微破裂试井解释技术及应用[J]. 石油与天然气地质, 2022, 43(1): 241-250. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||