石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (2): 309-326.doi: 10.11743/ogg20240201
邹才能1,2,3(), 董大忠1,2, 熊伟1,2, 傅国友3,4, 赵群1,2, 刘雯1, 孔维亮1, 张琴1, 蔡光银1, 王玉满1, 梁峰1, 刘翰林1, 邱振1,2()
收稿日期:
2024-03-22
修回日期:
2024-04-06
出版日期:
2024-04-30
发布日期:
2024-04-30
通讯作者:
邱振
E-mail:zcn@petrochina.com.cn;qiuzhen316@163.com
第一作者简介:
邹才能(1963—),男,博士、中国科学院院士,常规-非常规油气地质学理论研究与实践、新能源与能源战略。E-mail:zcn@petrochina.com.cn。
基金项目:
Caineng ZOU1,2,3(), Dazhong DONG1,2, Wei XIONG1,2, Guoyou FU3,4, Qun ZHAO1,2, Wen LIU1, Weiliang KONG1, Qin ZHANG1, Guangyin CAI1, Yuman WANG1, Feng LIANG1, Hanlin LIU1, Zhen QIU1,2()
Received:
2024-03-22
Revised:
2024-04-06
Online:
2024-04-30
Published:
2024-04-30
Contact:
Zhen QIU
E-mail:zcn@petrochina.com.cn;qiuzhen316@163.com
摘要:
近年来,中国页岩气聚焦 “三新”(尚未开展工作或工作程度低的新区带、新层系及新类型)领域,加大理论攻关与勘探力度,页岩气增储上产再上新台阶。基于中国页岩气“三新”领域理论与勘探新进展,分析其勘探特点、变化趋势和发展前景,探索中国特殊页岩气地质理论,明确页岩气发展挑战与对策。结果表明:中国在四川盆地及邻区创新建立了五峰组-龙马溪组特色的高-过成熟度海相页岩气富集理论,累计发现页岩气田9个,探明页岩气地质储量近3×1012 m3,形成了450×108 m3/a的页岩气产能,年产页岩气250×108 m3。明确了近年来中国页岩气 “三新”领域勘探具三大特点:①四川盆地及邻区五峰组-龙马溪组在深层、极浅层勘探取得重大新发展;②四川盆地筇竹寺组和吴家坪组等多个新层系实现新突破;③鄂尔多斯盆地西缘乌拉力克组获得新发现,东缘山西组取得新突破。页岩气 “三新”领域的勘探实现了三大战略性转变:①目标由单一类型、单一盆地和单一层系转变为多类型、多盆地和多层系;②选区由盆内或盆缘为主转变为盆内、盆缘兼顾盆外弱改造区;③思路由纯粹富有机质页岩转变为富有机质页岩系统。通过梳理中国页岩气 “三新”领域勘探挑战,指出“三新”领域是中国页岩气可持续发展的方向,并提出了下一步发展对策。
中图分类号:
表1
中国陆上页岩气“三新”领域勘探新发现统计"
盆地或区域 | “三新”类型 | 地区/构造 | 井号 | 井深/m | 层位 | 测试产量/(104 m3/d) |
---|---|---|---|---|---|---|
四川 盆地 | 新层系、 新类型 | 井研—犍为地区 | 金石103HF | 4 683.00 | 筇竹寺组 | 25.86 |
威远地区 | 资201 | 6 600.00 | 筇竹寺组 | 73.88 | ||
新领域、 新区带 | 威荣地区 | 威页1 | 3 500.00 ~ 4 500.00 | 五峰组-龙马溪组 | 17.50 | |
泸州地区 | 泸203 | 3 866.70 | 五峰组-龙马溪组 | 137.90 | ||
渝西地区 | 足202H1 | 3 925.50 | 五峰组-龙马溪组 | 45.67 | ||
黄202 | 4 086.10 | 五峰组-龙马溪组 | 22.37 | |||
永川地区 | 永页1等6口井 | 3 700.00 ~ 4 300.00 | 五峰组-龙马溪组 | 8.00 ~ 14.00 | ||
丁山- 东溪区带 | 东页深1HF 等4口井 | 3 800.00 ~ 4 500.00 | 五峰组-龙马溪组 | 5.00 ~ 31.20 | ||
太阳- 大寨背斜 | Y1 | 976.20 ~ 986.00 | 五峰组-龙马溪组 | 1.10 | ||
Y102 | 768.50 ~ 778.80 | 五峰组-龙马溪组 | 0.59 | |||
海坝背斜 | Y153H1平台 | 480.00 ~ 560.00 | 五峰组-龙马溪组 | 4.50 ~ 6.10 | ||
新层系、 新类型 | 华蓥山区带 | 华地1 | 1 288.80 ~ 1 337.20 | 龙马溪组 | 0.30 ~ 0.50 | |
宣汉—达县地区 | 雷页1 | 4 000.00 | 大隆组 | 42.66 | ||
七里峡构造 | 罐36 | 3 631.00 | 吴家坪组 | 1.20 | ||
梁平地区 | 大页1 | 6 037.00 | 吴家坪组 | 32.06 | ||
红星地区 | 红页1HF—红页4HF | 3 300.00 | 吴家坪组 | 8.90 ~ 15.20 | ||
红页1平台 | 3 300.00 | 茅口组-吴家坪组 | 6.08 | |||
红页茅1HF | 5 727.00 | 茅口组 | 6.45 | |||
南江区块 | 乐坝1 | 5831.00 | 大隆组 | 6.17 | ||
普光气田 | 普陆页1 | 3 190.00 ~ 3 460.00 | 千佛崖组 | 10.40 | ||
拔山寺向斜 | 泰页1 | 2 386.00 ~ 2 624.00 | 凉高山组 | 7.50 | ||
平昌地区 | 平安1 | 2 850.00 ~ 3 015.00 | 凉高山组 | 11.45 | ||
元坝区带 | 元坝21 | 4 010.00 ~ 4033.00 | 自流井组大安寨段 | 50.70 | ||
龙岗区块 | 龙浅2 | 2 128.00 ~ 2 146.00 | 自流井组大安寨段 | 0.30 | ||
涪陵区块 | 涪页HF-1 | 3 570.00 ~ 3 722.00 | 自流井组大安寨段 | 1.70 | ||
建南地区 | 建页HF-1 | 1 777.77 | 自流井组东岳庙段 | 1.20 | ||
鄂尔多斯 盆地 | 新层系、 新类型、 新区带 | 马家滩区块 | 忠平1 | 4 165.00 ~ 4 285.00 | 乌拉力克组 | 26.48 |
李99 | 4 432.41 ~ 4434.55 | 乌拉力克组 | 4.20 | |||
大宁—吉县地区 | 大吉51(吉平1H) | 2 265.50 ~ 2 302.50 | 山西组 | 7.97 | ||
其他 地区 | 新层系、 新区带 | 正安向斜 | 安页1 | 2 302.00 ~ 2 325.48 | 石牛栏组 五峰组-龙马溪组 | 10.22 100 ~ 2.36 |
狮溪向斜 | 狮溪1 | 1356.00 | 五峰组-龙马溪组 | 1.19 ~ 2.86 | ||
桴焉复向斜 | 瑞溪1、瑞溪2 | 426.00 ~ 762.00 | 五峰组-龙马溪组 | 1.06 ~ 2.37 | ||
大关— 永善地区 | 云大页1 | 1 998.00 ~ 2 088.00 | 五峰组-龙马溪组 | 0.53 | ||
新层系、 新类型、 新区带 | 宜昌区块 | 鄂宜页1、 鄂阳页1HF等6口井 | 1 874.00 ~ 2 389.00 3 343.00 ~ 5 179.00 | 陡山沱组-水井沱组- 龙马溪组 | 5.53 ~ 7.83 | |
丹寨区块 | 贵丹地1 | 535.00 ~ 1 080.00 | 乌训组-陡山沱组 | — | ||
玉皇洞向斜 | 黔水地1 | 2 500.00 | 打屋坝组 | 1.10 | ||
黔南坳陷 | 黔紫页1 | 2 664.00 ~ 2 983.00 | 打屋坝组 | — | ||
柳城北区块 | 桂融页2-1HF | 1 857.00 ~ 3 657.00 | 鹿寨组 | — |
表2
四川盆地“三新”领域页岩气有利区资源统计"
“三新”类型 | 区带 | 层位 | 面积/ km2 | 资源量/ (108 m3) |
---|---|---|---|---|
新类型 | 自210井区 | 五峰组-龙马溪组 | 220 | 1 100 |
宜202井区 | 260 | 1 300 | ||
自205井区 | 200 | 1 200 | ||
泸州中区 | 790 | 7 000 | ||
足202-203井区 | 160 | 800 | ||
新层系- 新类型 | 威远构造东翼 | 筇竹寺组 | 3 000 | 20 000 |
井研-犍为区块 | 600 | 3 878 | ||
龙门潜伏构造 | 吴家坪组 | 30 000 | 60 000 | |
宣汉—达县地区 | 大隆组 | 4 220 | 12 000 | |
红星地区 | 吴家坪组-茅口组 | 9 480 | 47 600 | |
马家滩—银洞子地区 | 乌拉力克组 | 9 000 | 10 000 | |
新层系- 新区带 | 宜昌地区 | 五峰组-龙马溪组 | 3 039 | 15 000 |
道真地区 | 368 | 1 914 | ||
遵义地区 | 695 | 200 ~ 300 | ||
大关木杆—寿山地区 | 333 | 1 400 | ||
柳城北、鹿寨地区 | 鹿寨组、 榴江组 | 122 | 2 100 |
表3
四川盆地外围重点地区页岩气区带特征及资源规模"
有利层段类型 | 地区 | 典型井 | 层位 | 岩石类型 | TOC/% | Ro/% | 含气量/ (m3/t) | 测试产量/ (104 m3/d) |
---|---|---|---|---|---|---|---|---|
富有机质页岩层段 | 川南 | 宁201 泸203 | 五峰组-龙马溪组 | 富有机质页岩 | 2.50 ~ 8.50 | 2.50 ~ 3.80 | 2.00 ~ 6.00 | 15.00 ~ 137.90 |
涪陵 | 焦页1 | 五峰组-龙马溪组 | 富有机质页岩 | 2.00 ~ 8.00 | 2.65 | 1.30 ~ 6.30 | 20.30 | |
“富气” 贫有机页岩层段 | 乐山—龙女寺 | 金石103 | 筇竹寺组 | 页岩夹粉砂岩 | <2.00 | 3.15 ~ 3.26 | 0.13 ~ 3.30 | 25.86 |
仪陇—平昌 | 平安1 普陆页1 | 凉高山组 | 页岩夹粉砂岩、细砂岩 | 0.57 ~ 2.56 (1.35) | 1.51 ~ 1.61 (1.55) | 0.53 ~ 3.38 (1.58) | 10.40 ~ 11.45 | |
马家滩南 | 忠4 忠平1 | 乌拉力克组 | 裂缝型灰质 页岩 | 0.12 ~ 1.32 (0.63) | 0.80 ~ 2.50 (1.83) | 0.76 ~ 2.46 (1.65) | 26.48 |
表4
中国主要盆地新领域页岩气资源量统计"
盆地 | 类型 | 层系 | 资源量/(108 m3) | 可采资源量/(108 m3) | |
---|---|---|---|---|---|
四川盆地 | 陆相 | 侏罗系 | 6 600.80 | 990.12 | |
海-陆过渡相/海相 | 吴家坪组/龙潭组 | 34 440.00 | 8 610.00 | ||
海相 | 五峰组-龙马溪组 | 埋深≤4 500 m | 126 648.08 | 31 662.02 | |
埋深>4 500 m | 66 753.70 | 16 688.43 | |||
筇竹寺组 | 埋深≤4 500 m | 24 353.01 | 4 870.60 | ||
埋深>4 500 m | 23 985.00 | 4 797.00 | |||
鄂尔多斯盆地 | 海-陆过渡相 | 山西组 | 16 000.00~26 000.00 | 2 400.00~3 900.00 | |
海相 | 乌拉力克组 | 10 000.00 | 1 500.00 |
表5
中美主要页岩气地质特征对比"
主要地质特征 | 主要页岩名称 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Marcellus页岩 | Utica页岩 | Barnett页岩 | Eagle Ford页岩 | Fayetteville页岩 | Haynesville页岩 | WoodFord页岩 | Duvernay页岩 | 五峰组- 龙马溪组页岩 | 筇竹寺组页岩 | 吴家坪组页岩 | 乌拉力克组页岩 | |
盆地 | 阿巴拉契亚盆地 | 阿巴拉契亚盆地 | 福特沃斯堡盆地 | 西墨西哥湾盆地 | 阿科马盆地 | 路易斯安那盆地 | 阿纳达科/阿科马盆地 | 西加拿大盆地 | 四川盆地 | 四川盆地 | 四川盆地 | 鄂尔多斯盆地 |
盆地 类型 | 早古生代 前陆盆地 | 早古生代 前陆盆地 | 晚古生代 弧后前陆盆地 | 克拉通盆地 | 弧形地堑 | — | 克拉通盆地 | 稳定克 拉通盆地 | 克拉通盆地 | 裂陷槽 | 海槽 | 克拉通盆地 |
页岩时代 | D2 | O3 | C1 | K3 | C1 | J3 | D3-C1 | D3 | O3-S1 | Є1 | P3 | O3 |
页岩气发现 年份 | 1880 | 2010 | 1981 | 2008 | 2004 | 2004 | 2003 | 2012 | 2010 | 2019 | 2021 | 2019 |
气田面积/ (104 km2) | 24.60 | 24.60 | 1.30 | 3.00 | 0.69 | 2.33 | 2.85 | 2.43 | 4.94 | 1.00 | 3.00 | 2.50 |
构造特征 | 简单,宽缓斜坡 | 简单,宽缓斜坡 | 前陆斜坡 | 宽缓大斜坡 | 复杂构造 | 大型负向构造 | 简单-复杂 | 简单 | 多期构造叠合 | 多期构造叠合 | 多期构造叠合 | 多期构造叠合 |
断裂特征 | 主体无大断裂 | — | — | — | 正断层为主 | — | — | — | 盆缘断裂发育 | — | — | 断裂发育区 |
气层埋深/m | 914 ~ 2 600 | 1 350 ~ 2 800 | 1 000 ~ 2 600 | 1 200 ~ 4 300 | 450 ~ 2 590 | 3 300 ~ 5 300 | 1 830 ~ 3 350 | 3 100 ~ 4 100 | 500 ~ 6 000 | 3 250 ~ 5 500 | 3 000 ~ 4 500 | 3 700 ~ 4 500 |
地层厚度/m | 0 ~ 274 | — | 90 ~ 152 | 90 ~ 152 | — | 10 ~ 120 | >60 | 33 ~ 55 | 0 ~ 650 | 300 ~ 500 | 50 ~ 140 | 40 ~ 140 |
岩相类型 | 黑色页岩 | 钙质页岩 | 硅质页岩 | 富生物 钙质页岩 | 黑色页岩 | 硅质、 钙质页岩 | 钙质、硅质纹层状 页岩 | 富沥青质 页岩 | 硅质、钙质 页岩 | 粉砂质页岩 | 钙质页岩 | 硅质、 钙质页岩 |
储层厚度/m | 15 ~ 60 | 15 ~ 60 | 15 ~ 60 | 15 ~ 152 | 15 ~ 170 | 10 ~ 120 | 36 ~ 67 | 9 ~ 50 | 20 ~ 90 | 60 ~ 135 | 20 ~ 60 | 20 ~ 40 |
TOC/% | 3.00 ~ 15.00 | 1.00 ~ 8.00 | 4.00 ~ 8.00 | 2.00 ~ 12.00 | 4.04 | 0.28 ~ 6.20 | 5.01 ~ 14.81 | 2.00 ~ 11.00 | 2.00 ~ 5.00 | 4.00 ~ 8.00 | 2.80 ~ 7.48 | 0.43 ~ 1.52 |
有机质类型 | Ⅰ-Ⅱ | Ⅰ | Ⅱ | Ⅱ-Ⅲ | Ⅲ-Ⅳ | Ⅱ | Ⅰ-Ⅱ | Ⅱ-Ⅲ | Ⅰ | Ⅰ-Ⅱ1 | Ⅰ-Ⅱ1 | Ⅰ-Ⅱ1 |
Ro/% | 1.50 ~ 3.50 | 0.50 ~ 4.93 | 0.70 ~ 1.70 | 0.56 ~ 1.40 | — | 2.20 ~ 3.20 | 1.10 ~ 2.45 | 1.10 ~ 1.60 | 2.10 ~ 4.00 | 3.20 ~ 5.00 | 2.00 ~ 2.80 | 0.80 ~ 3.50 |
脆性矿物 含量/% | >50.00 | >50.00 | — | 40.00 ~ 85.00 | 55.00 ~ 70.00 | 50.00 ~ 70.00 | 84.00 | 32.30 ~ 93.50 | 45.00 ~ 75.00 | 51.50 ~ 85.00 | 69.00 ~ 94.00 | 70.00 ~ 75.00 |
孔隙类型 | 粒间孔、微裂缝、有机质孔 | 矿物孔、晶间孔、 有机质孔 | 粒间孔、粒内孔、 有机质孔 | 粒间孔、粒内孔、 有机质孔 | 粒间孔、粒内孔、 有机质孔 | 粒间孔、 有机质孔 | 粒间孔、 有机质孔 | 粒内孔、 有机质孔 | 粒间孔、粒内孔、有机质孔 | 粒间孔、微裂缝、 有机质孔 | 粒间孔、微裂缝、 有机质孔 | 微裂缝、 有机质孔 |
孔隙度/% | 6.00 ~ 10.00 | 2.00 ~ 8.00 | 3.00 ~ 6.00 | 3.40 ~ 14.60 | — | 8.00 ~ 9.00 | 3.00 ~ 9.00 | 2.50 ~ 6.50 | 3.00 ~ 7.00 | 0.92 ~ 1.91 | 3.50 ~ 6.80 | 0.21 ~ 7.89 |
渗透率/ (10-3 μm2) | 5.000 ~ 50.000 | 0.000 1 ~ 1.970 | — | 0.040 ~ 13.000 | — | 0.005 ~ 8.000 | — | 1.000 ~ 5.000 | <0.100 | — | — | 0.002 ~ 4.610 |
含气饱和度/% | 55 ~ 80 | 20 ~ 60 | 75 | — | — | 65 ~ 75 | — | — | 40 ~ 70 | — | — | — |
含气量/(m3/t) | 1.70 ~ 2.83 | — | 8.50 ~ 9.91 | — | 1.70 ~ 6.20 | 2.83 ~ 9.34 | 5.60 ~ 8.50 | — | 1.70 ~ 8.40 | 0.80 ~ 4.26 | 0.50 ~ 16.16 | 0.93 ~ 2.21 |
吸附气含量/%或(m3/t) | 40 % ~ 60 % | 1.98~2.12 m3/t | 2.97 ~ 3.26 m3/t | 0.28 ~ 1.42 m3/t | 50 % ~ 70 % | 20 % ~ 26 % | 44 % | — | 40 % ~ 65 % | — | 20 % ~ 55 % | 25 % ~ 62 % |
地层压力/MPa | 2.80 ~ 28.00 | — | 20.86 ~ 27.58 | — | — | — | — | — | 30.00 ~ 110.00 | — | — | — |
地层温度/℃ | — | — | 65.50 ~ 177.00 | 78.00 ~ 180.00 | — | — | — | — | 40.00 ~ 140.00 | — | — | — |
压力系数 | 0.92~1.38 | 1.00 ~ 1.46 | 0.99 ~ 1.02 | 1.10 ~ 1.85 | 1.38 ~ 1.84 | 1.61 ~ 2.07 | 1.35 ~ 1.85 | 0.90 ~ 1.60 | 0.90 ~ 2.20 | — | 1.15 ~ 1.85 | 0.96 ~ 1.00 |
资源量/(1012m)3 | 42.48 | 9.04 ~ 22.15 | 1.53 ~ 5.72 | 3.44 | — | 20.30 | 17.00 | 23.22 | 18.48 | 3.50 | 6.00 | 1.00 |
储量丰度/ (108 m3/km2) | 1.73 | 0.37 ~ 0.90 | 1.17 ~ 4.40 | 1.14 | — | 8.70 | 5.97 | 9.55 | 3.74 | 3.50 | 2.00 | 0.41 |
表6
四川盆地海相五峰组-龙马溪组主要页岩气甜点关键指标统计"
关键参数 | 气田位置 | |||||
---|---|---|---|---|---|---|
宁201井区 | 宁209井区 | 威202-204井区 | 威213井西区 | 自201井区 | 吉林自 301-302井区 | |
气田面积/km2 | 465.00 | 201.93 | 178.13 | 9.24 | 271.00 | 11.50 |
构造特征 | 单斜构造,地层倾角3° ~ 9° | 构造相对平缓 | 南东向单斜构造 | NW向单斜构造,地层倾角3° ~ 7° | 向东南倾斜的单斜构造 | “堑垒”相间较窄低陡背斜与宽缓向斜构造 |
断裂特征 | 中、小断裂为主,裂缝发育 | 中、小断层为主 | 零星小断层 | 不发育大尺度断层,局部小尺度断层 | 发育一些Ⅱ级和Ⅲ级小断裂 | 挤压形成的逆断层兼走滑性质 |
地层埋深/m | 1 500 ~ 4 500 | 2 000 ~ 4 000 | 1 500 ~ 4 000 | 3 200 ~ 3 800 | 2 000 ~ 4 500 | 2 000 ~ 4 000 |
地层厚度/m | 252.00 ~ 370.00 | — | — | 43.90 ~ 54.80,平均46.40 | — | — |
岩石类型 | 炭质页岩、硅质页岩、泥质粉砂岩、 粉砂质页岩 | 黑色炭质页岩、硅质页岩 | 黑色炭质页岩、 黑色页岩 | 黑色炭质、硅质页岩、粉砂质页岩 | 黑色钙质、硅质页岩 | 黑色炭质页岩、粉砂质页岩 |
储层厚度/m | 29.50 ~ 50.00 | 29.50 ~ 46.40 | 10.00 ~ 30.00 | 40.00 ~ 45.00 | 10.00 ~ 34.00 | 下层系15.00 ~ 27.50, 上层系22.50 ~ 40.00 |
TOC/% | 1.00 ~ 4.50 | 3.10 ~ 6.20 | 3.00 ~ 3.60 | 2.90 ~ 3.50 | 2.20 ~ 5.90 | 下层系3.00 ~ 4.40, 上层系2.20 ~ 2.90 |
Ro/% | 2.60 ~ 3.20 | 2.60 ~ 3.20 | 1.78 ~ 2.26 | 3.10 ~ 3.30 | 2.10 ~ 2.50 | 2.40 ~ 2.81,平均2.60 |
脆性指数/% | 42.50 ~ 82.30 | 61.00 ~ 86.00 | 43.10 ~ 75.00 | 65.00 ~ 70.00 | 58.00 ~ 88.00 | 下层系60.00 ~ 70.00, 上层系56.00 ~ 62.00 |
孔隙类型 | 有机孔、粒间孔、 晶间孔、晶内溶孔、裂缝 | 无机孔、无机缝、有机孔、 有机缝 | 有机孔,粒间、晶间、 晶内溶孔,裂缝 | 无机孔、有机孔、微裂缝 | 有机孔,粒间、晶间、 晶内溶孔,裂缝 | 无机孔、有机孔和裂缝 |
孔隙度/% | 2.00 ~ 10.90 | 4.20 ~ 7.30 | 2.30 ~ 7.00 | 5.30 ~ 6.00 | 5.10 ~ 6.80 | 下层系4.80 ~ 5.70,上层系4.80 ~ 5.90 |
渗透率/(10-3μm2) | 0.71 ~ 1.48 | — | 0.11 ~ 6.02 | — | 0.11 ~ 6.14 | 10.00 ~ 107.00 |
含气饱和度/% | 50.00 ~ 70.00 | 50.00 ~ 70.00 | 32.70 ~ 84.60 | 32.70 ~ 84.60 | 53.70~76.40 | 下层系56.00 ~ 74.00,上层系52.00~65.00 |
含气量/(m3/t) | 2.00 ~ 12.16 | 4.00 ~ 9.30 | 2.34 ~ 7.50 | 4.80 ~ 5.40 | 3.30 ~ 6.90 | 下层系5.00 ~ 7.00,上层系4.50 ~ 6.20 |
地层压力/MPa | 18.41 ~ 61.02 | 31.57 ~ 49.88 | 35.13 ~ 73.31 | 13.79 ~ 73.32 | 13.79 ~ 73.31 | 70.00 |
地层温度/℃ | 75.00 ~ 110.60 | — | 99.90 ~ 133.90 | 99.90 ~ 133.100 | 71.8 ~ 133.92 | 125.00 |
压力系数 | 1.20 ~ 2.03 | 1.20 ~ 2.00 | >1.20 | 1.80~2.00 | >1.20 | 2.10 ~ 2.20 |
储量丰度/(108 m3/km2) | 5.24 ~ 7.52 | 5.14 | 3.68 ~ 6.29 | 6.05 | 3.47 | 3.93 |
关键参数 | 气田位置 | |||||
泸州区块泸203井区 | 泸州福集向斜区 | 渝西足201-202井区 | 黄金坝YS108H井区 | 紫金坝YS112井区 | 太阳-大寨-海坝区块 | |
气田面积/km2 | 165.00 | 158.20 | 363.10 | 154.00 | 85.00 | 490.90 |
构造特征 | “堑垒”低陡背斜 | 福集向斜 | 背斜与向斜, 构造简单 | 压扭构造背景, 地层倾角较平缓 | 构造形态简单, 构造作用相对较弱 | 复背斜构造, 三隆两凹构造格局 |
断裂特征 | 发育Ⅰ级、Ⅱ级、三四级断裂 | Ⅱ级及以下级别断层,逆断层 | 少量Ⅲ级、Ⅳ级小逆断层 | 大断层不发育 | 局部断裂发育 | 发育逆断层和走滑断层 |
地层埋深/m | 3 550 ~ 4 000 | 3 500 ~ 4 200 | 3 500 ~ 4 500 | 2 000 ~ 3 500 | 1 000 ~ 3 000 | 250 ~ 2 200 |
地层厚度/m | 500 ~ 600 | 450 ~ 650 | 370 ~ 480 | — | — | 200 ~ 253.5 |
岩石类型 | 下层系硅质炭质页岩;上层系钙质页岩 | 下层系硅质炭质页岩;上层系钙质页岩 | 黑色硅质页岩、粉砂质页岩 | 炭质硅质页岩、粉砂质页岩 | 钙质页岩 | 炭质、硅质页岩、粉砂质页岩 |
储层厚度/m | 30.00 ~ 65.00 | 35.00 ~ 65.00 | 20.00 ~ 39.00 | 36.30 | 33.00 ~ 35.00 | 30.00 ~ 50.00 |
TOC/% | 2.80 ~ 5.70 | 3.00 ~ 3.60 | 1.90 ~ 4.60 | 2.00 ~ 6.70 | 3.03 | 1.02 ~ 6.06 |
Ro/% | 2.50~3.40 | 2.50~3.40 | >2.00 | 2.20 ~ 3.20 | 2.30 ~ 2.60 | 1.80 ~ 3.08 |
脆性指数/% | 60 ~ 77 | 65 ~ 73 | 70 ~ 78 | 55 ~ 75 | 55 | 51 ~ 79 |
孔隙类型 | 有机孔、无机孔发育 | 有机孔、无机孔和裂缝 | 无机孔、有机孔和裂缝 | 有机质孔、无机孔 | 有机质孔、粒间微孔、铸模孔 | 有机质孔、无机孔、微裂缝 |
孔隙度/% | 4.30 ~ 6.90 | 4.00 ~ 5.55 | 2.80 ~ 5.50 | 3.10 ~ 6.30 | 4.50 | 2.78 ~ 7.89 |
渗透率/(10-3 μm2) | 4.07 ~ 9.81 | 4.07 ~ 9.81 | — | — | — | — |
含气饱和度/% | 60 ~ 76 | 55 ~ 70 | 62 ~ 67 | — | — | 39 ~ 74 |
含气量/(m3/t) | 3.60 ~ 8.70 | 4.50 ~ 6.50 | 3.30 ~ 6.70 | 2.56 ~ 3.48 | 3.65 | 1.31 ~ 6.99 |
地层压力/MPa | 97.50 | 69.10 ~ 96.51 | 77.00 ~ 91.00 | — | — | 2.90 ~ 41.90 |
地层温度/℃ | 133 ~ 143 | 120 ~ 140 | 110 ~ 125 | 95 | 95 | — |
压力系数 | 1.94 ~ 2.42 | 2.07 ~ 2.25 | 1.85 ~ 2.07 | 2.00 | 1.60 ~ 1.80 | 1.25 ~ 1.62 |
储量丰度/(108 m3/km2) | 8.16 ~ 9.50 | 8.60 ~ 11.26 | 4.42 ~ 5.09 | 4.20 | 3.27 | 3.11 ~ 6.00 |
1 | EIA. Drilling productivity report: For key tight oil and shale gas regions[Z]. Washington, D.C.: EIA Independent Statistics & Analysis, 2023. |
2 | 邱振, 邹才能. 非常规油气沉积学: 内涵与展望[J]. 沉积学报, 2020, 38(1): 1-29. |
QIU Zhen, ZOU Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29. | |
3 | 邹才能, 赵群, 王红岩, 等. 中国海相页岩气主要特征及勘探开发主体理论与技术[J]. 天然气工业, 2022, 42(8): 1-13. |
ZOU Caineng, ZHAO Qun, WANG Hongyan, et al. The main characteristics of marine shale gas and the theory & technology of exploration and development in China[J]. Natural Gas Industry, 2022, 42(8): 1-13. | |
4 | 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14. |
ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14. | |
5 | 邹才能, 龚剑明, 王红岩, 等. 笔石生物演化与地层年代标定在页岩气勘探开发中的重大意义[J]. 中国石油勘探, 2019, 24(1): 1-6. |
ZOU Caineng, GONG Jianming, WANG Hongyan, et al. Importance of graptolite evolution and biostratigraphic calibration on shale gas exploration[J]. China Petroleum Exploration, 2019, 24(1): 1-6. | |
6 | 张金川, 李振, 王东升, 等. 中国页岩气成藏模式[J]. 天然气工业, 2022, 42(8): 78-95. |
ZHANG Jinchuan, LI Zhen, WANG Dongsheng, et al. Shale gas accumulation patterns in China[J]. Natural Gas Industry, 2022, 42(8): 78-95. | |
7 | 马新华, 张晓伟, 熊伟, 等. 中国页岩气发展前景及挑战[J]. 石油科学通报, 2023, 8(4): 491-501. |
MA Xinhua, ZHANG Xiaowei, XIONG Wei, et al. Prospects and challenges of shale gas development in China[J]. Petroleum Science Bulletin, 2023, 8(4): 491-501. | |
8 | 何文渊, 何海清, 王玉华, 等. 川东北地区平安1井侏罗系凉高山组页岩油重大突破及意义[J]. 中国石油勘探, 2022, 27(1): 40-49. |
HE Wenyuan, HE Haiqing, WANG Yuhua, et al. Major breakthrough and significance of shale oil of the Jurassic Lianggaoshan Formation in Well Ping’an 1 in northeastern Sichuan Basin[J]. China Petroleum Exploration, 2022, 27(1): 40-49. | |
9 | 冯动军. 川东南二叠系龙潭组海-陆过渡相页岩气甜点评价及意义[J]. 石油与天然气地质, 2023, 44(3): 778-788. |
FENG Dongjun. Sweet spot assessment and its significance for the marine-continental transitional shale gas of Permian Longtan Fm. in southeastern Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(3): 778-788. | |
10 | 郭旭升, 马晓潇, 黎茂稳, 等. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
GUO Xusheng, MA Xiaoxiao, LI Maowen, et al. Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins[J]. Oil & Gas Geology, 2023, 44(6): 1333-1349. | |
11 | 郭为, 高金亮, 李海, 等. 中国海陆过渡相页岩气地质开发特征——以鄂尔多斯盆地东缘山西组和四川盆地龙潭组页岩气为例[J]. 矿产勘查, 2023, 14(3): 448-458. |
GUO Wei, GAO Jinliang, LI Hai, et al. The geological and production characteristics of marine-continental transitional shale gas in China: Taking the example of shale gas from Shanxi Formation in Ordos Basin and Longtan Formation in Sichuan Basin[J]. Geotechnical Engineering World, 2023, 14(3): 448-458. | |
12 | 王同, 熊亮, 董晓霞, 等. 川南地区筇竹寺组新层系页岩储层特征[J]. 油气藏评价与开发, 2021, 11(3): 443-451. |
WANG Tong, XIONG Liang, DONG Xiaoxia, et al. Characteristics of shale reservoir in new strata of Qiongzhusi Formation in southern Sichuan[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 443-451. | |
13 | 黎茂稳, 马晓潇, 金之钧, 等. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义[J]. 石油与天然气地质, 2022, 43(1): 1-25. |
LI Maowen, MA Xiaoxiao, JIN Zhijun, et al. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China[J]. Oil & Gas Geology, 2022, 43(1): 1-25. | |
14 | 金军, 秦勇, 易同生, 等. 威宁地区下石炭统祥摆组:一个潜在的薄互层煤系气新层系[J]. 地质论评, 2023, 69(5): 1879-1891. |
JIN Jun, QIN Yong, YI Tongsheng, et al. Lower Carboniferous Xiangbai Formation in Weining area: A potential new formation of thin interbedded coal measures gas[J]. Geological Review, 2023, 69(5): 1879-1891. | |
15 | 孙豪飞, 罗冰, 文龙, 等. 四川盆地雷口坡组富有机质页岩的发现及盐下勘探新领域[J]. 天然气地球科学, 2021, 32(2): 233-247. |
SUN Haofei, LUO Bing, WEN Long, et al. The first discovery of organic-rich shale in Leikoupo Formation and new areas of sub-salt exploration, Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(2): 233-247. | |
16 | 杨雨, 汪华, 谢继容, 等. 页岩气勘探新领域: 四川盆地开江—梁平海槽二叠系海相页岩气勘探突破及展望[J]. 天然气工业, 2023, 43(11): 19-27. |
YANG Yu, WANG Hua, XIE Jirong, et al. Exploration breakthrough and prospect of Permian marine shale gas in the Kaijiang-Liangping Trough, Sichuan Basin[J]. Natural Gas Industry, 2023, 43(11): 19-27. | |
17 | 李军. 页岩气开发新区上市储量评估方法研究与实践[J]. 企业科技与发展, 2022(3): 89-91. |
LI Jun. Research and practices on evaluation methods of marketable reserves for shale gas development in new area[J]. Enterprise Science and Technology & Development, 2022(3): 89-91. | |
18 | 杨平, 余谦, 牟传龙, 等. 四川盆地西南缘山地复杂构造区页岩气富集模式及勘探启示: 一个页岩气新区[J]. 天然气工业, 2021, 41(5): 42-54. |
YANG Ping, YU Qian, MOU Chuanlong, et al. Shale gas enrichment model and exploration implications in the mountainous complex structural area along the southwestern margin of the Sichuan Basin: A new shale gas area[J]. Natural Gas Industry, 2021, 41(5): 42-54. | |
19 | 陶士振, 刘德良, 李昌伟, 等. 华北陆块新区新层页岩气潜在勘探新领域——南华北下寒武统马店组烃源岩及其含气系统[J]. 天然气地球科学, 2014, 25(11): 1767-1780. |
TAO Shizhen, LIU Deliang, LI Changwei, et al. Exploration frontiers of unexplored shale layer in new district, North China block: Source rock and its gas system of Madian Formation of Lower Cambrian in the southern part of North China block (SNCB)[J]. Natural Gas Geoscience, 2014, 25(11): 1767-1780. | |
20 | 董大忠, 邱振, 张磊夫, 等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报, 2021, 39(1): 29-45. |
DONG Dazhong, QIU Zhen, ZHANG Leifu, et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica, 2021, 39(1): 29-45. | |
21 | 王红岩, 周尚文, 赵群, 等. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
WANG Hongyan, ZHOU Shangwen, ZHAO Qun, et al. Enrichment characteristics, exploration and exploitation progress, and prospects of deep shale gas in the southern Sichuan Basin, China[J]. Oil & Gas Geology, 2023, 44(6): 1430-1441. | |
22 | 邱振, 窦立荣, 吴建发, 等. 川北-鄂西地区中二叠统层序岩相古地理演化及页岩气勘探潜力[J].地球科学, 2024, 49(2): 712-748. |
QIU Zhen, DOU Lirong, WU Jianfa, et al. Lithofacies palaeogeographic evolution of the Middle Permian sequence stratigraphy and its implications for shale gas exploration in the northern Sichuan and western Hubei provinces[J]. Earth Science, 2024, 49(2): 712-748. | |
23 | 邹才能, 杨智, 董大忠, 等. 非常规源岩层系油气形成分布与前景展望[J]. 地球科学, 2022, 47(5): 1517-1533. |
ZOU Caineng, YANG Zhi, DONG Dazhong, et al. Formation, distribution and prospect of unconventional hydrocarbons in source rock strata in China[J]. Earth Science, 2022, 47(5): 1517-1533. | |
24 | 郭旭升, 赵永强, 申宝剑, 等. 中国南方海相页岩气勘探理论: 回顾与展望[J]. 地质学报, 2022, 96(1): 172-182. |
GUO Xusheng, ZHAO Yongqiang, SHEN Baojian, et al. Marine shale gas exploration theory in southern China: Review and prospects[J]. Acta Geologica Sinica, 2022, 96(1): 172-182. | |
25 | 郭彤楼. 深层页岩气勘探开发进展与攻关方向[J]. 油气藏评价与开发, 2021, 11(1): 1-6. |
GUO Tonglou. Progress and research direction of deep shale gas exploration and development[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(1): 1-6. | |
26 | 李阳, 薛兆杰, 程喆, 等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探, 2020, 25(1): 45-57. |
LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45-57. | |
27 | 李敏, 刘雅利, 冯动军, 等. 中国海相页岩气资源潜力及未来勘探方向[J]. 石油实验地质, 2023, 45(6): 1097-1108. |
LI Min, LIU Yali, FENG Dongjun, et al. Potential and future exploration direction of marine shale gas resources in China[J]. Petroleum Geology and Experiment, 2023, 45(6): 1097-1108. | |
28 | 姜鹏飞, 吴建发, 朱逸青, 等. 四川盆地海相页岩气富集条件及勘探开发有利区[J]. 石油学报, 2023, 44(1): 91-109. |
JIANG Pengfei, WU Jianfa, ZHU Yiqing, et al. Enrichment conditions and favorable areas for exploration and development of marine shale gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2023, 44(1): 91-109. | |
29 | 梁兴, 张介辉, 张涵冰, 等. 浅层页岩气勘探重大发现与高效开发对策研究——以太阳浅层页岩气田为例[J]. 中国石油勘探, 2021, 26(6): 21-37. |
LIANG Xing, ZHANG Jiehui, ZHANG Hanbing, et al. Major discovery and high-efficiency development strategy of shallow shale gas: A case study of Taiyang shale gas field[J]. China Petroleum Exploration, 2021, 26(6): 21-37. | |
30 | 张金川, 陶佳, 李振, 等. 中国深层页岩气资源前景和勘探潜力[J]. 天然气工业, 2021, 41(1): 15-28. |
ZHANG Jinchuan, TAO Jia, LI Zhen, et al. Prospect of deep shale gas resources in China[J]. Natural Gas Industry, 2021, 41(1): 15-28. | |
31 | 邱振, 邹才能, 王红岩, 等. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学, 2020, 31(2): 163-175. |
QIU Zhen, ZOU Caineng, WANG Hongyan, et al. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China[J]. Natural Gas Geoscience, 2020, 31(2): 163-175. | |
32 | 张琴, 赵群, 罗超, 等. 有机质石墨化及其对页岩气储层的影响——以四川盆地南部海相页岩为例[J]. 天然气工业, 2022, 42(10): 25-36. |
ZHANG Qin, ZHAO Qun, LUO Chao, et al. Effect of graphitization of organic matter on shale gas reservoirs: Take the marine shales in the southern Sichuan Basin as examples[J]. Natural Gas Industry, 2022, 42(10): 25-36. | |
33 | 梁峰, 姜巍, 戴赟, 等. 四川盆地威远—资阳地区筇竹寺组页岩气富集规律及勘探开发潜力[J]. 天然气地球科学, 2022, 33(5): 755-763. |
LIANG Feng, JIANG Wei, DAI Yun, et al. Enrichment law and resource potential of shale gas of Qiongzhusi Formation in Weiyuan-Ziyang areas, Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(5): 755-763. | |
34 | 梁峰. 中上扬子地区五峰组—龙马溪组页岩气富集模式及有利区优选评价[D]. 徐州: 中国矿业大学, 2018. |
LIANG Feng. The research on shale gas enrichment pattern and the favorable area optimizing of Wufeng-Longmaxi shale in middle and upper Yangtze region[D]. Xuzhou: China University of Mining and Technology, 2018. | |
35 | 张金川, 陶佳, 李中明, 等. 中国页岩剖面区域分布及其页岩气地质意义[J]. 油气藏评价与开发, 2022, 12(1): 29-46, 57. |
ZHANG Jinchuan, TAO Jia, LI Zhongming, et al. Regional distribution of field shale outcrop in China and its shale gas significance[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(1): 29-46, 57. | |
36 | 张金川, 史淼, 王东升, 等. 中国页岩气勘探领域和发展方向[J]. 天然气工业, 2021, 41(8): 69-80. |
ZHANG Jinchuan, SHI Miao, WANG Dongsheng, et al. Fields and directions for shale gas exploration in China[J]. Natural Gas Industry, 2021, 41(8): 69-80. | |
37 | 胡东风, 魏志红, 王威, 等. 四川盆地东北部雷页1井上二叠统大隆组页岩气勘探突破及其启示[J]. 天然气工业, 2023, 43(11): 28-39. |
HU Dongfeng, WEI Zhihong, WANG Wei, et al. Breakthrough of shale gas exploration in Dalong Formation of Upper Permian by Well Leiye 1 in the northeastern Sichuan Basin and its implications[J]. Natural Gas Industry, 2023, 43(11): 28-39. | |
38 | 胡德高, 周林, 包汉勇, 等. 川东红星地区HY1井二叠系页岩气勘探突破及意义[J]. 石油学报, 2023, 44(2): 241-252. |
HU Degao, ZHOU Lin, BAO Hanyong, et al. Breakthrough and significance of Permian shale gas exploration of Well HY1 in Hongxing area, eastern Sichuan Basin[J]. Acta Petrolei Sinica, 2023, 44(2): 241-252. | |
39 | 付锁堂, 付金华, 席胜利, 等. 鄂尔多斯盆地奥陶系海相页岩气地质特征及勘探前景[J]. 中国石油勘探, 2021, 26(2): 33-44. |
FU Suotang, FU Jinhua, XI Shengli, et al. Geological characteristics of Ordovician marine shale gas in the Ordos Basin and its prospects[J]. China Petroleum Exploration, 2021, 26(2): 33-44. | |
40 | 席胜利, 刘新社, 黄正良, 等. 鄂尔多斯盆地中奥陶统乌拉力克组页岩油气富集条件及勘探方向[J]. 天然气工业, 2023, 43(3): 12-22. |
XI Shengli, LIU Xinshe, HUANG Zhengliang, et al. Enrichment characteristics and exploration direction of shale oil and gas in Wulalike Formation of Middle Ordovician in the Ordos Basin[J]. Natural Gas Industry, 2023, 43(3): 12-22. | |
41 | 席胜利, 莫午零, 刘新社, 等. 鄂尔多斯盆地西缘奥陶系乌拉力克组页岩气勘探潜力——以忠平1井为例[J]. 天然气地球科学, 2021, 32(8): 1235-1246. |
XI Shengli, MO Wuling, LIU Xinshe, et al. Shale gas exploration potential of Ordovician Wulalike Formation in the western margin of Ordos Basin: Case study of Well Zhongping 1[J]. Natural Gas Geoscience, 2021, 32(8): 1235-1246. | |
42 | 王玉满, 周尚文, 黄正良, 等. 鄂尔多斯盆地西北缘奥陶系乌拉力克组裂缝孔隙表征[J]. 天然气地球科学, 2023, 34(7): 1146-1162. |
WANG Yuman, ZHOU Shangwen, HUANG Zhengliang, et al. Fracture pore characterization of the Ordovician Wulalike Formation in the northwestern margin of the Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(7): 1146-1162. | |
43 | 张琴, 邱振, 张磊夫, 等. 海陆过渡相页岩气储层特征与主控因素——以鄂尔多斯盆地大宁—吉县区块二叠系山西组为例[J]. 天然气地球科学, 2022, 33(3): 396-407. |
ZHANG Qin, QIU Zhen, ZHANG Leifu, et al. Reservoir characteristics and its influence on transitional shale: An example from Permian Shanxi Formation shale, Daning-Jixian blocks, Ordos Basin[J]. Natural Gas Geoscience, 2022, 33(3): 396-407. | |
44 | 刘雯, 赵群, 邱振, 等. 鄂尔多斯盆地东缘海陆过渡相页岩气成藏条件研究现状与展望[J]. 天然气地球科学, 2023, 34(5): 868-887. |
LIU Wen, ZHAO Qun, QIU Zhen, et al. Research status and prospect of accumulation conditions of transitional facies shale gas in the eastern margin of Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(5): 868-887. | |
45 | 刘洪林, 王怀厂, 张辉, 等. 鄂尔多斯盆地东部山西组页岩气成藏特征及勘探对策[J]. 地质学报, 2020, 94(3): 905-915. |
LIU Honglin, WANG Huaichang, ZHANG Hui, et al. Geological characteristics and exploration countermeasures of shale gas in the Shanxi Formation of the Ordos Basin[J]. Acta Geologica Sinica, 2020, 94(3): 905-915. | |
46 | 卢树藩, 何犇, 陈祎, 等. 贵州复杂构造背景下的页岩气勘查存在问题探讨[J]. 贵州地质, 2023, 40(1): 1-12. |
LU Shufan, HE Ben, CHEN Yi, et al. Discussion on problems of shale gas exploration under complex background in Guizhou[J]. Guizhou Geology, 2023, 40(1): 1-12. | |
47 | 李刚权, 李龙, 吴松, 等. 黔北地区石牛栏组气藏特征分析与开发展望[J]. 地球科学前沿, 2021, 11(5): 635-645. |
LI Gangquan, LI Long, WU Song, et al. Gas reservoir characteristics analysis and development prospects of Shiniulan Formation in northern Guizhou area[J]. Advances in Geosciences, 2021, 11(5): 635-645. | |
48 | 翟刚毅, 包书景, 庞飞, 等. 贵州遵义地区安场向斜“四层楼”页岩油气成藏模式研究[J]. 中国地质, 2017, 44(1): 1-12. |
ZHAI Gangyi, BAO Shujing, PANG Fei, et al. Peservoir-forming pattern of “four-storey” hydrocarbon accumulation in Anchang syncline of northern Guizhou Province[J]. Geology in China, 2017, 44(1): 1-12. | |
49 | 包书景, 陈科, 周志, 等. 南方公益性页岩气调查研究进展[J]. 中国地质调查, 2023, 10(6): 1-12. |
BAO Shujing, CHEN Ke, ZHOU Zhi, et al. Progress of investigation and research on public welfare shale gas in Southern China[J]. Geological Survey of China, 2023, 10(6): 1-12. | |
50 | 姜秉仁, 邓恩德, 杨通保, 等. 黔西地区石炭系页岩气成藏地质特征及含气性影响因素[J]. 石油实验地质, 2022, 44(4): 629-638, 646. |
JIANG Bingren, DENG Ende, YANG Tongbao, et al. Geological conditions and controls of gas content of Carboniferous shale gas reservoirs in western Guizhou[J]. Petroleum Geology and Experiment, 2022, 44(4): 629-638, 646. | |
51 | 易同生, 陈捷. 黔西石炭系页岩气赋存特征与勘探潜力[J]. 油气藏评价与开发, 2022, 12(1): 82-94. |
YI Tongsheng, CHEN Jie. Occurrence characteristics and exploration potential of Carboniferous shale gas in western Guizhou[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(1): 82-94. | |
52 | 包书景, 李世臻, 徐兴友, 等. 全国油气资源战略选区调查工程进展与成果[J]. 中国地质调查, 2019, 6(2): 1-17. |
BAO Shujing, LI Shizhen, XU Xingyou, et al. Progresses and achievements of the national oil and gas resource strategic constituency survey project[J]. Geological Survey of China, 2019, 6(2): 1-17. | |
53 | 邹才能, 赵群, 王红岩, 等. 非常规油气勘探开发理论技术助力我国油气增储上产[J]. 石油科技论坛, 2021, 40(3): 72-79. |
ZOU Caineng, ZHAO Qun, WANG Hongyan, et al. Theory and technology of unconventional oil and gas exploration and development helps China increase oil and gas reserves and production[J]. Petroleum Science and Technology Forum, 2021, 40(3): 72-79. | |
54 | 孙健, 易积正, 胡德高. 北美主要页岩层系油气地质特征[M]. 北京: 中国石化出版社, 2018: 1-332. |
SUN Jian, YI Jizheng, HU Degao. Key geological characteristics of shale formations in North America[M]. Beijing: China Petrochemical Press, 2018: 1-332. | |
55 | 窦立荣, 黄文松, 孔祥文, 等. 西加盆地Duvernay海相页岩油气富集机制研究[J/OL]. 地学前缘: 1-15[2023-10-30]. . DOI: 10.13745/j.esf.sf.2023.9.36 . |
DOU Lirong, HUANG Wensong, KONG Xiangwen, et al. Hydrocarbon enrichment mechanism of Duvernay marine shales in the Western Canada Basin[J/OL]. Earth Science Frontiers: 1-15[2023-10-30]. . DOI: 10.13745/j.esf.sf.2023.9.36 . | |
56 | 贾承造, 姜林, 赵文. 页岩油气革命与页岩油气、致密油气基础地质理论问题[J]. 石油科学通报, 2023, 8(6): 695-706. |
JIA Chengzao, JIANG Lin, ZHAO Wen. The shale revolution and basic geological theory problems of shale and tight oil and gas[J]. Petroleum Science Bulletin, 2023, 8(6): 695-706. | |
57 | 邱振, 卢斌, 陈振宏, 等. 火山灰沉积与页岩有机质富集关系探讨——以五峰组—龙马溪组含气页岩为例[J]. 沉积学报, 2019, 37(6): 1296-1308. |
QIU Zhen, LU Bin, CHEN Zhenhong, et al. Discussion of the relationship between volcanic ash layers and organic enrichment of black shale: A case study of the Wufeng-Longmaxi gas shales in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1296-1308. | |
58 | 张琳琳, 王孔杰, 赖枫鹏, 等. 鄂尔多斯盆地西缘奥陶系乌拉力克组海相页岩气储层甜点分类评价[J]. 石油实验地质, 2024, 46(1): 191-201. |
ZHANG Linlin, WANG Kongjie, LAI Fengpeng, et al. Classification and evaluation of sweet spots of marine shale gas reservoir in Ordovician Wulalike Formation on the western margin of Ordos Basin[J]. Petroleum Geology and Experiment, 2024, 46(1): 191-201. | |
59 | 周从业. 中国南方海相复杂山地页岩气储层甜点综合评价技术研究[J]. 石化技术, 2023, 30(8): 106-108. |
ZHOU Congye. Study on comprehensive evaluation technology for sweet spot of shale gas reservoirs in marine complex mountainous areas in southern China[J]. Petrochemical Industry Technology, 2023, 30(8): 106-108. | |
60 | 聂海宽, 党伟, 张珂, 等. 中国页岩气研究与发展20年: 回顾与展望[J]. 天然气工业, 2024, 44(3): 20-52. |
NIE Haikuan, DANG Wei, ZHANG Ke, et al. Two decades of shale gas research & development in China: Review and prospects[J]. Natural Gas Industry, 2024, 44(3): 20-52. | |
61 | 王鹏威, 陈筱, 刘忠宝, 等. 海相富有机质页岩储层压力预测方法——以涪陵页岩气田上奥陶统五峰组-下志留统龙马溪组页岩为例[J]. 石油与天然气地质, 2022, 43(2): 467-476. |
WANG Pengwei, CHEN Xiao, LIU Zhongbao, et al. Reservoir pressure prediction for marine organic-rich shale: A case study of the Upper Ordovician Wufeng-Lower Silurian Longmaxi shale in Fuling shale gas field, NE Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 467-476. | |
62 | 胡东风, 魏志红, 刘若冰, 等. 川东南盆缘复杂构造区綦江页岩气田的发现与启示[J]. 石油与天然气地质, 2023, 44(6): 1418-1429. |
HU Dongfeng, WEI Zhihong, LIU Ruobing, et al. Discovery of the Qijiang shale gas field in a structurally complex region on the southeastern margin of the Sichuan Basin and its implications[J]. Oil & Gas Geology, 2023, 44(6): 1418-1429. |
[1] | 金之钧, 张川, 王晓峰, 李想. 关于中国碳中和与能源转型实现路径的思考[J]. 石油与天然气地质, 2024, 45(3): 593-599. |
[2] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[3] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[4] | 张益, 张斌, 刘帮华, 柳洁, 魏千盛, 张歧, 陆红军, 朱鹏宇, 王瑞. 页岩气储层吸附渗流研究现状及发展趋势[J]. 石油与天然气地质, 2024, 45(1): 256-280. |
[5] | 王光付, 李凤霞, 王海波, 周彤, 张亚雄, 王濡岳, 李宁, 陈昱辛, 熊晓菲. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
[6] | 胡东风, 魏志红, 刘若冰, 魏祥峰, 王威, 王庆波. 川东南盆缘复杂构造区綦江页岩气田的发现与启示[J]. 石油与天然气地质, 2023, 44(6): 1418-1429. |
[7] | 王红岩, 周尚文, 赵群, 施振生, 刘德勋, 焦鹏飞. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
[8] | 边瑞康, 孙川翔, 聂海宽, 刘珠江, 杜伟, 李沛, 王濡岳. 四川盆地东南部五峰组-龙马溪组深层页岩气藏类型、特征及勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1515-1529. |
[9] | 冯动军. 川东南二叠系龙潭组海-陆过渡相页岩气甜点评价及意义[J]. 石油与天然气地质, 2023, 44(3): 778-788. |
[10] | 王光付, 李凤霞, 王海波, 李军, 张宏, 周彤, 商晓飞, 潘林华, 沈云琦. 四川盆地非常规气藏地质-工程一体化压裂实践与认识[J]. 石油与天然气地质, 2022, 43(5): 1221-1237. |
[11] | 刘双莲. 页岩气“双甜点”参数测井评价方法[J]. 石油与天然气地质, 2022, 43(4): 1005-1012. |
[12] | 张功成, 陈莹, 李增学, 李友川, 兰蕾, 刘世翔, 孙瑞. 中国海域煤型油气成因理论[J]. 石油与天然气地质, 2022, 43(3): 553-565. |
[13] | 张心罡, 庞宏, 庞雄奇, 陈君青, 吴松, 马奎友, 张思玉. 四川盆地上二叠统龙潭组烃源岩生、排烃特征及资源潜力[J]. 石油与天然气地质, 2022, 43(3): 621-632. |
[14] | 王濡岳, 胡宗全, 龙胜祥, 杜伟, 吴靖, 邬忠虎, 聂海宽, 王鹏威, 孙川翔, 赵建华. 四川盆地上奥陶统五峰组-下志留统龙马溪组页岩储层特征与演化机制[J]. 石油与天然气地质, 2022, 43(2): 353-364. |
[15] | 王鹏威, 陈筱, 刘忠宝, 杜伟, 李东晖, 金武军, 王濡岳. 海相富有机质页岩储层压力预测方法——以涪陵页岩气田上奥陶统五峰组-下志留统龙马溪组页岩为例[J]. 石油与天然气地质, 2022, 43(2): 467-476. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||