石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (4): 1064-1078.doi: 10.11743/ogg20240412
高永进1,2(), 尹成明1,2, 刘丽红1,2(), 徐大融3, 杨有星1,2, 张远银4, 宋泽章5, 甄曼彤6
收稿日期:
2024-01-05
修回日期:
2024-07-22
出版日期:
2024-09-05
发布日期:
2024-09-05
通讯作者:
刘丽红
E-mail:gaoyongjin@mail.cgs.gov.cn;liulihong713@163.com
第一作者简介:
高永进(1968—),男,教授级高级工程师,区带评价与油气成藏。E‑mail: gaoyongjin@mail.cgs.gov.cn。
基金项目:
Yongjin GAO1,2(), Chengming YIN1,2, Lihong LIU1,2(), Darong XU3, Youxing YANG1,2, Yuanyin ZHANG4, Zezhang SONG5, Mantong ZHEN6
Received:
2024-01-05
Revised:
2024-07-22
Online:
2024-09-05
Published:
2024-09-05
Contact:
Lihong LIU
E-mail:gaoyongjin@mail.cgs.gov.cn;liulihong713@163.com
摘要:
近年来,塔里木盆地西北缘地区寒武系油气勘探取得了一系列发现和突破,研究寒武系烃源岩特征对指导下一步油气勘探具有非常重要的意义。前人研究普遍认为,塔里木盆地寒武系海相烃源岩主要集中在下寒武统玉尔吐斯组。为研究塔西北地区寒武系肖尔布拉克组新层系烃源岩特征,对4口钻井(BY1井、KTJ1井、KPN1井和XSC1井)和3条野外露头剖面样品进行了岩石学和地球化学分析。研究结果表明:塔西北地区肖尔布拉克组烃源岩主要为泥质灰岩和泥岩,测试结果显示寒武系肖尔布拉克组下段总有机碳含量(TOC)平均值分别为1.55 %,2.39 %,0.45 %,0.89 %(钻井样品)和1.10 %(露头样品),表明该组为好-较好烃源岩,有机质母质类型为腐泥型,沥青镜质体反射率(Rb)分布在2.23 %~2.57 %,有机质已经处于过成熟热演化阶段,为一套天然气气源岩。肖尔布拉克组烃源岩厚度约20~90 m,中-下段烃源岩优于上段。根据钻井及地震剖面发育特征,肖尔布拉克组烃源岩主要分布在以BY1井和KTJ1井为中心的台内洼地,该区为烃源岩最有利发育区。
中图分类号:
表1
塔里木盆地西北缘BY1井岩心样品全岩矿物X射线衍射分析结果"
样品编号 | 深度/m | 矿物组分含量/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
石英 | 钾长石 | 斜长石 | 方解石 | 白云石 | 黄铁矿 | 铁白云石 | 黏土 | 菱铁矿 | 重晶石 | 氟磷灰石 | ||
Є1x-1 | 3 879.1 | 22.9 | 6.9 | 0 | 0 | 0 | 5.5 | 50.3 | 14.3 | 0 | 0 | 0 |
Є1x-2 | 3 879.5 | 13.5 | 4.6 | 0 | 0 | 0 | 3.5 | 68.6 | 9.8 | 0 | 0 | 0 |
Є1x-4 | 3 880.0 | 4.8 | 1.2 | 0 | 85.0 | 0 | 1.5 | 4.0 | 3.5 | 0 | 0 | 0 |
Є1x-6 | 3 881.3 | 8.3 | 2.0 | 0 | 66.4 | 0 | 1.7 | 17.5 | 4.1 | 0 | 0 | 0 |
Є1x-7 | 3 881.8 | 2.6 | 0 | 0 | 94.6 | 0 | 0.9 | 1.3 | 0.6 | 0 | 0 | 0 |
Є1x-10 | 3 884.7 | 33.2 | 8.5 | 0 | 17.8 | 0 | 7.0 | 17.1 | 13.8 | 2.6 | 0 | 0 |
Є1x-12 | 3 887.0 | 1.0 | 0 | 0 | 88.3 | 0 | 0.0 | 10.3 | 0.4 | 0 | 0 | 0 |
Є1x-16 | 3 890.0 | 7.8 | 2.7 | 0 | 52.1 | 0 | 3.4 | 27.9 | 6.1 | 0 | 0 | 0 |
Є1x-18 | 3 891.5 | 6.8 | 1.8 | 0 | 18.7 | 0 | 2.6 | 65.0 | 5.1 | 0 | 0 | 0 |
Є1x-20 | 3 892.1 | 10.7 | 1.4 | 0 | 61.8 | 0 | 2.5 | 18.6 | 5.0 | 0 | 0 | 0 |
Є1x-22 | 3 893.5 | 21.7 | 5.1 | 0.2 | 27.7 | 0 | 4.9 | 33.9 | 6.5 | 0 | 0 | 0 |
Є1x-24 | 3 894.8 | 6.8 | 1.7 | 0 | 59.2 | 0 | 1.4 | 30.8 | 0.1 | 0 | 0 | 0 |
Є1x-25 | 3 896.6 | 6.2 | 1.5 | 0 | 18.3 | 69.1 | 1.7 | 0 | 3.2 | 0 | 0 | 0 |
Є1x-27 | 3 940.4 | 1.3 | 1.3 | 0 | 96.0 | 0 | 0 | 0 | 1.4 | 0 | 0 | 0 |
Є1x-29 | 3 942.0 | 0.8 | 2.5 | 0 | 93.6 | 0 | 0 | 2.6 | 0.5 | 0 | 0 | 0 |
Є1x-30 | 3 943.0 | 0.7 | 1.4 | 0 | 96.8 | 0 | 0 | 0.9 | 0.2 | 0 | 0 | 0 |
Є1x-32 | 3 945.2 | 0.8 | 0.8 | 0 | 97.1 | 0 | 0 | 0 | 1.3 | 0 | 0 | 0 |
最小值 | 0.7 | 0 | 0 | 0 | 0 | 0 | 0 | 1.3 | 0 | 0 | 0 | |
最大值 | 33.2 | 8.5 | 0.2 | 97.1 | 69.1 | 7.0 | 68.6 | 14.3 | 2.6 | 0 | 0 | |
平均值 | 9.7 | 2.7 | 0 | 56.3 | 7.3 | 2.3 | 22.0 | 4.8 | 0.3 | 0 | 0 | |
Є1y-33 | 3 946.3 | 0.7 | 0.9 | 0 | 97.5 | 0 | 0.8 | 0 | 0.1 | 0 | 0 | 0 |
Є1y-35 | 3 953.5 | 45.4 | 8.0 | 0 | 0 | 4.5 | 11.5 | 0 | 25.6 | 0 | 5.0 | 0 |
Є1y-36 | 3 953.7 | 45.6 | 15.0 | 0 | 0 | 0 | 9.1 | 7.7 | 19.7 | 0 | 2.9 | 0 |
Є1y-37 | 3 954.0 | 21.5 | 5.9 | 0 | 0 | 0 | 0 | 0 | 20.2 | 0 | 5.9 | 46.5 |
Є1y-38 | 3 954.3 | 6.3 | 0 | 0 | 0 | 0 | 0 | 0 | 1.3 | 21.3 | 6.7 | 64.4 |
Є1y-39 | 3 954.8 | 3.0 | 0 | 0 | 0 | 75.3 | 5.4 | 0 | 11.6 | 0 | 4.7 | 0 |
Z2q-1 | 3 955.8 | 4.6 | 0.5 | 0 | 0 | 93.2 | 0 | 0 | 0.9 | 0 | 0.8 | 0 |
Z2q-2 | 3 957.3 | 3.1 | 1.0 | 0 | 0.2 | 93.3 | 0.9 | 0 | 1.5 | 0 | 0 | 0 |
Z2q-3 | 3 958.0 | 0.1 | 0 | 0.9 | 0 | 98.5 | 0 | 0 | 0.5 | 0 | 0 | 0 |
Z2q-4 | 3 958.3 | 1.2 | 0.5 | 0 | 0.8 | 95.0 | 0 | 0 | 2.5 | 0 | 0 | 0 |
Z2q-6 | 3 960.5 | 0 | 0 | 0.4 | 1.0 | 98.5 | 0 | 0 | 0.1 | 0 | 0 | 0 |
Z2q-8 | 3 963.0 | 1.2 | 0 | 0.5 | 0.4 | 97.9 | 0 | 0 | 0 | 0 | 0 | 0 |
Z2q-10 | 4 004.0 | 0 | 0 | 0 | 1.4 | 98.3 | 0 | 0 | 0.3 | 0 | 0 | 0 |
Z2q-12 | 4 006.9 | 0.3 | 0 | 0.3 | 0 | 99.2 | 0 | 0 | 0.2 | 0 | 0 | 0 |
Z2q-14 | 4 009.7 | 0.7 | 0 | 99.2 | 0 | 0 | 0 | 0.1 | 0 | 0 | 0 | 0 |
Z2q-15 | 4 010.6 | 3.7 | 0 | 0.4 | 0 | 95.8 | 0 | 0 | 0.1 | 0 | 0 | 0 |
最小值 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
最大值 | 45.6 | 15.0 | 99.2 | 97.5 | 99.2 | 11.5 | 7.7 | 25.6 | 21.3 | 6.7 | 64.4 | |
平均值 | 10.2 | 2.6 | 11.2 | 11.0 | 58.3 | 2.2 | 0.9 | 6.1 | 2.4 | 1.8 | 10.3 |
表2
塔里木盆地西北缘BY1井黏土矿物X射线衍射分析结果"
样品编号 | 深度/m | 黏土矿物组分相对含量/% | ||||
---|---|---|---|---|---|---|
蒙皂石(S) | 伊利石(I) | 高岭石(K) | 绿泥石(C) | |||
Є1x-1 | 3 879.1 | 0 | 94 | 1 | 5 | |
Є1x-2 | 3 879.5 | 0 | 94 | 2 | 4 | |
Є1x-4 | 3 880.0 | 0 | 92 | 1 | 7 | |
Є1x-6 | 3 881.3 | 0 | 95 | 1 | 4 | |
Є1x-10 | 3 884.7 | 0 | 97 | 1 | 2 | |
Є1x-16 | 3 890.0 | 0 | 99 | 0 | 1 | |
Є1x-18 | 3 891.5 | 0 | 100 | 0 | 0 | |
Є1x-20 | 3 892.1 | 0 | 97 | 1 | 2 | |
Є1x-22 | 3 893.5 | 0 | 99 | 0 | 1 | |
Є1x-24 | 3 894.8 | 0 | 96 | 1 | 3 | |
Є1x-25 | 3 896.6 | 0 | 98 | 1 | 1 | |
Є1x-27 | 3 940.4 | 0 | 97 | 1 | 2 | |
Є1x-29 | 3 942.0 | 0 | 83 | 9 | 8 | |
Є1x-30 | 3 943.0 | 0 | 74 | 21 | 5 | |
Є1x-32 | 3 945.2 | 0 | 100 | 0 | 0 | |
Є1y-33 | 3 946.3 | 0 | 75 | 18 | 7 | |
Є1y-35 | 3 953.5 | 0 | 99 | 1 | 0 | |
Є1y-36 | 3 953.7 | 0 | 99 | 0 | 1 | |
Є1y-37 | 3 954.0 | 0 | 94 | 5 | 1 | |
Є1y-38 | 3 954.3 | 0 | 98 | 2 | 0 | |
Є1y-39 | 3 954.8 | 0 | 64 | 32 | 4 | |
Z2q-1 | 3 955.8 | 0 | 97 | 1 | 2 | |
Z2q-2 | 3 957.3 | 0 | 90 | 2 | 8 | |
Z2q-3 | 3 958.0 | 0 | 97 | 1 | 2 | |
Z2q-4 | 3 958.3 | 0 | 96 | 1 | 3 | |
最小值 | 0 | 64 | 0 | 0 | 0 | |
最大值 | 0 | 100 | 32 | 8 | 0 | |
平均值 | 0 | 92.15 | 5 | 3 | 0 |
图2
塔里木盆地西北缘BY1井寒武系肖尔布拉克组岩石显微特征照片a.含泥粉晶灰岩,它形方解石、边界呈港湾状,见构造溶蚀缝,宽0.02~0.16 mm,未充填,样品Є1x-6,埋深3 881.3 m,单偏光;b.含灰泥岩,灰质以粉晶组构为主,呈分散状分布,见构造缝,宽0.10~0.15 mm,未充填,样品Є1x-10,埋深3 884.7 m,单偏光;c.泥质泥粉晶灰岩,见构造微缝,方解石全充填,样品Є1x-18, 埋深3 891.5 m, 单偏光;d.含泥粉晶灰岩,溶洞,粒状方解石全充填,样品Є1x-25,埋深3 896.6 m,单偏光;e.含泥生屑泥晶灰岩,生屑包括骨针、介屑等,整体致密,未见有效储集空间,样品Є1x-28,埋深3 941.0 m,单偏光;f.含粉砂富有机质泥岩,样品Є1y-37,埋深3 953.9 m,单偏光"
表3
塔里木盆地西北缘典型钻井和露头烃源岩厚度及有机质丰度"
钻井/剖面 | 层位 | 顶深/m | 底深/m | 厚度/m | 岩性 | TOC/% | 生油岩分级 | |
---|---|---|---|---|---|---|---|---|
BY1井 | 肖上段 | 3 776.00 | 3 869.00 | 93.00 | 黄灰色白云岩 | — | — | |
肖下段 | 3 869.00 | 3 952.00 | 83.00 | 灰色泥质灰岩 | (0.10~4.01)/1.55(28) | 好烃源岩 | ||
玉尔吐斯组 | 3 952.00 | 3 956.00 | 4.00 | 灰黑色泥岩 | (0.13~28.20)/11.12(7) | 极好烃源岩 | ||
KTJ1井 | 肖上段 | 3 748.00 | 3 843.00 | 95.00 | 灰色灰质泥岩 | (0.20~0.90)/0.45(21) | 较好烃源岩 | |
肖下段 | 3 843.00 | 3 925.00 | 82.00 | 灰黑色泥晶灰岩 | (0.60~5.00)/2.39(16) | 好烃源岩 | ||
玉尔吐斯组 | 3 925.00 | 3 929.00 | 4.00 | 灰黑色泥岩 | (0.60~5.00)/4.30(16) | 极好烃源岩 | ||
KPN1井 | 肖上段 | 5 144.00 | 5 245.00 | 101.00 | 灰色颗粒白云岩 | (0.11~0.54)/0.33(2) | 差烃源岩 | |
肖下段 | 5 245.00 | 5 269.00 | 24.00 | 灰色泥质粉晶白云岩 | (0.17~1.14)/0.45(15) | 较好烃源岩 | ||
玉尔吐斯组 | 5 269.00 | 5 274.00 | 5.00 | 褐色白云质泥岩 | (0.26~2.02)/0.85(3) | 较好烃源岩 | ||
XSC1井 | 肖上段 | 4 752.00 | 5 013.00 | 261.00 | 浅灰色云质灰岩 | — | — | |
肖下段 | 5 013.00 | 5 074.00 | 61.00 | 灰色云质灰岩 | (0.64~1.18)/0.89(24) | 极好烃源岩 | ||
玉尔吐斯组 | 5 074.00 | 5 110.00 | 36.00 | 深灰色泥质灰岩 | (2.10~2.40)/2.20(3) | 极好烃源岩 | ||
肖尔布拉克剖面 | 肖下段 | — | — | — | 灰色粉晶白云岩 | (0.06~3.63)/0.49(23) | 较好烃源岩 | |
阿克苏东沟剖面 | 肖下段 | — | — | — | 灰色粉晶白云岩 | (0.20~7.56)/2.00(13) | 好烃源岩 | |
西沟剖面 | — | — | — | — | 灰色粉晶白云岩 | (0.19~3.69/1.47(6) | 好烃源岩 |
表6
塔里木盆地西北缘BY1井固体沥青镜质体反射率及其换算等效镜质体反射率"
样品编号 | 深度/m | 岩性 | 平均BRb/% | BRb,min/% | BRb,max/% | 测定点数 | 标准离差 | EqVRo/ %[ | EqVRo/ %[ | EqVRo/ %[ | EqVRo/ %[ | EqVRo/ %[ | 备注 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Є1x-1 | 3 879.1 | 灰黑色泥质灰岩 | 2.94 | 2.76 | 3.12 | 20 | 0.10 | 2.27 | 3.23 | 2.31 | 3.07 | 3.10 | 测点为固体沥青 |
Є1x-2 | 3 879.5 | 灰黑色泥质灰岩 | 2.89 | 2.70 | 3.08 | 22 | 0.10 | 2.23 | 3.17 | 2.28 | 3.03 | 3.05 | 测点为固体沥青 |
Є1x-4 | 3 880.0 | 灰黑色泥质灰岩 | 2.90 | 2.81 | 3.00 | 8 | 0.05 | 2.24 | 3.18 | 2.28 | 3.03 | 3.06 | 测点为固体沥青 |
Є1x-7 | 3 881.8 | 灰黑色泥质灰岩 | 2.94 | 2.80 | 3.08 | 12 | 0.07 | 2.27 | 3.23 | 2.31 | 3.07 | 3.10 | 测点为固体沥青 |
Є1x-8 | 3 882.0 | 灰黑泥质含生屑灰岩 | 2.92 | 2.70 | 3.14 | 14 | 0.11 | 2.25 | 3.21 | 2.30 | 3.05 | 3.08 | 测点为固体沥青 |
Є1x-9 | 3 882.5 | 灰黑色泥质灰岩 | 2.95 | 2.80 | 3.10 | 28 | 0.08 | 2.27 | 3.24 | 2.32 | 3.08 | 3.11 | 测点为固体沥青 |
Є1x-10 | 3 884.7 | 灰黑色泥质灰岩 | 2.90 | 2.71 | 3.10 | 20 | 0.10 | 2.24 | 3.18 | 2.28 | 3.03 | 3.06 | 测点为固体沥青 |
Є1x-11 | 3 885.8 | 灰黑色泥质灰岩 | 2.92 | 2.76 | 3.08 | 11 | 0.09 | 2.25 | 3.21 | 2.30 | 3.05 | 3.08 | 测点为固体沥青 |
Є1x-13 | 3 887.0 | 灰黑色泥质灰岩 | 2.96 | 2.76 | 3.15 | 8 | 0.10 | 2.28 | 3.25 | 2.32 | 3.09 | 3.12 | 测点为固体沥青 |
Є1x-14 | 3 888.0 | 灰黑色泥质灰岩 | 2.90 | 2.72 | 3.08 | 6 | 0.09 | 2.24 | 3.18 | 2.28 | 3.03 | 3.06 | 测点为固体沥青 |
Є1x-15 | 3 889.0 | 灰黑色泥质灰岩 | 2.92 | 2.71 | 3.10 | 30 | 0.10 | 2.25 | 3.21 | 2.30 | 3.05 | 3.08 | 测点为固体沥青 |
Є1x-16 | 3 890.0 | 灰黑色泥质灰岩 | 2.99 | 2.81 | 3.19 | 26 | 0.10 | 2.30 | 3.29 | 2.34 | 3.12 | 3.16 | 测点为固体沥青 |
Є1x-17 | 3 891.0 | 灰黑色泥质灰岩 | 3.02 | 2.86 | 3.18 | 4 | 0.09 | 2.32 | 3.32 | 2.36 | 3.15 | 3.19 | 测点为固体沥青 |
表7
塔里木盆地西北缘BY1井岩石热解分析结果"
样品编号 | 深度/m | 岩性 | 平均BRb/% | BRb,min/% | BRb,max/% | 测定点数 | 标准离差 | EqVRo/ %[ | EqVRo/ %[ | EqVRo/ %[ | EqVRo/ %[ | EqVRo/ %[ | 备注 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Є1x-18 | 3 891.5 | 灰黑色泥质灰岩 | 2.95 | 2.72 | 3.18 | 14 | 0.12 | 2.27 | 3.24 | 2.32 | 3.08 | 3.11 | 测点为固体沥青 |
Є1x-19 | 3 891.8 | 灰黑色泥质灰岩 | 3.03 | 2.8 | 3.26 | 11 | 0.12 | 2.33 | 3.33 | 2.37 | 3.16 | 3.20 | 测点为固体沥青 |
Є1x-20 | 3 892.1 | 灰黑色泥质灰岩 | 3.05 | 2.82 | 3.28 | 30 | 0.12 | 2.34 | 3.36 | 2.38 | 3.18 | 3.23 | 测点为固体沥青 |
Є1x-21 | 3 892.8 | 灰黑色泥质灰岩 | 3.06 | 2.85 | 3.25 | 30 | 0.10 | 2.35 | 3.37 | 2.39 | 3.18 | 3.24 | 测点为固体沥青 |
Є1x-22 | 3 893.5 | 灰黑色泥质灰岩 | 2.95 | 2.70 | 3.24 | 30 | 0.15 | 2.27 | 3.24 | 2.32 | 3.08 | 3.11 | 测点为固体沥青 |
Є1x-23 | 3 894.0 | 灰黑色泥质灰岩 | 3.05 | 2.85 | 3.25 | 23 | 0.12 | 2.34 | 3.36 | 2.38 | 3.18 | 3.23 | 测点为固体沥青 |
Є1x-24 | 3 894.8 | 灰黑色泥质灰岩 | 2.91 | 2.62 | 3.20 | 30 | 0.16 | 2.25 | 3.20 | 2.29 | 3.04 | 3.07 | 测点为固体沥青 |
Є1x-25 | 3 896.6 | 灰黑色泥质灰岩 | 2.95 | 2.75 | 3.15 | 7 | 0.11 | 2.27 | 3.24 | 2.32 | 3.08 | 3.11 | 测点为固体沥青 |
Є1x-26 | 3 896.8 | 灰黑色泥质灰岩 | 3.04 | 2.85 | 3.25 | 15 | 0.11 | 2.33 | 3.34 | 2.38 | 3.17 | 3.21 | 测点为固体沥青 |
Є1x-31 | 3 944.4 | 灰色泥晶灰岩 | 3.40 | 3.22 | 3.58 | 4 | 0.15 | 2.57 | 3.76 | 2.62 | 3.50 | 3.62 | 测点为固体沥青 |
Є1x-32 | 3 945.2 | 灰色泥晶灰岩 | 3.32 | 3.01 | 3.64 | 22 | 0.15 | 2.52 | 3.67 | 2.56 | 3.43 | 3.53 | 测点为固体沥青 |
Є1y-34 | 3 953.4 | 灰黑色泥岩 | 3.34 | 3.24 | 3.44 | 30 | 0.06 | 2.53 | 3.69 | 2.58 | 3.45 | 3.55 | 测点为镜状体 |
Є1y-35 | 3 953.5 | 灰黑色泥岩 | 3.32 | 3.20 | 3.44 | 30 | 0.07 | 2.52 | 3.67 | 2.56 | 3.43 | 3.53 | 测点为镜状体 |
Є1y-36 | 3 953.7 | 灰黑色泥岩 | 3.40 | 3.21 | 3.60 | 30 | 0.10 | 2.57 | 3.76 | 2.62 | 3.50 | 3.62 | 测点为固体沥青 |
Є1y-37 | 3 954.0 | 灰黑色泥岩 | 3.30 | 3.14 | 3.46 | 30 | 0.09 | 2.50 | 3.64 | 2.55 | 3.41 | 3.51 | 测点为镜状体 |
最小值 | 2.89 | 2.62 | 3.00 | 4 | 0.05 | 2.23 | 3.17 | 2.28 | 3.03 | 3.05 | |||
最大值 | 3.40 | 3.24 | 3.64 | 30 | 0.16 | 2.57 | 3.76 | 2.62 | 3.50 | 3.62 | |||
平均值 | 3.05 | 2.86 | 3.24 | 19 | 0.10 | 2.34 | 3.36 | 2.38 | 3.18 | 3.23 |
表7
塔里木盆地西北缘BY1井岩石热解分析结果"
样品编号 | 深度/m | 岩性 | So/(mg/g) | S1/(mg/g) | S2/(mg/g) | Tmax/℃ | Pg/(mg/g) | PI | PC/% | TOC/% |
---|---|---|---|---|---|---|---|---|---|---|
Є1x-1 | 3 879.1 | 灰黑色泥质灰岩 | 0.022 7 | 3.912 6 | 1.540 5 | 413 | 0.18 | 0.41 | 0.01 | 1.93 |
Є1x-2 | 3 879.5 | 灰黑色泥质灰岩 | 0.023 5 | 3.156 7 | 1.435 8 | 548 | 0.13 | 0.37 | 0.01 | 1.46 |
Є1x-4 | 3 880.0 | 灰黑色泥质灰岩 | 0.018 6 | 5.913 4 | 1.474 2 | 418 | 0.21 | 0.47 | 0.02 | 1.01 |
Є1x-5 | 3 880.8 | 灰黑色泥质灰岩 | 0.016 5 | 4.943 2 | 1.476 5 | 438 | 0.13 | 0.44 | 0.01 | 0.72 |
Є1x-6 | 3 881.3 | 灰黑色泥质灰岩 | 0.023 3 | 0.716 8 | 0.986 0 | 429 | 0.15 | 0.49 | 0.01 | 0.62 |
Є1x-7 | 3 881.8 | 灰黑色泥质灰岩 | 0.025 8 | 0.698 4 | 0.953 0 | 419 | 0.22 | 0.45 | 0.02 | 1.11 |
Є1x-8 | 3 882.0 | 灰黑泥质含生屑灰岩 | 0.025 3 | 3.887 9 | 3.240 4 | 426 | 0.11 | 0.36 | 0.01 | 0.75 |
Є1x-9 | 3 882.5 | 灰黑色泥质灰岩 | 0.021 1 | 3.156 4 | 2.876 4 | 418 | 0.11 | 0.31 | 0.01 | 1.44 |
Є1x-10 | 3 884.7 | 灰黑色泥质灰岩 | 0.017 2 | 0.030 0 | 0.067 7 | 410 | 0.19 | 0.25 | 0.02 | 2.91 |
Є1x-11 | 3 885.8 | 灰黑色泥质灰岩 | 0.023 9 | 0.700 9 | 0.717 1 | 418 | 0.18 | 0.46 | 0.01 | 1.33 |
Є1x-12 | 3 886.0 | 灰黑色泥质灰岩 | 0.025 2 | 0.776 1 | 0.921 7 | 430 | 0.15 | 0.42 | 0.01 | 0.73 |
Є1x-13 | 3 887.0 | 灰黑色泥质灰岩 | 0.017 4 | 0.808 3 | 0.789 3 | 417 | 0.17 | 0.38 | 0.01 | 1.52 |
Є1x-14 | 3 888.0 | 灰黑色泥质灰岩 | 0.789 3 | 0.789 3 | 0.833 4 | 421 | 0.16 | 0.43 | 0.01 | 1.03 |
Є1x-15 | 3 889.0 | 灰黑色泥质灰岩 | 0.017 1 | 0.758 2 | 0.825 9 | 417 | 0.32 | 0.38 | 0.03 | 2.53 |
Є1x-16 | 3 890.0 | 灰黑色泥质灰岩 | 0.019 3 | 0.970 8 | 1.032 1 | 425 | 0.19 | 0.45 | 0.02 | 0.96 |
Є1x-17 | 3 891.0 | 灰黑色泥质灰岩 | 0.024 9 | 1.597 7 | 1.504 6 | 428 | 0.22 | 0.20 | 0.02 | 1.89 |
Є1x-18 | 3 891.5 | 灰黑色泥质灰岩 | 0.034 6 | 1.352 6 | 1.124 6 | 419 | 0.16 | 0.32 | 0.01 | 1.58 |
Є1x-19 | 3 891.8 | 灰黑色泥质灰岩 | 0.037 5 | 1.421 3 | 1.421 3 | 419 | 0.12 | 0.35 | 0.01 | 1.51 |
Є1x-20 | 3 892.1 | 灰黑色泥质灰岩 | 0.025 6 | 0.657 2 | 1.155 4 | 420 | 0.24 | 0.28 | 0.02 | 2.36 |
Є1x-21 | 3 892.8 | 灰黑色泥质灰岩 | 0.024 5 | 0.732 1 | 1.263 4 | 548 | 0.22 | 0.23 | 0.02 | 3.17 |
Є1x-22 | 3 893.5 | 灰黑色泥质灰岩 | 0.019 7 | 0.797 5 | 1.494 7 | 413 | 0.29 | 0.20 | 0.02 | 4.01 |
Є1x-23 | 3 894.0 | 灰黑色泥质灰岩 | 0.023 5 | 0.972 6 | 1.699 6 | 549 | 0.16 | 0.28 | 0.01 | 2.22 |
Є1x-24 | 3 894.8 | 灰黑色泥质灰岩 | 0.025 3 | 0.973 5 | 1.543 5 | 417 | 0.22 | 0.33 | 0.02 | 2.24 |
Є1x-25 | 3 896.6 | 灰黑色泥质灰岩 | 0.023 2 | 1.193 4 | 1.461 6 | 415 | 0.22 | 0.28 | 0.02 | 2.2 |
"
样品编号 | 深度/m | 岩性 | So/(mg/g) | S1/(mg/g) | S2/(mg/g) | Tmax/℃ | Pg/(mg/g) | PI | PC/% | TOC/% |
---|---|---|---|---|---|---|---|---|---|---|
Є1x-26 | 3 896.8 | 灰黑色泥质灰岩 | 0.032 4 | 1.674 9 | 1.217 6 | 427 | 0.20 | 0.38 | 0.02 | 0.84 |
Є1x-27 | 3 940.4 | 灰色泥晶灰岩 | 0.023 2 | 0.624 3 | 0.686 6 | 486 | 0.07 | 0.35 | 0.01 | 0.10 |
Є1x-31 | 3 944.4 | 灰色泥晶灰岩 | 0.022 5 | 0.730 2 | 0.649 4 | 451 | 0.08 | 0.49 | 0.01 | 0.17 |
Є1x-32 | 3 945.2 | 灰色泥晶灰岩 | 0.024 2 | 0.643 7 | 0.743 4 | 448 | 0.16 | 0.19 | 0.01 | 0.13 |
Є1y-34 | 3 953.4 | 灰黑色泥岩 | 0.019 6 | 0.275 4 | 2.164 3 | 548 | 0.93 | 0.10 | 0.08 | 28.20 |
Є1y-35 | 3 953.5 | 灰黑色泥岩 | 0.018 6 | 0.254 3 | 2.521 4 | 549 | 0.68 | 0.08 | 0.06 | 23.20 |
Є1y-36 | 3 953.7 | 灰黑色泥岩 | 0.028 5 | 0.296 5 | 2.643 6 | 548 | 0.29 | 0.21 | 0.02 | 7.47 |
Є1y-37 | 3 954.0 | 灰黑色泥岩 | 0.027 5 | 0.285 3 | 2.428 6 | 436 | 0.93 | 0.21 | 0.08 | 11.20 |
Є1y-38 | 3 954.3 | 灰黑色硅质泥岩 | 0.018 0 | 0.247 4 | 2.137 5 | 425 | 0.13 | 0.31 | 0.01 | 1.17 |
Є1y-39 | 3 954.8 | 灰色粉晶白云岩 | 0.014 0 | 0.296 5 | 2.274 2 | 428 | 0.16 | 0.43 | 0.01 | 0.46 |
Є1y-40 | 3 955.3 | 灰色粉晶白云岩 | 0.020 0 | 0.481 1 | 1.770 0 | 423 | 0.14 | 0.26 | 0.01 | 0.13 |
最小值 | 0.014 0 | 0.030 0 | 0.067 7 | 410 | 0.07 | 0.08 | 0.01 | 0.10 | ||
最大值 | 0.789 3 | 5.913 4 | 3.240 4 | 549 | 0.93 | 0.49 | 0.08 | 28.20 | ||
平均值 | 0.064 2 | 1.423 5 | 1.469 8 | 449 | 0.25 | 0.33 | 0.02 | 3.85 |
1 | 杨海军, 陈永权, 田军, 等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 2020, 25(2): 62-72. |
YANG Haijun, CHEN Yongquan, TIAN Jun, et al. Great discovery and its significance of ultra-deep oil and gas exploration in Well Luntan-1 of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(2): 62-72. | |
2 | 朱光有, 胡剑风, 陈永权, 等. 塔里木盆地轮探1井下寒武统玉尔吐斯组烃源岩地球化学特征与形成环境[J]. 地质学报, 2022, 96(6): 2116-2130. |
ZHU Guangyou, HU Jianfeng, CHEN Yongquan, et al. Geochemical characteristics and formation environment of source rock of the Lower Cambrian Yuertusi Formation in well Luntan 1 in Tarim Basin[J]. Acta Geologica Sinica, 2022, 96(6): 2116-2130. | |
3 | 吕修祥, 白忠凯, 谢玉权, 等. 塔里木盆地西北缘柯坪地区油气勘探前景再认识[J]. 沉积学报, 2014, 32(4): 766-775. |
Xiuxiang LYU, BAI Zhongkai, XIE Yuquan, et al. Reconsideration on petroleum exploration prospects in the Kalpin thrust belt of northwestern Tarim Basin[J]. Acta Sedimentologica Sinica, 2014, 32(4): 766-775. | |
4 | 熊冉, 周进高, 倪新锋, 等. 塔里木盆地下寒武统玉尔吐斯组烃源岩分布预测及油气勘探的意义[J]. 天然气工业, 2015, 35(10): 49-56. |
XIONG Ran, ZHOU Jingao, NI Xinfeng, et al. Distribution prediction of Lower Cambrian Yuertusi Formation source rocks and its significance to oil and gas exploration in the Tarim Basin[J]. Natural Gas Industry, 2015, 35(10): 49-56. | |
5 | 刘丽红, 高永进, 王丹丹, 等. 塔里木盆地寒武系膏盐岩对盐下白云岩储层的影响[J]. 岩石矿物学杂志, 2021, 40(1): 109-120. |
LIU Lihong, GAO Yongjin, WANG Dandan, et al. The impact of gypsum salt rock on Cambrian subsalt dolomite reservoir in Tarim Basin[J]. Acta Petrologica Et Mineralogica, 2021, 40(1): 109-120. | |
6 | 朱光有, 陈斐然, 陈志勇, 等. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 2016, 27(1): 8-21. |
ZHU Guangyou, CHEN Feiran, CHEN Zhiyong, et al. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertusi Formation in Tarim Basin[J]. Natural Gas Geoscience, 2016, 27(1): 8-21. | |
7 | 王飞宇, 张水昌, 张宝民, 等. 塔里木盆地寒武系海相烃源岩有机成熟度及演化史[J]. 地球化学, 2003, 32(5): 461-468. |
WANG Feiyu, ZHANG Shuichang, ZHANG Baomin, et al. Maturity and its history of Cambrian marine source rocks in the Tarim Basin[J]. Geochimica, 2003, 32(5): 461-468. | |
8 | 刘丽红, 高永进, 朱光有, 等. 塔里木盆地西北缘埃迪卡拉纪—寒武纪转折期黑色岩系中硅质岩成因及其环境指示意义[J]. 地质学报, 2024, 98(2): 511-529. |
LIU Lihong, GAO Yongjin, ZHU Guangyou, et al. Genesis of siliceous rock in the black rock series of Ediacaran-Cambrian transition and its environmental significance in northwestern Tarim Basin[J]. Acta Geologica Sinica, 2024, 98(2): 511-529. | |
9 | 熊冉, 郑剑锋, 黄理力, 等. 塔里木盆地寒武系肖尔布拉克组丘滩体露头地质建模及地震正演模拟[J]. 天然气地球科学, 2020, 31(5): 735-744. |
XIONG Ran, ZHENG Jianfeng, HUANG Lili, et al. Mound-shoal complexes geological and seismic forward modeling of the Cambrian Xiaoerbulake Formation in the Tarim Basin[J]. Natural Gas Geoscience, 2020, 31(5): 735-744. | |
10 | 郑剑锋, 潘文庆, 沈安江, 等. 塔里木盆地柯坪露头区寒武系肖尔布拉克组储集层地质建模及其意义[J]. 石油勘探与开发, 2020, 47(3): 499-511. |
ZHENG Jianfeng, PAN Wenqing, SHEN Anjiang, et al. Reservoir geological modeling and significance of Cambrian Xiaoerblak Formation in Keping outcrop area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 499-511. | |
11 | 吕海涛, 耿锋, 尚凯. 塔里木盆地寒武系盐下领域勘探关键问题与攻关方向[J]. 石油与天然气地质, 2022, 43(5): 1049-1058. |
Haitao LYU, GENG Feng, SHANG Kai. Key factors and directions of exploration in the Cambrian pre-salt sequence, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(5): 1049-1058. | |
12 | 刘丽红, 韩淼, 高永进, 等. 塔西北地区寒武系肖尔布拉克组储层发育主控因素及成岩演化过程——以柯坪南1井为例[J]. 天然气地球科学, 2023, 34(5): 763-779. |
LIU Lihong, HAN Miao, GAO Yongjin, et al. Main reservoir controlling factors and diagenetic evolution of the Xiaoerbulak Formation of Tarim Basin, NW China: Case study of Well Kepingnan 1 in Keping area[J]. Natural Gas Geoscience, 2023, 34(5): 763-779. | |
13 | 刘丽红, 韩淼, 田亚, 等. 白云岩矿特征、成因类型、分布及其开发利用价值[J]. 中国地质, 2023. |
LIU Lihong, HAN Miao, TIAN Ya, et al. The characteristics, types, distributions and utilization value of dolomite deposit[J]. Geology in China, 2023. | |
14 | 李峰, 朱光有, 吕修祥, 等. 塔里木盆地古生界海相油气来源争议与寒武系主力烃源岩的确定[J]. 石油学报, 2021, 42(11): 1417-1436. |
LI Feng, ZHU Guangyou, Xiuxiang LYU, et al. The disputes on the source of Paleozoic marine oil and gas and the determination of the Cambrian system as the main source rocks in Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(11): 1417-1436. | |
15 | 易士威, 李明鹏, 郭绪杰, 等. 塔里木盆地南华纪古裂谷对寒武系沉积的控制及勘探意义[J]. 石油学报, 2020, 41(11): 1293-1308. |
YI Shiwei, LI Mingpeng, GUO Xujie, et al. Control of the Nanhua paleo-rift on Cambrian sedimentation and its exploration significance in Tarim Basin[J]. Acta Petrolei Sinica, 2020, 41(11): 1293-1308. | |
16 | 陈强路, 储呈林, 杨鑫, 等. 塔里木盆地寒武系沉积模式与烃源岩发育[J]. 石油实验地质, 2015, 37(6): 689-695. |
CHEN Qianglu, CHU Chenglin, YANG Xin, et al. Sedimentary model and development of the Cambrian source rocks in the Tarim Basin, NW China[J]. Petroleum Geology and Experiment, 2015, 37(6): 689-695. | |
17 | 白忠凯, 韩淼, 邱海峻, 等. 塔里木盆地柯坪冲断带寒武系肖尔布拉克组下段古氧相研究[J]. 中国矿业, 2017, 26(): 213-217. |
BAI Zhongkai, HAN Miao, QIU Haijun, et al. Paleo-oxygen facies conditions of lower member of Cambrian Xiaoerbulak formation in Kalpin thrust belt, Tarim Basin[J]. China Mining Magazine, 2017, 26(S2): 213-217. | |
18 | 白忠凯, 谢李, 韩淼, 等. 塔里木盆地柯坪地区寒武系肖尔布拉克组下段古生产力研究[J]. 中国地质, 2018, 45(2): 227-236. |
BAI Zhongkai, XIE Li, HAN Miao, et al. Paleoproductivity conditions of lower member of Cambrian Xiaoerbulak Formation in Kalpin thrust belt, Tarim Basin[J]. Geology in China, 2018, 45(2): 227-236. | |
19 | 汪宗欣, 吕修祥, 钱文文. 寒武系海相碳酸盐岩元素地球化学特征及其油气地质意义——以塔里木盆地柯坪地区肖尔布拉克组为例[J]. 天然气地球科学, 2017, 28(7): 1085-1095. |
WANG Zongxin, Xiuxiang LYU, QIAN Wenwen. Geochemical characteristics of the Cambrian marine carbonate elements and its petroleumgeological significance: Case study of Xiaoerbulake Formation in Keping area of Tairm Basin[J]. Natural Gas Geoscience, 2017, 28(7): 1085-1095. | |
20 | 张君峰, 高永进, 周新桂, 等. 塔里木盆地温宿凸起石油地质特征及油气远景, [M]. 北京: 地质出版社, 2020. |
ZHANG Junfeng, GAO Yongjin, ZHOU Xingui, et al. Petroleum geological characteristics and oil and gas prospects of Wensu uplift in Tarim Basin[M]. Beijing: Geological Publishing House, 2020. | |
21 | 刘亚雷, 高永进, 张君峰, 等. 塔里木盆地温宿凸起构造特征新认识[J]. 岩石学报, 2022, 38(9): 2665-2680. |
LIU Yalei, GAO Yongjin, ZHANG Junfeng, et al. New understanding of tectonic characteristic of the Wensu salient in Tarim Basin[J]. Acta Petrologica Sinica, 2022, 38(9): 2665-2680. | |
22 | 贾承造. 环青藏高原巨型盆山体系构造与塔里木盆地油气分布规律[J]. 大地构造与成矿学, 2009, 33(1): 1-9. |
JIA Chengzao. The structures of basin and range system around the Tibetan Plateau and the distribution of oil and gas in the Tarim Basin[J]. Geotectonica et Metallogenia, 2009, 33(1): 1-9. | |
23 | 李曰俊, 杨海军, 赵岩, 等. 南天山区域大地构造与演化[J]. 大地构造与成矿学, 2009, 33(1): 94-104. |
LI Yuejun, YANG Haijun, ZHAO Yan, et al. Tectonic framework and evolution of South Tianshan, NW China[J]. Geotectonica et Metallogenia, 2009, 33(1): 94-104. | |
24 | 黄擎宇, 胡素云, 潘文庆, 等. 塔里木盆地巴楚地区寒武系储层特征及主控因素[J]. 天然气地球科学, 2016, 27(6): 982-993. |
HUANG Qingyu, HU Suyun, PAN Wenqing, et al. Characteristics and controlling factors of the Cambrian carbonate reservoirs in Bachu area, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2016, 27(6): 982-993. | |
25 | 邓世彪, 关平, 庞磊, 等. 塔里木盆地柯坪地区肖尔布拉克组优质微生物碳酸盐岩储层成因[J]. 沉积学报, 2018, 36(6): 1218-1232. |
DENG Shibiao, GUAN Ping, PANG Lei, et al. Genesis of excellent Xiaoerbulak microbial carbonate reservoir in Kalpin area of Tarim Basin, NW China[J]. Acta Sedimentologica Sinica, 2018, 36(6): 1218-1232. | |
26 | 姜伟民, 刘波, 石开波, 等. 塔里木盆地柯坪地区肖尔布拉克组碳酸盐岩微相类型和储集层特征[J]. 新疆石油地质, 2019, 40(4): 437-448. |
JIANG Weimin, LIU Bo, SHI Kaibo, et al. Microfacies and characteristics of carbonate reservoir in Xiaoerbulake Formation of Keping area, Tarim Basin[J]. Xinjiang Petroleum Geology, 2019, 40(4): 437-448. | |
27 | 杨海军, 于双, 张海祖, 等. 塔里木盆地轮探1井下寒武统烃源岩地球化学特征及深层油气勘探意义[J]. 地球化学, 2020, 49(6): 666-682. |
YANG Haijun, YU Shuang, ZHANG Haizu, et al. Geochemical characteristics of Lower Cambrian sources rocks from the deepest drilling of Well LT-1 and their significance to deep oil gas exploration of the Lower Paleozoic system in the Tarim Basin[J]. Geochimica, 2020, 49(6): 666-682. | |
28 | 丰国秀, 陈盛吉. 岩石中沥青反射率与镜质体反射率之间的关系[J]. 天然气工业, 1988, 8(3): 20-25, 7. |
FENG Guoxiu, CHEN Shengji. Relationship between the reflectance of bitumen and vitrinite in rock[J]. Natural Gas Industry, 1988, 8(3): 20-25, 7. | |
29 | BERTRAND R. Standardization of solid bitumen reflectance to vitrinite in some Paleozoic sequences of Canada[J]. Energy Sources, 1993, 15(2): 269-287. |
30 | 刘德汉, 史继扬. 高演化碳酸盐烃源岩非常规评价方法探讨[J]. 石油勘探与开发, 1994, 21(3): 113-115. |
LIU Dehan, SHI Jiyang. Discussion on unconventional evaluation method of high maturity carbonate source rock[J]. Petroleum Exploration and Development, 1994, 21(3): 113-115. | |
31 | SCHMIDT J S, MENEZES T R, SOUZA I V A F, et al. Comments on empirical conversion of solid bitumen reflectance for thermal maturity evaluation[J]. International Journal of Coal Geology, 2019, 201: 44-50. |
32 | 王晔, 邱楠生, 马中良, 等. 固体沥青反射率与镜质体反射率的等效关系评价[J]. 中国矿业大学学报, 2020, 49(3): 563-575. |
WANG Ye, QIU Nansheng, MA Zhongliang, et al. Evaluation of equivalent relationship between vitrinite reflectance and solid bitumen reflectance[J]. Journal of China University of Mining & Technology, 2020, 49(3): 563-575. | |
33 | 解习农, 殷鸿福, 谢树成. 海相烃源岩的正反演对比分析[J]. 地球科学, 2007, 32(6): 861-867. |
XIE Xinong, YIN Hongfu, XIE Shucheng. Comparison on forward and inverse analysis methods of marine hydrocarbon source rocks[J]. Earth Science, 2007, 32(6): 861-867. | |
34 | TRIBOVILLARD N, ALGEO T J, BAUDIN F, et al. Analysis of marine environmental conditions based onmolybdenum–uranium covariation—Applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324/325: 46-58. |
35 | WIGNALL P B, TWITCHETT R J. Oceanic anoxia and the end Permian mass extinction[J]. Science, 1996, 272(5265): 1155-1158. |
36 | 陈建平, 梁狄刚, 张水昌, 等. 中国古生界海相烃源岩生烃潜力评价标准与方法[J]. 地质学报, 2012, 86(7): 1132-1142. |
CHEN Jianping, LIANG Digang, ZHANG Shuichang, et al. Evaluation criterion and methods of the hydrocarbon generation potential for China’s Paleozoic marine source rocks[J]. Acta Geologica Sinica, 2012, 86(7): 1132-1142. | |
37 | 徐兆辉, 胡素云, 曾洪流, 等. 塔里木盆地肖尔布拉克组上段烃源岩分布预测及油气勘探意义[J]. 地学前缘, 2024, 31(2): 343-358. |
XU Zhaohui, HU Suyun, ZENG Hongliu, et al. Distribution and hydrocarbon significance of source rock in the Upper Xiaoerbulake Formation, Tarim Basin, NW China[J]. Earth Science Frontiers, 2024, 31(2): 343-358. | |
38 | 马庆佑, 曾联波, 徐旭辉, 等. 塔里木盆地肖尔布拉克剖面走滑断裂带内部结构及控储模式[J]. 石油与天然气地质, 2022, 43(1): 69-78. DOI:10.11743/ogg20220106 . |
MA Qingyou, ZENG Lianbo, XU Xuhui,et al. Internal architecture of strike-slip fault zone and its control over reservoirs in the Xiaoerbulake section, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 69-78. DOI:10.11743/ogg20220106 . | |
39 | 郑见超, 李斌, 袁倩, 等. 塔里木盆地巴楚-塔北地区深层寒武系油气成藏过程与勘探方向[J]. 石油与天然气地质, 2022, 43(1): 79-91. |
ZHENG Jianchao, LI Bin, YUAN Qian, et al. Hydrocarbon accumulation process and exploration direction of the deep Cambrian in Bachu-Tabei area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 79-91. |
[1] | 韩鹏远, 丁文龙, 杨德彬, 张娟, 马海陇, 王生晖. 塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J]. 石油与天然气地质, 2024, 45(3): 770-786. |
[2] | 张艳秋, 陈红汉, 王燮培, 王彭, 苏丹梅, 谢舟. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800. |
[3] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[4] | 曹自成, 云露, 漆立新, 李海英, 韩俊, 耿锋, 林波, 陈菁萍, 黄诚, 毛庆言. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356. |
[5] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[6] | 张长建, 杨德彬, 蒋林, 姜应兵, 昌琪, 马雪健. 塔里木盆地塔河北部“过溶蚀残留型”断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383. |
[7] | 万俊雨, 朱建辉, 姚素平, 张毅, 李春堂, 张威, 姜海健, 王杰. 鄂尔多斯盆地中、东部奥陶系马家沟组成烃生物及烃源岩地球生物学评价[J]. 石油与天然气地质, 2024, 45(2): 393-405. |
[8] | 江同文, 邓兴梁, 曹鹏, 常少英. 塔里木盆地富满断控破碎体油藏储集类型特征与注水替油效果[J]. 石油与天然气地质, 2024, 45(2): 542-552. |
[9] | 牛月萌, 韩俊, 余一欣, 黄诚, 林波, 杨帆, 余浪, 陈俊宇. 塔里木盆地顺北西部地区火成岩侵入体发育特征及其与断裂耦合关系[J]. 石油与天然气地质, 2024, 45(1): 231-242. |
[10] | 侯读杰, 吴克强, 尤丽, 张自鸣, 李雅君, 熊小峰, 徐敏, 严夏泽, 陈威合, 程熊. 琼东南盆地陆源海相烃源岩有机质富集机理[J]. 石油与天然气地质, 2024, 45(1): 31-43. |
[11] | 张三, 金强, 史今雄, 胡明毅, 段梦悦, 李永强, 张旭栋, 程付启. 塔北地区奥陶系地下河溶洞充填规律与储集性能[J]. 石油与天然气地质, 2023, 44(6): 1582-1594. |
[12] | 罗情勇, 钟宁宁, 李美俊, 吴进, Khan Imran, 张烨, 陈清, 叶祥忠, 李文浩, 纪文明, 刘安吉, 郝婧玥, 姚立朋, 吴嘉. 前寒武纪—早古生代沉积岩显微组分分类、成因及演化[J]. 石油与天然气地质, 2023, 44(5): 1084-1101. |
[13] | 吴进, 罗情勇, 钟宁宁, 方子龙, 段金材, 张无忌, 崔雅鑫. 华北北部中元古界下马岭组页岩有机岩石学研究[J]. 石油与天然气地质, 2023, 44(5): 1218-1230. |
[14] | 康志江, 张冬梅, 张振坤, 王睿奇, 姜文斌, 刘坤岩. 深层缝洞型油藏井间连通路径智能预测技术[J]. 石油与天然气地质, 2023, 44(5): 1290-1299. |
[15] | 胡伟, 徐婷, 杨阳, 伦增珉, 李宗宇, 康志江, 赵瑞明, 梅胜文. 塔里木盆地超深油气藏流体相行为变化特征[J]. 石油与天然气地质, 2023, 44(4): 1044-1053. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||