[1] Kennedy M J,Pevear,D R,Hill R H.Mineral surface control of organic carbon in black shale[J].Science,2002,295(25):657 -660.
[2] Salmon V,Derenne S,Largeau C,et al.Protection of organic matter by mineral matrix in a Cenomanian black shale[J].Organic Geochemistry,2000,31(5):463-474.
[3] Kaiser K,Guggenberger G.The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils[J].Organic Geochemistry,2000,31(7-8):711-725.
[4] Bergamaschi B A,Tsamakis E,Keil R G,et al.The effect of grain size and surface area on organic matter,lignin and carbohydrate concentration,and molecular compositions in Peru Margin sediments[J].Geochimica et Cosmochimica Acta,1997,61(6):1247-1260.
[5] Mayer L M.Extent of coverage of mineral surfaces by organic matter in marine sediments[J].Geochimica et Cosmochimica Acta,1999,63(2):207-215.
[6] Keil R G.Sorptive preservation of labile organic-matter in marine-sediments[J].Nature,1994,370(6490):549-552.
[7] Weaver C E.Possible uses of clay minerals in research for oil[J].AAPG Bulletin,1960,44(9):1505-1578.
[8] Velde B,Espitalie J.Comparison of kerogen maturation and illite/smectite composition in diagenesis[J].Journal of Petroleum Geology,1989,12(1):103-110.
[9] Seedwald J S.Organic-inorganic interactions in petroleum-producing sedimentary basins[J].Nature,2003,426(6964):327-333.
[10] Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale-gas systems:the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin,2007,91(4):475-499.
[11] Loucks R G,Ruppel S C.Mississippian Barnett shale:lithofacies and depositional setting of a deep-water shale-gas succession in the fort worth basin,Texas[J].AAPG Bulletin,2007,91(4):579-601.
[12] Ransom B,Bennett R H,Baerwald R,et al.TEM study of in situ organic matter on continental margins:occurrence and the"monolayer"hypothesis[J].Marine Geology,1997,138(1-2):1-9.
[13] Pichevin L,Bertrand P,Boussafir M,et al.Organic matter accumulation and preservation controls in a deep sea modern environment:an example from Namibian slope sediments[J].Organic Geochemistry,2004,35(5):543-559.
[14] Furukawa Y.Energy-filtering transmission electron microscopy(EFTEM)and electron energy-loss spectroscopy(EELS)investigation of clay-organic matter aggregates in aquatic sediments[J].Organic Geochemistry,2000,31(7-8):735-744.
[15] Kogure T.Investigation of micas using advanced TEM//Mottana A,Sassi F P,Thompson J B,et al.Cristal chemistry and metamorphic petrology.Rev Mineral Geochem,2002,46:281-312.
[16] Aringhieri R.Nanoporosity characteristics of some natural clay minerals and soils.Clays and Clay Minerals,2004,52(6):700-704.
[17] Christensen B T.Physical fractionation of soil and organic matter in primary particle size and density separates[J].Advances in Soil Science,1992,20:1-221.
[18] Mayer L M.Surface area control of organic carbon accumulation in continental shelf sediments[J].Geochimica et Cosmochimica Acta,1994,58(4):1271-1284.
[19] Mayer L M.Relationships between mineral surfaces and orga-nic-carbon concentrations in soils and sediments[J].Chemical Geology,1994,114(3-4):347-363.
[20] Lu Longfei,Frost R L,Cai Jingong.Desorption of benzoic and stearic acid adsorbed upon montmorillonites:a thermogravimetric study[J].Journal of Thermal Analysis and Calorimetry,2010,99(2):377-384.
[21] Lu Longfei,Cai Jingong,Frost R L.Desorption of stearic acid upon surfactant adsorbed montmorillonite[J].Journal of Thermal Analysis and Calorimetry,2010,100(1):141-144.
[22] Lützow M V.SOM fractionation methods:relevance to functional pools and to stabilization mechanisms[J].Soil Biology & Biochemistry,2007,39(9):2183-2207.
[23] Zegouagh Y.Organic matter sources and early diagenetic alterations in Arctic surface sediments(Lena River Delta and Laptev Sea,eastern Siberia)—Part Ⅰ:analysis of the carboxylic acids released via sequential treatments[J].Organic Geochemistry,1996,24(8-9):841-857.
[24] Kawamura K,Ishiwatari R.Tightly bound aliphatic acids in Lake Biwa sediments:their origin and stability[J].Organic Geochemistry,1984,7(2):121-126.
[25] Derenne S,Largeau C.A review of some important families of refractory macromolecules:composition,origin,and fate in soils and sediments[J].Soil Science,2001,166(11):833-847.
[26] 陆现彩,胡文瑄,张林晔,等.烃源岩中可溶有机质与粘土矿物结合关系[J].地质科学,1999,34(1):69-77. Lu Xiancai,Hu Wenxuan,Zhang Linye,et al.Combination pattern of soluble organic matter and clay minerals in the immature source rocks in Dongying depression,China[J].Chinese Journal of Geology,1999,34(1):69-77.
[27] 蔡进功,卢龙飞,宋明水,等.有机粘土复合体抽提特征及其石油地质意义[J].石油与天然气地质,2010,31(3):300-308. Cai Jingong,Lu Longfei,Song Mingshui,et al.Characteristics of extraction of organo-clay complexes and their significance to petroleum geology[J].Oil & Gas Geology,2010,31(3):300-308.
[28] Kaiser K,Guggenberger G.Mineral surfaces and soil organic matter[J].European Journal of Soil Science,2003,54(2):219-236.
[29] Christidis G E.Chemical and thermal modification of natural HEU-type zeolitic materials from Armenia,Georgia and Greece//International Clay Conference on Clay Minerals and the Environment,2001,Bahia Blanca,Argentina.
[30] Grim R E.Clay mineralogy[M].New York:McGraw-Hill Book Co,1952.
[31] Nemecz E.Clay minerals[M].Budapest:Akademiai Kiado,1981.
[32] Yariv S.The effects of thermal treatment on associations between fatty acids and montmorillonite[J].Israel Journal of Chemistry,1982,23(3):259-265.
[33] Christidis G E,Scott P W,Dunham A C.Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios,Aegean,Greece[J].Applied Clay Science,1997,12(4):329-347.
[34] Wu Z S.Characterization,acid activation and bleaching performance of bentonite from Xinjiang[J].Chinese Journal of Chemical Engineering,2006,14(2):253-258.
[35] Bayari O R.Bleaching of some vegetable oils with acid-activated Jordanian bentonite and kaolinite[J].Asian Journal of Chemistry,2008,20(3):2385-2397.
[36] Devey R,Curtis C D.Moss bauer and chemical investigation of mud rocks[J].Clay Minerals,1989,24(1):53-65.
[37] Antonio M R,Karet G B,Guzowskijr J P.Iron chemistry in petroleum production[J].Fuel,2000,79(1):37-45.
[38] 李术元,林世静,郭绍辉,等.无机盐类对干酪根生烃过程的影响[J].地球化学,2002,31(1):15-20. Li Shuyuan,Lin Shijing,Guo Shaohui,et al.Effects of inorganic salts on the hydrocarbon generation from kerogens[J].Geochimica,2002,31(1):15-20.
[39] 李术元,林世静,郭绍辉,等.矿物质对干酪根热解生烃过程的影响[J].石油大学学报(自然科学版),2002,26(1):69-75. Li Shuyuan,Lin Shijing,Guo Shaohui,et al.Catalytic effects of minerals of hydrocarbon generation in kerogen degradation[J].Journal of the University of Petroleum,China(Edition of Natural Science),2002,26(1):69-75.
[40] 张在龙,王广利,劳永新,等.未熟烃源岩中矿物低温催化脂肪酸脱羧生烃动力学模拟实验研究[J].地球化学,2000,29(4):322-326. Zhang Zailong,Wang Guangli,Lao Yongxin,et al.Kinetics si-mulation experiment on hydrocarbon generation from fatty acid decarboxylation catalyzed by minerals in the immature source rocks at low temperature[J].Geochimica,2000,29(4):322-326.
[41] 宋一涛,廖永胜,张守春.半咸-咸水湖相烃源岩中两种赋存状态可溶有机质的测定及其意义[J].科学通报,2005,50(14):1531-1534. Song Yitao,Liao Yongsheng,Zhang Shouchun.Two occruences of soluble organic matter determine in salty lacustrine source rocks and significance[J].Chinese Science Bulletin,2005,50(14):1531-1534.
[42] Montgomery S L,Jarvie D M,Bowker K A,et al.Mississippian Barnett Shale,Fort Worth basin,north-central Texas:gas-shale play with multi-trillion cubic foot potential[J].AAPG Bulletin,2005,89(2):155-175.
[43] Curtis J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,86(11):1921-1938.
[44] Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale-gas systems:the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin,2007,91(4):475-499. |