Oil & Gas Geology ›› 2024, Vol. 45 ›› Issue (4): 1180-1194.doi: 10.11743/ogg20240420
• Methods and Technologies • Previous Articles Next Articles
Yibo LI1(), Yaowang CHEN1, Jinzhou ZHAO1, Zhiqiang WANG2, Bing WEI1, Kadet Valeriy3
Received:
2024-03-05
Revised:
2024-05-14
Online:
2024-09-05
Published:
2024-09-05
CLC Number:
Yibo LI, Yaowang CHEN, Jinzhou ZHAO, Zhiqiang WANG, Bing WEI, Kadet Valeriy. Interaction mechanism between supercritical carbon dioxide and shale[J]. Oil & Gas Geology, 2024, 45(4): 1180-1194.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | 殷宏. 超临界CO2与页岩相互作用机理的实验研究[D]. 重庆: 重庆大学, 2018. |
YIN Hong. Experimental study on the interaction mechanism between supercritical CO2 and shale[D]. Chongqing: Chongqing University, 2018. | |
2 | 李宁, 金之钧, 张士诚, 等. 水/超临界二 氧化碳作用下的页岩微观力学特性[J]. 石油勘探与开发, 2023, 50(4): 872-882. |
LI Ning, JIN Zhijun, ZHANG Shicheng, et al. Micro-mechanical properties of shale due to water/supercritical carbon dioxide-rock interaction[J]. Petroleum Exploration and Development, 2023, 50(4): 872-882. | |
3 | 曾凡辉, 张蔷, 陈斯瑜, 等. 水化作用下页岩微观孔隙结构的动态表征——以四川盆地长宁地区龙马溪组页岩为例[J]. 天然气工业, 2020, 40(10): 66-75. |
ZENG Fanhui, ZHANG Qiang, CHEN Siyu, et al. Dynamic characterization of microscopic pore structures of shale under the effect of hydration: A case study of Longmaxi Formation shale in the Changning area of the Sichuan Basin[J]. Natural Gas Industry, 2020, 40(10): 66-75. | |
4 | LAHANN R, MASTALERZ M, RUPP J A, et al. Influence of CO2 on New Albany shale composition and pore structure[J]. International Journal of Coal Geology, 2013, 108: 2-9. |
5 | YU Chunsheng, ZHAO Xiao, JIANG Qi, et al. Shale microstructure characteristics under the action of supercritical carbon dioxide (Sc-CO2)[J]. Energies, 2022, 15(22): 8354. |
6 | MENG Siwei, JIN Xu, TAO Jiaping, et al. Evolution characteristics of mechanical properties under supercritical carbon dioxide treatment in shale reservoirs[J]. ACS Omega, 2021, 6(4): 2813-2823. |
7 | 吴迪, 耿岩岩, 肖晓春, 等. 页岩储层超临界CO2增透规律实验[J]. 特种油气藏, 2022, 29(1): 66-72. |
WU Di, GENG Yanyan, XIAO Xiaochun, et al. Experimental study on variation pattern of enhanced permeability of supercritical CO2 in shale reservoirs[J]. Special Oil & Gas Reservoirs, 2022, 29(1): 66-72. | |
8 | 周冰, 金之钧, 刘全有, 等. 苏北盆地黄桥地区富CO2流体对油气储-盖系统的改造作用[J]. 石油与天然气地质, 2020, 41(6): 1151-1161. |
ZHOU Bing, JIN Zhijun, LIU Quanyou, et al. Alteration of reservoir-caprock systems by using CO2-rich fluid in the Huangqiao area, North Jiangsu Basin[J]. Oil & Gas Geology, 2020, 41(6): 1151-1161. | |
9 | YIN Hong, ZHOU Junping, JIANG Yongdong, et al. Physical and structural changes in shale associated with supercritical CO2 exposure[J]. Fuel, 2016, 184: 289-303. |
10 | PAN Yi, HUI Dong, LUO Pingya, et al. Experimental investigation of the geochemical interactions between supercritical CO2 and shale: Implications for CO2 storage in gas-bearing shale formations[J]. Energy & Fuels, 2018, 32(2): 1963-1978. |
11 | PAN Yi, HUI Dong, LUO Pingya, et al. Influences of subcritical and supercritical CO2 treatment on the pore structure characteristics of marine and terrestrial shales[J]. Journal of CO2 Utilization, 2018, 28: 152-167. |
12 | 李威, 徐建永, 刘志峰, 等. 幔源CO2对渤海海域秦皇岛29构造带油气成藏的影响[J]. 石油与天然气地质, 2023, 44(2): 418-428. |
LI Wei, XU Jianyong, LIU Zhifeng, et al. Influence of mantle-derived CO2 on hydrocarbon accumulation in Qinhuangdao 29 tectonic zone, Bohai Sea[J]. Oil & Gas Geology, 2023, 44(2): 418-428. | |
13 | 孙靖, 尤新才, 薛晶晶, 等. 准噶尔盆地异常压力特征及其对深层-超深层致密储层的影响[J]. 石油与天然气地质, 2023, 44(2): 350-365. |
SUN Jing, YOU Xincai, XUE Jingjing, et al. Characteristics of abnormal pressure and its influence on deep and ultra-deep tight reservoirs in the Junggar Basin[J]. Oil & Gas Geology, 2023, 44(2): 350-365. | |
14 | BAI Bing, NI Hongjian, SHI Xian, et al. The experimental investigation of effect of supercritical CO2 immersion on mechanical properties and pore structure of shale[J]. Energy, 2021, 228: 120663. |
15 | MEMON S, FENG Runhua, ALI M, et al. Supercritical CO2-shale interaction induced natural fracture closure: implications for scCO2 hydraulic fracturing in shales[J]. Fuel, 2022, 313: 122682. |
16 | ZHOU Junping, YIN Hong, TAN Jingqiang, et al. Pore structural characterization of shales treated by sub-critical and supercritical CO2 exposure[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9): 6603-6613. |
17 | JIA Yunzhong, LU Yiyu, ELSWORTH D, et al. Surface characteristics and permeability enhancement of shale fractures due to water and supercritical carbon dioxide fracturing[J]. Journal of Petroleum Science and Engineering, 2018, 165: 284-297. |
18 | AO Xiang, LU Yiyu, TANG Jiren, et al. Investigation on the physics structure and chemical properties of the shale treated by supercritical CO2 [J]. Journal of CO2 Utilization, 2017, 20: 274-281. |
19 | 陈钰婷. 超临界二氧化碳作用下页岩力学特性研究[D]. 重庆: 重庆大学, 2016. |
CHEN Yuting. Test study on the effects of supercritical CO2 on shale mechanical properties[D]. Chongqing: Chongqing University, 2016. | |
20 | KNEZ Ž, CÖR D, HRNČIČ M K. Solubility of solids in sub- and supercritical fluids: A review 2010—2017[J]. Journal of Chemical & Engineering Data, 2018, 63(4): 860-884. |
21 | OTA M, SATO Y, SMITH R L, Jr, et al. Predictive dimensionless solubility (pDS) model for solid solutes in supercritical CO2 that requires only pure-component physical properties[J]. Chemical Engineering Research & Design, 2018, 136: 251-261. |
22 | BIAN Xiaoqiang, DU Zhimin, TANG Yong. An improved density-based model for the solubility of some compounds in supercritical carbon dioxide[J]. Thermochimica Acta, 2011, 519(1/2): 16-21. |
23 | THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
24 | POLANYI M. The potential theory of adsorption: Authority in science has its uses and its dangers.[J]. Science, 1963, 141(3585): 1010-1013. |
25 | DAI Xuguang, WANG Meng, WEI Chongtao, et al. Factors affecting shale microscopic pore structure variation during interaction with supercritical CO2 [J]. Journal of CO2 Utilization, 2020, 38: 194-211. |
26 | IGLAUER S, PENTLAND C H, BUSCH A. CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration[J]. Water Resources Research, 2015, 51(1): 729-774. |
27 | ZHAO Jianfei, WANG Zhouhua, GUO Ping, et al. Molecular level investigation of methane and carbon dioxide adsorption on SiO2 surface[J]. Computational Materials Science, 2019, 168: 213-220. |
28 | YEKEEN N, PADMANABHAN E, SEVOO T A, et al. Wettability of rock/CO2/brine systems: A critical review of influencing parameters and recent advances[J]. Journal of Industrial and Engineering Chemistry, 2020, 88: 1-28. |
29 | AL-YASERI A Z, LEBEDEV M, BARIFCANI A, et al. Receding and advancing (CO2+brine+quartz) contact angles as a function of pressure, temperature, surface roughness, salt type and salinity[J]. The Journal of Chemical Thermodynamics, 2016, 93: 416-423. |
30 | ARIF M, ABU-KHAMSIN S A, ZHANG Yihuai, et al. Experimental investigation of carbonate wettability as a function of mineralogical and thermo-physical conditions[J]. Fuel, 2020, 264: 116846. |
31 | 史俊勤. 超临界二氧化碳溶胀原油及降低油水界面张力的分子模拟研究[D]. 青岛: 中国石油大学(华东), 2015. |
SHI Junqin. Molecular simulation studies of supercritical CO2 swelling oil and reducing oil/water interfacial tension[D]. Qingdao: China University of Petroleum(East China), 2015. | |
32 | SADLEJ J, MAKAREWICZ J, CHAŁASIŃSKI G. Ab initio study of energy, structure and dynamics of the water-carbon dioxide complex[J]. The Journal of Chemical Physics, 1998, 109(10): 3919-3927. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||