Oil & Gas Geology ›› 2021, Vol. 42 ›› Issue (4): 931-948.doi: 10.11743/ogg20210414
• Petroleum Geology • Previous Articles Next Articles
Zhen Qiu1(), Hengye Wei2,*(), Hanlin Liu1, Nan Shao3, Yuman Wang1, Leifu Zhang1, Qin Zhang1
Received:
2021-04-27
Online:
2021-08-28
Published:
2021-08-27
Contact:
Hengye Wei
E-mail:qiuzhen316@163.com; qiuzhen@petrochina.com.cn;weihengye@163.com
CLC Number:
Zhen Qiu, Hengye Wei, Hanlin Liu, Nan Shao, Yuman Wang, Leifu Zhang, Qin Zhang. Accumulation of sediments with extraordinary high organic matter content: Insight gained through geochemical characterization of indicative elements[J]. Oil & Gas Geology, 2021, 42(4): 931-948.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Geochemical data of trace elements and Al (modified after reference [26])"
元素 | 平均海水中浓度/(10-9 mol·L-1) | 海水居留时间/ka | 平均上地壳[ | 澳大利亚后太古宙平均页岩[ | 世界平均页岩[ |
Ba | 109.00 | 10 | 550.0 | 650.0 | 650.0 |
Cd | 0.62 | 50 | 0.1 | 0.1 | 0.3 |
Cr | 4.04 | 8 | 83.0 | 110.0 | 90.0 |
Cu | 2.36 | 5 | 25.0 | 50.0 | 45.0 |
Mo | 105.00 | 800 | 1.5 | 1.0 | 1.3 |
Ni | 8.18 | 6 | 44.0 | 55.0 | 68.0 |
U | 13.40 | 400 | 2.8 | 3.1 | 3.0 |
V | 39.30 | 50 | 107.0 | 150.0 | 130.0 |
Zn | 5.35 | 50 | 71.0 | 85.0 | 95.0 |
Al | 80 400.0 | 100 024.0 | 88 900.0 |
Table 2
Main elements geochemical data in the Wufeng-Longmaxi Formation, South China (some data are from references [92-96])"
参数 | 笔石带WF1-2 | 笔石带WF3-4 | |||||||||||||||
巫溪田坝 | 石柱漆辽 | 长宁双河 | 巫溪田坝 | 石柱漆辽 | 长宁双河 | ||||||||||||
TOC/% | 1.7 (0~5) | N=22 | 2.9 (2.6~4.3) | N=6 | 2.5 (0.1~6.4) | N=16 | 4.3 (1.1~16) | N=34 | 6.9 (2.8~14) | N=15 | 3.8 (2.3~5.7) | N=31 | |||||
Babio/10-6 | 1536 (611~3 153) | N=21 | 753 (697~824) | N=6 | 523 (327~930) | N=16 | 1749 (885~2 930) | N=34 | 748 (563~878) | N=15 | 537 (226~925) | N=35 | |||||
P/10-6 | 284 (87~829) | N=20 | 189 (131~393) | N=6 | 355 (175~567) | N=14 | 146 (44~786) | N=33 | 319 (87~698) | N=13 | 572 (218~916) | N=31 | |||||
CuEF | 1.5 (0.2~6.1) | N=22 | 1.3 (0.8~2.3) | N=6 | 3.0 (0.7~5.5) | N=16 | 3.7 (0.5~9.7) | N=34 | 2.7 (0.3~5.5) | N=15 | 3.6 (1.6~6.6) | N=35 | |||||
ZnEF | 0.7 (0.2~5.3) | N=22 | 0.2 (0.1~0.4) | N=6 | 3.1 (0.5~12.4) | N=15 | 1.6 (0.3~7.2) | N=34 | 1.9 (0.2~8.5) | N=15 | 3.7 (0.3~12.4) | N=35 | |||||
MoEF | 15 (0.3~77) | N=22 | 4.1 (3.0~7.9) | N=6 | 17 (0.7~53.6) | N=16 | 72 (11~234) | N=34 | 162 (109~282) | N=15 | 87 (7.1~231) | N=31 | |||||
UEF | 5.2 (0.9~16) | N=22 | 2.9 (1.9~4.4) | N=6 | 5.1 (1~8.4) | N=16 | 15 (6.9~24) | N=34 | 13 (9.7~17) | N=15 | 14 (4.3~44) | N=31 | |||||
Corg/P | 184 (7.4~591) | N=19 | 497 (177~848) | N=6 | 188 (10~343) | N=14 | 950 (59~3 154) | N=33 | 723 (277~1 804) | N=13 | 190 (105~325) | N=31 | |||||
参数 | 笔石带LM1—5 | 笔石带LM6—8 | 笔石带LM9 | ||||||||||||||
巫溪田坝 | 石柱漆辽 | 长宁双河 | 巫溪田坝 | 巫溪田坝 | |||||||||||||
TOC/% | 5.6 (3.8~8.4) | N=19 | 6.3 (3.5~9.5) | N=14 | 5.1 (3.1~8.8) | N=23 | 2.9 (1.2~4.4) | N=24 | 0.1 (0.1~0.2) | N=5 | |||||||
Babio /10-6 | 2 370 (1 704~4 173) | N=19 | 1 269 (988~1 882) | N=14 | 638 (513~887) | N=23 | 3 822 (2 393~5 497) | N=24 | 1 901 (1 652~2 302) | N=5 | |||||||
P /10-6 | 161 (44~742) | N=19 | 293 (131~339) | N=14 | 451 (305~1 135) | N=23 | 343 (98~983) | N=24 | 528 (500~548) | N=5 | |||||||
CuEF | 0.8 (0.2~1.8) | N=19 | 1.7 (0.1~6.5) | N=14 | 3.4 (1.4~12.7) | N=23 | 0.8 (0.1~2.6) | N=24 | 0.8 (0.7~0.9) | N=5 | |||||||
ZnEF | 1.1 (0.2~7.5) | N=19 | 0.9 (0.2~1.5) | N=14 | 10.7 (2.4~100.6) | N=23 | 1.2 (0.3~3.7) | N=24 | 1.2 (0.9~1.3) | N=5 | |||||||
MoEF | 80 (7.7~332) | N=19 | 164 (38~264) | N=14 | 251 (112~859) | N=23 | 21 (2.6~42) | N=24 | 0.4 (0.3~0.7) | N=5 | |||||||
UEF | 17 (8.3~53) | N=19 | 18 (4.5~32) | N=14 | 22 (9.2~93) | N=23 | 5.0 (1.4~8.7) | N=24 | 1.1 (1.0~1.1) | N=5 | |||||||
Corg/P | 1 299 (278~2 661) | N=19 | 622 (394~1 695) | N=14 | 304 (172~461) | N=23 | 289 (108~1 078) | N=24 | 5.6 (3.8~7.7) | N=5 |
1 | 王红军, 马锋, 童晓光, 等. 全球非常规油气资源评价[J]. 石油勘探与开发, 2016, 43 (6): 850- 863. |
Wang Hongjun , Ma Feng , Tong Xiaoguang , et al. Assessment of global unconventional oil and gas resources[J]. Petroleum Exploration and Development, 2016, 43 (6): 850- 863. | |
2 | 邹才能, 邱振. 中国非常规油气沉积学新进展-"非常规油气沉积学"专辑前言[J]. 沉积学报, 2021, 39 (1): 1- 9. |
Zou Caineng , Qiu Zhen . Preface: new advances in unconventional petroleum sedimentology in China[J]. Acta Sedimentologica Sinica, 2021, 39 (1): 1- 9. | |
3 | 邹才能. 非常规油气地质[M]. 北京: 地质出版社, 2011: 1- 310. |
Zou Caineng . Unconventional petroleum geology[M]. Beijing: Geological Publishing House, 2011: 1- 310. | |
4 | 金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40 (3): 451- 458. |
Jin Zhijun , Bai Zhenrui , Gao Bo , et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40 (3): 451- 458. | |
5 | 杨华, 李士祥, 刘显阳, 等. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34 (1): 1- 11. |
Yang Hua , Li Shixiang , Liu Xianyang , et al. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34 (1): 1- 11. | |
6 | 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45 (4): 1- 14. |
Ma Yongsheng , Cai Xunyu , Zhao Peirong . China's shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45 (4): 1- 14. | |
7 | 焦方正. 非常规油气之"非常规"再认识[J]. 石油勘探与开发, 2019, 46 (5): 803- 810. |
Jiao Fangzheng . Re-recognition of "unconventional" in unconventional oil and gas[J]. Petroleum Exploration and Development, 2019, 46 (5): 803- 810. | |
8 | 马新华, 谢军, 雍锐. 四川盆地南部龙马溪组页岩气地质特征及高产控制因素[J]. 石油勘探与开发, 2020, 47 (5): 841- 855. |
Ma Xinhua , Xie Jun , Yong Rui . Geological characteristics and high production control factors of shale gas in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47 (5): 841- 855. | |
9 | 邱振, 邹才能. 非常规油气沉积学: 内涵与展望[J]. 沉积学报, 2020, 38 (1): 1- 29. |
Qiu Zhen , Zou Caineng . Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38 (1): 1- 29. | |
10 | 邱振, 邹才能, 王红岩, 等. 中国南方五峰组-龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学, 2020, 31 (2): 163- 175. |
Qiu Zhen , Zou Caineng , Wang Hongyan , et al. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China[J]. Natural Gas Geoscience, 2020, 31 (2): 163- 175. | |
11 | Tyson R V. Organic matter preservation: the effects of oxygen deficiey[M]//Tyson R V. Sedimentary organic matter: Organic facies and palynofacies. Berlin: Springer-Verlag, Chapman and Hall, 1995: 119-142. |
12 | Algeo T J , Ingall E . Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric PO2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256 (3): 130- 155. |
13 | 姜在兴, 梁超, 吴靖, 等. 含油气细粒沉积研究的几个问题[J]. 石油学报, 2013, 34 (6): 1031- 1039. |
Jiang Zaixing , Liang Chao , Wu Jing , et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34 (6): 1031- 1039. | |
14 | 冉波, 刘树根, 孙玮, 等. 四川盆地及周缘下古生界五峰组-龙马溪组页岩岩相分类[J]. 地学前缘, 2016, 23 (2): 96- 107. |
Ran Bo , Liu Shugen , Sun Wei , et al. Lithfacies classification of shales of the Lower PaleozoicWufeng-Longmaxi Formations in the Sichuan Basin and its surrounding areas, China[J]. Earth Science Frontiers, 2016, 23 (2): 96- 107. | |
15 | 刘招君, 杨虎林, 董清水, 等. 中国油页岩[M]. 北京: 石油工业出版社, 2009: 38- 116. |
Liu Zhaojun , Yang Hulin , Dong Qingshui , et al. Oil Shale in China[M]. Beijing: Petroleum Industry Press, 2009: 27- 27. | |
16 |
Xu Jinjun , Liu Zhaojun , Bechtel A , et al. Organic matter accumulation in the Upper Cretaceous Qingshankou and Nenjiang Formations, Songliao Basin (NE China): Implications from highresolution geochemical analysis[J]. Marine and Petroleum Geology, 2019, 102, 187- 201.
doi: 10.1016/j.marpetgeo.2018.12.037 |
17 | 郑国栋, 孟庆涛, 刘招君. 松辽盆地北部青一段油页岩地球化学特征及其记录的古湖泊学信息[J]. 吉林大学学报(地球科学版), 2020, 50 (2): 392- 404. |
Zheng Guodong , Meng Qingtao , Liu Zhaojun . Geochemical characteri-stics and paleolimnological information of oil shale in 1st member of Qingshankou Formation in Northern Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2020, 50 (2): 392- 404. | |
18 |
Qiu Zhen , Zou Caineng . Controlling factors on the formation and distribution of "sweet-spot areas" of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology[J]. Journal of Asian Earth Sciences, 2020, 194, 103989.
doi: 10.1016/j.jseaes.2019.103989 |
19 |
Li Jinbu , Wang Min , Lu Shuangfang , et al. A new method for predicting sweet spots of shale oil using conventional well logs[J]. Marine and Petroleum Geology, 2020, 113, 104097.
doi: 10.1016/j.marpetgeo.2019.104097 |
20 |
Bhattacharya S , Carr T R . Integrated data-driven 3D shale lithofacies modeling of the Bakken Formation in the Williston basin, North Dakota, United States[J]. Journal of Petroleum Science and Enginee-ring, 2019, 177, 1072- 1086.
doi: 10.1016/j.petrol.2019.02.036 |
21 |
Rageneau O , Tréguer P , Leynaert A , et al. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy[J]. Global and Planetary Change, 2000, 26 (4): 317- 365.
doi: 10.1016/S0921-8181(00)00052-7 |
22 | Levinton J S . Marine biology: function, biodiversity, ecology[M]. Oxford: Oxford University Pres, 2008: 1- 640. |
23 |
Tribovillard N , Algeo T J , Lyons T W , et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232 (1-2): 12- 32.
doi: 10.1016/j.chemgeo.2006.02.012 |
24 | Calvert SE, Pedersen T. Elemental proxies for paleoclimatic and palaeoceanographic variability in marine sediments: interpretation and application[M]//Hillaire-Marcel C, Vernal A. Developments in marine geology, proxies in Late Cenozoic Paleoceanography. Oxford: Elsevie, 2007. |
25 |
Algeo T J , Li C . Redox classification and calibration of redox thresholds in sedimentary systems[J]. Geochimica et Cosmochimica Acta, 2020, 287, 8- 26.
doi: 10.1016/j.gca.2020.01.055 |
26 |
Algeo T J , Tribovillard N . Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268 (3-4): 211- 225.
doi: 10.1016/j.chemgeo.2009.09.001 |
27 |
Keeling RF , Körtzinger A , Gruber N . Ocean deoxygenation in a warming world[J]. Annual Review of Marine Science, 2010, 2, 199- 229.
doi: 10.1146/annurev.marine.010908.163855 |
28 |
Piper D Z , Calvert S E . A marine biogeochemical perspective on black shale deposition[J]. Earth-Science Reviews, 2009, 95 (1-2): 63- 96.
doi: 10.1016/j.earscirev.2009.03.001 |
29 |
Crusius J , Calvert S E , Pedersen T F , et al. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and anoxic conditions of deposition[J]. Earth and Planetary Science Letters, 1996, 145 (1-4): 65- 78.
doi: 10.1016/S0012-821X(96)00204-X |
30 | Correll D L . The role of phosphorus in the Eutrophication of receiving waters: A review[J]. Journal of Environmental Quality, 1998, 27 (2): 261- 266. |
31 | Broecker W S , Peng T H . Tracers in the Sea[M]. New York: Eldigio Press, 1982: 1- 690. |
32 |
Tyrrell T . The relative influences of nitrogen and phosphorus on ocean primary production[J]. Nature, 1999, 400, 525- 531.
doi: 10.1038/22941 |
33 |
Tsandev I , Slomp C P . Modeling phosphorus cycling and carbon burial during Cretaceous Oceanic Anoxic Events[J]. Earth and Planetary Science Letters, 2009, 286 (1-2): 71- 79.
doi: 10.1016/j.epsl.2009.06.016 |
34 | Wallmann K . Phosphorus imbalance in the global ocean?[J]. Global Biogeochemical Cycles, 2010, 24 (4): GB4030. |
35 |
Van Cappellen P , Ingall E D . Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycle of carbon and phosphorus[J]. Paleoceanography, 1994, 9 (5): 677- 692.
doi: 10.1029/94PA01455 |
36 |
Slomp C , Van Cappellen P . The global marine phosphorus cycle: sensitivity to oceanic circulation[J]. Biogeosciences, 2007, 4, 155- 171.
doi: 10.5194/bg-4-155-2007 |
37 |
Spivakov B Y , Maryutina T A , Huntau H . Phosphorus speciation in water and sediments[J]. Pure and Applied Chemistry, 1999, 71 (11): 2161- 2176.
doi: 10.1351/pac199971112161 |
38 |
Ruttenberg K C , Berner R A . Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments[J]. Geochimica et Cosmochimica Acta, 1993, 57 (5): 991- 1007.
doi: 10.1016/0016-7037(93)90035-U |
39 |
Egger M , Jilbert T , Behrends T , et al. Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments[J]. Geochimica et Cosmochimica Acta, 2015, 169, 217- 235.
doi: 10.1016/j.gca.2015.09.012 |
40 |
Xiong Y , Guilbaud R , Peacock C L , et al. Phosphorus cycling in Lake Cadagno, Switzerland: A low sulfate euxinic ocean analogue[J]. Geochimicaet Cosmochimica Acta, 2019, 251, 116- 135.
doi: 10.1016/j.gca.2019.02.011 |
41 |
Poulton S W . Biogeochemistry: Early phosphorus redigested[J]. Nature Geoscience, 2017, 10, 75.
doi: 10.1038/ngeo2884 |
42 |
Alcott L J , Mills B J W , Poulton S W . Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling[J]. Science, 2019, 366 (6471): 1333- 1337.
doi: 10.1126/science.aax6459 |
43 | Redfield A C , Ketchum B H , Richards F A . The influence of organisms on the composition of seawater[M]. New York: Wiley, 1963: 26- 77. |
44 | Li Y H , Peng T H . Latitudinal change of remineralization ratios in the oceans and its implication for nutrient cycles[J]. Global Biogeoche-mical Cycles, 2002, 16 (4): 1130- 1145. |
45 |
Van der Zee C , Slomp C P , Van Raaphorst W . Authigenic P formation and reactive P burial in sediments of the Nazare canyon on the Iberian margin (NE Atlantic)[J]. Marine Geology, 2002, 185 (3-4): 379- 392.
doi: 10.1016/S0025-3227(02)00189-5 |
46 |
Anderson L A , Sarmiento J L . Refield ratios of remineralization determined by nutrient data analysis[J]. Global Biogeochemical Cycles, 1994, 8 (1): 65- 80.
doi: 10.1029/93GB03318 |
47 |
Vance D , de Souza G F , Zhao Y , et al. The relationship between zinc, its isotopes, and the major nutrients in the North-East Pacific[J]. Earth and Planetary Science Letters, 2019, 525, 115748.
doi: 10.1016/j.epsl.2019.115748 |
48 | Bruland K W, Middag R, Lohan M C. Controls of trace metals in seawate[M]//Holland H D, Turekian K K. Treatise on geochemistry (2nd edition). Holland: Elsevier, 2014. |
49 | Morel F M M, Milligan A J, Saito M A. Marine bioinorganic chemistry: the role of trace metals in the oceanic cycles of the major nutrients[M]//Holland H D, Turekian KK. Treatise on Geochemistry (2nd edition). Holland: Elsevier, 2014. |
50 |
Boyle E A , Sclater F R , Edmond J M . The distribution of dissolved copper in the Pacific[J]. Earth and Planetary Science Letters, 1977, 37 (1): 38- 54.
doi: 10.1016/0012-821X(77)90144-3 |
51 |
John S G , Conway T M . A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes[J]. Earth and Planetary Science Letters, 2014, 394, 159- 167.
doi: 10.1016/j.epsl.2014.02.053 |
52 | Nameroff T J , Calvert S E , Murray J W . Glacial-interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals[J]. Paleoceanography, 2004, 19 (1): PA1010. |
53 |
Naimo D , Adamo P , Imperato M , Stanzione D . Mineralogy and geochemistry of a marine sequence, Gulf of Salerno, Italy[J]. Quaternary International, 2005, 140-141, 53- 63.
doi: 10.1016/j.quaint.2005.05.004 |
54 |
Huerta-Diaz M A , Morse J W . Pyritisation of trace metals in anoxic marine sediments[J]. Geochimica et Cosmochimica Acta, 1992, 56, 2681- 2702.
doi: 10.1016/0016-7037(92)90353-K |
55 |
Pinedo-Gonzalez P , West A J , Tovar-Sanchez A , et al. Surface distribution of dissolved trace metals in the oligotrophic ocean and their influence on phytoplantonic biomass and productivity[J]. Global Biogeochemistry Cycles, 2015, 29 (10): 1763- 1781.
doi: 10.1002/2015GB005149 |
56 | Moore J W , Ramamoorthy S . Heavy metals in natural waters: applied monitoring and impact assessment[M]. New York: Springer, 1984: 1- 268. |
57 | Goldman C R , Horne A J . Limnology[M]. New York: McGraw-Hill, 1983: 1- 464. |
58 | Goldman C R. Micronutrient limiting factors and their detection in natural phytoplankton populations[M]//Goldman CR. Primary productivity in aquatic environments. California: University of California Press, 1966. |
59 |
Sunda W G , Huntsman S A . Cobalt and zinc interreplacement in marine phytoplankton: biological and geochemical implications[J]. Limnology and Oceanography, 1995, 40, 1404- 1417.
doi: 10.4319/lo.1995.40.8.1404 |
60 | Wang W X , Guo L . Bioavailability of colloid-bound Cd, Cr and Zn to marine plankton[M]. New York: Marine Ecology Progress Series, 2000. |
61 |
Calvert S E , Pedersen T F . Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record[J]. Marine Geology, 1993, 113 (1-2): 67- 88.
doi: 10.1016/0025-3227(93)90150-T |
62 |
Algeo T J , Maynard J B . Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206 (3-4): 289- 318.
doi: 10.1016/j.chemgeo.2003.12.009 |
63 |
Morse J W , Luther Ⅲ G W . Chemical influences on trace metal-sulfide interactions in anoxic sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63 (19-20): 3373- 3378.
doi: 10.1016/S0016-7037(99)00258-6 |
64 |
Chan L H , Drummond D , Edmond J M , et al. On the barium data from the Atlantic GEOSECS Expedition[J]. Deep Sea Research, 1977, 24 (7): 613- 649.
doi: 10.1016/0146-6291(77)90505-7 |
65 |
Paytan A , Griffith E . Marine barite: recorder of variations in ocean export productivity[J]. Deep-Sea Research Part ii-Topical Studies in Oceanography, 2007, 54 (5-7): 687- 705.
doi: 10.1016/j.dsr2.2007.01.007 |
66 |
Dehairs F , Goeyens L , Stroobants N , et al. On suspended barite and the oxygen minimum in the Southern Ocean[J]. Global Biogeochemistry Cycles, 1990, 4 (1): 85- 102.
doi: 10.1029/GB004i001p00085 |
67 |
Bishop J K B . The barite-opal-organic carbon association in oceanic particulate matter[J]. Nature, 1988, 332, 341- 343.
doi: 10.1038/332341a0 |
68 |
Church T M Wolgemuth K . Marine barite saturation[J]. Earth and Planetary Science Letters, 1972, 15 (1): 35- 44.
doi: 10.1016/0012-821X(72)90026-X |
69 |
Dymond J , Suess E , Lyle M . Barium in deep-sea sediment: a geochemical proxy for paleoproductivity[J]. Paleoceanography, 1992, 7 (2): 163- 181.
doi: 10.1029/92PA00181 |
70 | McManus J , Berelson W M , Klinkhammer G P , et al. Remobilization of barium in continental margin sediments[J]. Geochimica et Cosmochimica Acta, 1994, 58 (22): 4849- 4907. |
71 |
Francois R , Honjo S , Manganini S , et al. Biogenic barium fluxes to the deep sea: implications for paleoproductivity reconstruction[J]. Global Biogeochemistry Cycles, 1995, 9 (2): 289- 303.
doi: 10.1029/95GB00021 |
72 |
Griffith E , Paytan A . Barite in the ocean-occurrence, geochemistry and palaeoceanographic applications[J]. Sedimentology, 2012, 59 (6): 1817- 1835.
doi: 10.1111/j.1365-3091.2012.01327.x |
73 |
Paytan A , Kastner M , Chavez F P . Glacial to interglacial fluctuation in productivity in the Equitorial Pacific as indicated by marine barite[J]. Science, 1996, 274, 1355- 1357.
doi: 10.1126/science.274.5291.1355 |
74 |
Schoepfer S D , Shen J , Wei H , et al. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity[J]. Earth Science Reviews, 2015, 149, 23- 52.
doi: 10.1016/j.earscirev.2014.08.017 |
75 | Von Breymann M T, Emeis K C, Suess E. Water depth and diagenetic constraints on the use of barium as a palaeoproductivity indicator[M]//Summerhayes C P, Prell W L, Emeis K C. Upwelling Systems: Evolution since the Early Miocene. London: Geological Society, 1992. |
76 |
Zheng Y , Anderson R F , van Geen A , et al. Authigenic molybdenum formation in marine sediments: a link to pore water sulfide in the Santa Barbara Basin[J]. Geochimica et Cosmochimica Acta, 2000, 64 (24): 4165- 4178.
doi: 10.1016/S0016-7037(00)00495-6 |
77 |
Morford J L , Martin W R , Carney C M . Uranium diagenesis in sediments underlying bottom waters with high oxygen content[J]. Geochimica et Cosmochimica Acta, 2009, 73 (10): 2920- 2937.
doi: 10.1016/j.gca.2009.02.014 |
78 |
Helz G R , Miller C V , Charnock J M , Mosselmans J L W , et al. Mechanisms of molybdenum removal from the sea and its concentration in black shales: EXAFS evidences[J]. Geochimica et Cosmochimica Acta, 1996, 60 (19): 3631- 3642.
doi: 10.1016/0016-7037(96)00195-0 |
79 |
Tribovillard N , Riboulleau A , Lyons T , et al. Enhanced trapping of molybdenum by sulfurized organic matter of marine origin as recorded by various Mesozoic formations[J]. Chemical Geology, 2004, 213, 385- 401.
doi: 10.1016/j.chemgeo.2004.08.011 |
80 |
Klinkhammer G P , Palmer M R . Uranium in the oceans: where it goes and why[J]. Geochimica et Cosmochimica Acta, 1991, 55 (7): 1799- 1806.
doi: 10.1016/0016-7037(91)90024-Y |
81 |
Morford J L , Martin W R , Francois R , Carney C M . A model for uranium, rhenium, and molybdenum diagenesis in marine sediments based on results from coastal locations[J]. Geochimica et Cosmochimica Acta, 2009, 73 (10): 2938- 2960.
doi: 10.1016/j.gca.2009.02.029 |
82 |
Johnson K S , Berelson W M , Coale K H , et al. Manganese flux from continental margin sediments in a transect through the oxygen minimum zone[J]. Science, 1992, 257 (5074): 1242- 1245.
doi: 10.1126/science.257.5074.1242 |
83 |
Morford J L , Emerson S . The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63 (11-12): 1735- 1750.
doi: 10.1016/S0016-7037(99)00126-X |
84 | Algeo T J , Lyons T W . Mo-total organic carbon covariation in modern anoxic marine environments: implication for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21 (1): PA1016. |
85 |
Jones B , Manning D A C . Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111 (1-4): 111- 129.
doi: 10.1016/0009-2541(94)90085-X |
86 | McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry Geophysics Geosystems, 2001, 2(4): 2000GC000109. |
87 | Taylor S R , McLennan S M . The continental crust: Its composition and evolution[M]. United States: Blackwell, Malden, Mass, 1985: 1- 312. |
88 | Ahrens LH, Press F, Runcom SK, Urey HC (Eds. ), Physics and Chemistry of the Earth[M]//Wedepohl K H. Environmental influences on the chemical composition of shales and clays. Oxford: Pergamon, 1971: 305-333. |
89 | Wedepohl K H. The composition of the upper Earth's crust and the natural cycles of selected metals. In: Merian E (Eds. ), Metals and their Compounds in the Environment[M]. Weinheim: VCH-Verlagsgesellschaft, 1991: 3-17. |
90 |
Tribovillard N , Algeo T J , Baudin F , Riboulleau A . Analysis of marine environmental conditions based on molybdenum-uranium covariation-Applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324-325, 46- 58.
doi: 10.1016/j.chemgeo.2011.09.009 |
91 | 陈旭, 樊隽轩, 张元动, 等. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志, 2015, 39 (4): 351- 358. |
Chen Xu , Fan Junxuan , Zhang Yuandong , et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze Platform[J]. Journal of stratigraphy, 2015, 39 (4): 351- 358. | |
92 |
Zou C N , Qiu Z , Poulton S W , et al. Ocean euxinia and climate change "double whammy" drove the Late Ordovician mass extinction[J]. Geology, 2018, 46 (6): 535- 538.
doi: 10.1130/G40121.1 |
93 |
Zou C N , Qiu Z , Wei H Y , et al. Euxinia caused the Late Ordovician extinction: Evidence from pyrite morphology and pyritic sulfur isotopic composition in the Yangtze area, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511, 1- 11.
doi: 10.1016/j.palaeo.2017.11.033 |
94 | 邱振, 江增光, 董大忠, 等. 巫溪地区五峰组-龙马溪组页岩有机质沉积模式[J]. 中国矿业大学学报, 2017, 46 (5): 1134- 1143. |
Qiu Zhen , Jiang Zengguang , Dong Dazhong , et al. Organic matter enrichment model of the shale in Wufeng-Longmachi Formation of Wuxi area[J]. Journal of China University of Mining & Technology, 2017, 46 (5): 134- 1143. | |
95 | 邱振, 卢斌, 陈振宏, 等. 火山灰沉积与页岩有机质富集关系探讨-以五峰组-龙马溪组含气页岩为例[J]. 沉积学报, 2019, 37 (6): 1296- 1308. |
Qiu Zhen , Lu Bin , Chen Zhenhong , et al. Discussion of the relationship between volcanic ash layers and organic enrichment of black shale: A case study of the Wufeng-Longmaxi gas shales in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2019, 37 (6): 1296- 1308. | |
96 |
Lu Bin , Qiu Zhen , Zhang Baohua , et al. Geochemical characteristics and geological significance of the bedded chert during the Ordovician and Silurian transition in the Shizhu area, Chongqing, South China[J]. Canadian Journal of Earth Sciences, 2019, 56 (4): 419- 430.
doi: 10.1139/cjes-2018-0160 |
97 | 戎嘉余, 黄冰. 华南奥陶纪末生物大灭绝的肇端标志[J]. 地质学报, 2019, 93 (3): 509- 527. |
Rong Jiayu , Huang Bing . An indicator of the onset of the end Ordovician mass extinction in South China[J]. Acta Geologica Sinica, 2019, 93 (3): 509- 527. | |
98 |
Rong Jiayu , Harper D A T , Huang Bing , et al. The latest Ordovician Hirnantian brachiopod faunas: New global insights[J]. Earth-Science Reviews, 2020, 208, 103280.
doi: 10.1016/j.earscirev.2020.103280 |
99 |
Stockey R G , Cole D B , Planavsky N J , et al. Sperling E A. Persistent global marine euxinia in the early Silurian[J]. Nature Communications, 2020, 11, 1804.
doi: 10.1038/s41467-020-15400-y |
100 | Richards F A. The enhanced preservation of organic matter in anoxic marine environments[M]//Hood DW. Organic matter in natural waters. University of Alaska: Occasional Publication of the Institute of Marine Science, 1976, 1: 399-411. |
101 | Slater R D. Kroopnick R. Controls on the dissolved oxygen distribution and organic carbon deposition in the Arabian Sea[M]//Haq B U, Milliman JD. Marine geology and oceanography of Arabian Sea and Coastal Pakistan. New York: Van Nostrand Reinhold, 1984: 305-313. |
102 | Raiswell R , Buckley F , Berner R A , et al. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation[J]. Journal of Sedimentary Petrology, 1988, 58 (5): 812- 819. |
103 |
Lash G G , Blood D R . Organic matter accumulation, redox, and diagenetic history of the Marcellus Formation, southwestern Pennylvanian, Appalachian basin[J]. Marine and Petrleum Geology, 2014, 57, 244- 263.
doi: 10.1016/j.marpetgeo.2014.06.001 |
104 | Tyson RV. The genesis and palynofacies charateristics of marine petroleum source rocks[M]//Brooks J, Fleet AJ. Marine petroleum source rocks. London: Geological Society Special Publication, 1987. |
105 |
Schulte S , Rostek F , Bard E , et al. Variations of oxygen-minimum and primary productivity recorded in sediments of the Arabian Sea[J]. Earth and Planetary Science Letters, 1999, 173 (3): 205- 221.
doi: 10.1016/S0012-821X(99)00232-0 |
106 |
Schulte P , Schwark L , Stassen P , et al. Black shale formation during the Latest Danian Event and the Paleocene-Eocene Thermal Maximum in central Egypt: Two of a kind?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 371, 9- 25.
doi: 10.1016/j.palaeo.2012.11.027 |
107 |
Karstensen J , Stramma L , Visbeck M . Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans[J]. Progress Oceanography, 2008, 77 (4): 331- 350.
doi: 10.1016/j.pocean.2007.05.009 |
108 | Li C , Love G D , Lyons T W , et al. A stratified redox model for the Ediacaran ocean[J]. Science, 2010, 328 (5874): 80- 83. |
109 |
Glenn C R , Arthur M A . Sedimentary and geochemical indicators of productivity and oxygen contents in modern and ancient basins: the Holocene Black Sea as the "type" anoxic basin[J]. Chemical Geology, 1985, 48 (1-4): 325- 354.
doi: 10.1016/0009-2541(85)90057-9 |
110 |
Murray J W , Jannasch H W , Honjo S , et al. Unexpected changes in the oxic/anoxic interface in the Black Sea[J]. Nature, 1989, 338, 411- 413.
doi: 10.1038/338411a0 |
111 |
Sageman B B , Murphy A E , Werne J P , et al. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin[J]. Chemical Geology, 2003, 195 (1-4): 229- 273.
doi: 10.1016/S0009-2541(02)00397-2 |
112 |
Cebrian J . Variability and control of carbon consumption, export and accumulation in marine communities[J]. Limnology and Oceanography, 2002, 47 (1): 11- 22.
doi: 10.4319/lo.2002.47.1.0011 |
113 | Duarte C M , Cebrian J . The fate of marine autotrophic production[J]. Limnology and Oceanography, 1996, 41 (8): 1759- 1766. |
114 |
Middleburg J J , Soetaert K , Herman P M J . Empirical relationships for use in global diagenetic models[J]. Deep-sea Research I, 1997, 44 (2): 327- 344.
doi: 10.1016/S0967-0637(96)00101-X |
115 |
Tyson RV . Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study[J]. Organic Geochemistry, 2001, 32 (2): 333- 339.
doi: 10.1016/S0146-6380(00)00161-3 |
116 | Nielsen S L, Pedersen M F, Banta G T. Attempting a synthesis-plant/nutrient interactions[M]//Nielsen SL, Banta GT, Pedersen MF. Estuarine nutrient cycling: The influence of primary producer. London: Kluwer Academic Publishers, 2004: 281-292. |
[1] | Rui FANG, Yuqiang JIANG, Changcheng YANG, Haibo DENG, Chan JIANG, Haitao HONG, Song TANG, Yifan GU, Xun ZHU, Shasha SUN, Guangyin CAI. Occurrence states and mobility of shale oil in different lithologic assemblages in the Jurassic Lianggaoshan Formation, Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(3): 752-769. |
[2] | Xiao HE, Maja ZHENG, Yong LIU, Qun ZHAO, Xuewen Shi, Zhenxue Jiang, Wei WU, Ya WU, Shitan NING, Xianglu TANG, Dadong LIU. Characteristics and differential origin of Qiongzhusi Formation shale reservoirs under the “aulacogen-uplift” tectonic setting, Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(2): 420-439. |
[3] | Changbo ZHAI, Liangbiao LIN, Donghua YOU, Fengbin LIU, Siyu LIU. Sedimentary microfacies characteristics and organic matter enrichment pattern of the 1st member of the Middle Permian Maokou Formation, southwestern Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(2): 440-456. |
[4] | Heyi ZHANG, Shuai YANG, Xihua ZHANG, Hanlin PENG, Qian LI, Cong CHEN, Zhaolong GAO, Anqing CHEN. Sedimentary microfacies and environmental evolution of the Middle Permian Maokou Formation in the eastern Sichuan Basin: A case study of the Yangjiao section in Wulong District, Chongqing, China [J]. Oil & Gas Geology, 2024, 45(2): 457-470. |
[5] | Hui PAN, Yuqiang JIANG, Xun ZHU, Haibo DENG, Linke SONG, Zhanlei WANG, Miao LI, Yadong ZHOU, Linjie FENG, Yongliang YUAN, Meng WANG. Evaluation of geological sweet spots in fluvial tight sandstone gas: A case study of the first submember of the second member of the Jurassic Shaximiao Formation, central Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(2): 471-485. |
[6] | Baoshou ZHANG, Benjian ZHANG, Hua WANG, Jianfa CHEN, Kaixuan LIU, Shuang DOU, Xin DAI, Shuangling CHEN. The Jinqiu gas field in the Sichuan Basin: A typical helium-bearing to helium-rich gas field with the Mesozoic sedimentary rocks as helium source rocks [J]. Oil & Gas Geology, 2024, 45(1): 185-199. |
[7] | Zhili ZHANG, Yanping QIAO, Shuang DOU, Kunyu LI, Yuan ZHONG, Luya WU, Baoshou ZHANG, Xin Dai, Xin JIN, Bin WANG, Jinmin SONG. Karst paleogeomorphology and reservoir control model of the 2nd member of Dengying Formation in Penglai gas area, Sichuan Basin, China [J]. Oil & Gas Geology, 2024, 45(1): 200-214. |
[8] | Guangfu WANG, Fengxia LI, Haibo WANG, Tong ZHOU, Yaxiong ZHANG, Ruyue WANG, Ning LI, Yuxin CHEN, Xiaofei XIONG. Difficulties and countermeasures for fracturing of various shale gas reservoirs in the Sichuan Basin [J]. Oil & Gas Geology, 2023, 44(6): 1378-1392. |
[9] | Zongquan HU, Ruyue WANG, Jing LU, Dongjun FENG, Yuejiao LIU, Baojian SHEN, Zhongbao LIU, Guanping WANG, Jianhua HE. Storage characteristic comparison of pores between lacustrine shales and their interbeds and differential evolutionary patterns [J]. Oil & Gas Geology, 2023, 44(6): 1393-1404. |
[10] | Dongfeng HU, Zhihong WEI, Ruobing LIU, Xiangfeng WEI, Wei WANG, Qingbo WANG. Discovery of the Qijiang shale gas field in a structurally complex region on the southeastern margin of the Sichuan Basin and its implications [J]. Oil & Gas Geology, 2023, 44(6): 1418-1429. |
[11] | Hongyan WANG, Shangwen ZHOU, Qun ZHAO, Zhensheng SHI, Dexun LIU, Pengfei JIAO. Enrichment characteristics, exploration and exploitation progress, and prospects of deep shale gas in the southern Sichuan Basin, China [J]. Oil & Gas Geology, 2023, 44(6): 1430-1441. |
[12] | Zhensheng SHI, Shengxian ZHAO, Tianqi ZHOU, Shasha SUN, Yuan YUAN, Chenglin ZHANG, Bo LI, Ling QI. Types and genesis of horizontal bedding of marine gas-bearing shale and its significance for shale gas: A case study of the Wufeng-Longmaxi shale in southern Sichuan Basin, China [J]. Oil & Gas Geology, 2023, 44(6): 1499-1514. |
[13] | Ruikang BIAN, Chuanxiang SUN, Haikuan NIE, Zhujiang LIU, Wei DU, Pei LI, Ruyue WANG. Types, characteristics, and exploration targets of deep shale gas reservoirs in the Wufeng-Longmaxi formations, southeastern Sichuan Basin [J]. Oil & Gas Geology, 2023, 44(6): 1515-1529. |
[14] | Shuangjian LI, Zhi LI, Lei ZHANG, Yingqiang LI, Xianwu MENG, Haijun WANG. Hydrocarbon accumulation conditions and exploration targets of the Triassic subsalt ultra-deep sequences in the western Sichuan Depression, Sichuan Basin [J]. Oil & Gas Geology, 2023, 44(6): 1555-1567. |
[15] | Jianhui ZENG, Yaxiong ZHANG, Zaizhen ZHANG, Juncheng QIAO, Maoyun WANG, Dongxia CHEN, Jingli YAO, Jingchen DING, Liang XIONG, Yazhou LIU, Weibo ZHAO, Kebo REN. Complex gas-water contacts in tight sandstone gas reservoirs: Distribution pattern and dominant factors controlling their formation and distribution [J]. Oil & Gas Geology, 2023, 44(5): 1067-1083. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||