Oil & Gas Geology ›› 2022, Vol. 43 ›› Issue (6): 1515-1528.doi: 10.11743/ogg20220620
• Methods and Technologies • Previous Articles Next Articles
Jianghui Meng1,2(), Peixi Lyu1,2, Wei Wu3, Renfang Pan1,2, Yiqing Zhu3
Received:
2022-07-25
Revised:
2022-09-20
Online:
2022-11-21
Published:
2022-11-21
CLC Number:
Jianghui Meng, Peixi Lyu, Wei Wu, Renfang Pan, Yiqing Zhu. A method for evaluating the thermal maturity of marine shale based on graptolite reflectance and Raman spectroscopy: A case from the Lower Palaeozoic Wufeng‒Longmaxi Formations, southern Sichuan Basin, SW China[J]. Oil & Gas Geology, 2022, 43(6): 1515-1528.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Random reflectance and equivalent vitrinite reflectance for graptolites and solid bitumen in the Wufeng?Longmaxi Formations, southern Sichuan Basin"
样品编号 | 样品深度/m | 层位 | 垂直层理切面 | 平行层理切面 | EqRo-1/% | RmcRo/% | EqRo/% | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GRor/% | 标准偏差SD/% | 测点数 n/个 | BRo/%(Ⅰ型源内固体沥青) | 标准偏差SD/% | 测点数 n/个 | GRor/% | ||||||
Y101H4-4-30 | 4 131.55 | S1l1(1) | 3.52 | 0.41 | 18 | 3.03 | 0.38 | 29 | — | 3.56 | 3.53 | 3.50 |
Y101H4-4-44 | 4 140.22 | S1l1(1) | 3.58 | 0.29 | 21 | 2.91 | 0.28 | 15 | 5.49 | 3.63 | 3.56 | 3.52 |
Y101H4-4-52 | 4 144.14 | S1l1(1) | 3.64 | 0.36 | 22 | 2.88 | 0.29 | 12 | — | 3.69 | 3.53 | 3.54 |
Y101H4-4-68 | 4 150.60 | O3w | 3.53 | 0.23 | 34 | 2.98 | 0.52 | 11 | — | 3.58 | 3.53 | 3.50 |
Y101H2-7-29 | 4 139.05 | S1l1(1) | 3.45 | 0.33 | 33 | 3.00 | 0.13 | 12 | — | 3.49 | 3.24 | 3.22 |
Y101H2-7-36 | 4 146.67 | S1l1(1) | 3.53 | 0.31 | 29 | 3.15 | 0.37 | 15 | 5.58 | 3.58 | 3.53 | 3.50 |
Z206-7 | 4 244.57 | S1l1(1) | 3.24 | 0.15 | 18 | 2.43 | 0.30 | 20 | — | 3.29 | 3.02 | 3.07 |
Z206-26 | 4 266.76 | S1l1(1) | 2.97 | 0.32 | 34 | 2.47 | 0.38 | 38 | 4.56 | 3.02 | 3.20 | 2.87 |
Z206-38 | 4 274.36 | O3w | — | — | — | — | — | — | — | — | 3.22 | — |
L204-17 | 3 824.30 | S1l1(1) | 3.23 | 0.30 | 35 | 2.71 | 0.52 | 31 | — | 3.28 | 3.31 | 3.06 |
L204-34 | 3 842.21 | S1l1(1) | 3.50 | 0.25 | 16 | 2.70 | 0.26 | 15 | 5.49 | 3.55 | 3.55 | 3.27 |
L205-20 | 4 024.08 | S1l1(1) | 3.25 | 0.14 | 15 | 2.57 | 0.42 | 15 | — | 3.29 | 3.25 | 3.08 |
L205-26 | 4 034.44 | O3w | 3.37 | 0.10 | 17 | 2.81 | 0.28 | 14 | 4.57 | 3.42 | 3.22 | 3.17 |
L207-30 | 3 448.05 | S1l1(1) | 3.11 | 0.06 | 3 | 2.31 | 0.47 | 32 | — | 3.15 | 2.91 | 2.97 |
L207-32 | 3 450.92 | S1l1(1) | 3.05 | 0.13 | 33 | 2.49 | 0.34 | 29 | 3.46 | 3.10 | 2.93 | 2.93 |
L207-36 | 3 457.41 | O3w | 3.07 | 0.15 | 11 | 2.78 | 0.17 | 5 | — | 3.11 | 2.97 | 2.94 |
N213-14 | 2 575.28 | S1l1(1) | 3.14 | 0.23 | 35 | 2.48 | 0.55 | 3 | 5.50 | 3.18 | 3.26 | 2.99 |
N213-17 | 2 579.22 | O3w | 3.32 | 0.27 | 29 | 2.83 | 0.49 | 18 | — | 3.36 | 3.31 | 3.13 |
N216-7 | 2 311.78 | S1l1(1) | 3.77 | 0.17 | 31 | 2.97 | 0.33 | 21 | — | 3.81 | 3.57 | 3.59 |
N216-10 | 2 320.68 | S1l1(1) | 3.80 | 0.13 | 24 | 2.65 | 0.43 | 11 | 4.97 | 3.84 | 3.56 | 3.60 |
W204H10-2-15 | 3 350.60 | S1l1(1) | 2.84 | 0.25 | 33 | 2.45 | 0.30 | 18 | — | 2.89 | 2.97 | 2.77 |
W204H10-2-23 | 3 355.30 | S1l1(1) | 2.86 | 0.15 | 30 | 2.53 | 0.29 | 31 | — | 2.91 | 2.84 | 2.78 |
H203-4 | 3 758.10 | O3w | 3.17 | 0.22 | 9 | — | — | — | — | 3.22 | 3.21 | 3.02 |
W201-2 | 1 541.00 | S1l1(1) | 2.58 | 0.25 | 27 | 2.11 | 0.27 | 11 | 2.88 | 2.63 | 2.18 | 2.57 |
W201-3 | 1 548.80 | O3w | 2.43 | 0.25 | 4 | — | — | — | — | 2.48 | 2.41 | 2.46 |
W202-1 | 2 561.50 | S1l1(1) | 3.18 | 0.22 | 35 | 2.40 | 0.35 | 11 | — | 3.23 | 3.15 | 3.03 |
W202-2 | 2 568.20 | S1l1(1) | 2.90 | 0.18 | 33 | 2.53 | 0.41 | 14 | — | 2.95 | 2.70 | 2.82 |
W213-1 | 3 745.34 | S1l1(1) | 3.02 | 0.22 | 35 | 2.32 | 0.44 | 26 | — | 3.07 | 2.86 | 2.90 |
W211-2 | 3 559.50 | S1l1(1) | 2.93 | 0.26 | 26 | 2.39 | 0.45 | 12 | — | 2.98 | 3.09 | 2.83 |
N222-1 | 4 301.60 | S1l1(1) | 4.65 | 0.59 | 24 | 3.56 | 0.49 | 8 | — | 4.69 | 3.88 | 3.91 |
N222-4 | 4 327.14 | S1l1(1) | 4.28 | 0.29 | 16 | 3.20 | 0.40 | 18 | 3.96 | 4.32 | 3.82 | 3.77 |
N215-1 | 2 502.95 | S1l1(1) | 3.27 | 0.36 | 31 | 2.75 | 0.36 | 19 | — | 3.32 | 3.38 | 3.09 |
R203-1 | 4 336.14 | S1l1(1) | 3.55 | 0.44 | 23 | 2.42 | 0.33 | 22 | — | 3.60 | 3.48 | 3.51 |
Table 2
Raman spectroscopic parameters of kerogen in the Wufeng?Longmaxi Formations, southern Sichuan Basin"
样品编号 | GRor/% | WG/cm-1 | WD/cm-1 | RBS/cm-1 | ID/IG | FWHMD/cm-1 | FWHMG/cm-1 |
---|---|---|---|---|---|---|---|
Y101H4-4-30 | 3.52 | 1 599.54 | 1 328.13 | 271.41 | 0.66 | 147.70 | 51.55 |
Y101H4-4-44 | 3.58 | 1 598.57 | 1 328.13 | 270.44 | 0.68 | 156.71 | 58.05 |
Y101H4-4-52 | 3.64 | 1 599.21 | 1 328.13 | 271.08 | 0.66 | 147.39 | 50.57 |
Y101H4-4-68 | 3.53 | 1 599.54 | 1 328.47 | 271.07 | 0.66 | 149.05 | 51.55 |
Y101H2-7-29 | 3.45 | 1 599.21 | 1 330.15 | 269.06 | 0.68 | 150.35 | 53.50 |
Y101H2-7-36 | 3.53 | 1 600.19 | 1 330.49 | 269.70 | 0.66 | 149.77 | 50.90 |
Z206-7 | 3.24 | 1 598.24 | 1 333.18 | 265.06 | 0.64 | 185.68 | 58.70 |
Z206-26 | 2.97 | 1 599.21 | 1 330.82 | 268.39 | 0.63 | 167.60 | 53.18 |
Z206-38 | — | 1 601.48 | 1 332.84 | 268.64 | 0.62 | 155.81 | 49.59 |
L204-17 | 3.23 | 1 598.89 | 1 328.47 | 270.42 | 0.69 | 149.35 | 53.82 |
L204-34 | 3.50 | 1 599.54 | 1 330.15 | 269.39 | 0.67 | 148.37 | 52.53 |
L205-20 | 3.25 | 1 602.45 | 1 333.18 | 269.28 | 0.60 | 160.88 | 48.61 |
L205-26 | 3.37 | 1 597.92 | 1 329.14 | 268.78 | 0.65 | 170.95 | 55.13 |
L207-30 | 3.11 | 1 598.57 | 1 335.53 | 263.03 | 0.60 | 193.35 | 59.35 |
L207-32 | 3.05 | 1 597.59 | 1 334.19 | 263.41 | 0.61 | 197.42 | 59.04 |
L207-36 | 3.07 | 1 597.92 | 1 333.85 | 264.07 | 0.61 | 193.00 | 59.68 |
N213-14 | 3.14 | 1 599.86 | 1 330.49 | 269.38 | 0.65 | 141.31 | 49.27 |
N213-17 | 3.32 | 1 598.89 | 1 328.47 | 270.42 | 0.71 | 146.37 | 52.53 |
N216-7 | 3.77 | 1 599.54 | 1 327.46 | 272.08 | 0.70 | 139.27 | 51.55 |
N216-10 | 3.80 | 1 601.81 | 1 331.50 | 270.31 | 0.69 | 150.74 | 50.89 |
W204H10-2-15 | 2.84 | 1 597.92 | 1 333.85 | 264.07 | 0.62 | 199.43 | 60.98 |
W204H10-2-23 | 2.86 | 1 597.59 | 1 335.87 | 261.73 | 0.63 | 200.11 | 64.89 |
H203-4 | 3.17 | 1 597.92 | 1 329.48 | 268.44 | 0.64 | 176.66 | 57.41 |
W201-2 | 2.58 | 1 595.97 | 1 346.62 | 249.36 | 0.61 | — | 75.31 |
W201-3 | 2.43 | 1 596.30 | 1 342.59 | 253.71 | 0.61 | — | 70.74 |
W202-1 | 3.18 | 1 600.51 | 1 333.18 | 267.33 | 0.63 | 206.09 | 60.82 |
W202-2 | 2.90 | 1 598.89 | 1 339.90 | 258.99 | 0.59 | 203.46 | 62.93 |
W213-1 | 3.02 | 1 598.24 | 1 336.21 | 262.04 | 0.63 | 196.70 | 60.98 |
W211-2 | 2.93 | 1 599.86 | 1 333.52 | 266.35 | 0.60 | 184.37 | 55.45 |
N222-1 | 4.65 | 1 598.89 | 1 337.89 | 261.01 | 0.96 | 100.83 | 55.77 |
N222-4 | 4.28 | 1 598.57 | 1 335.87 | 262.70 | 0.91 | 114.98 | 57.08 |
N215-1 | 3.27 | 1 601.48 | 1 329.81 | 271.67 | 0.65 | 143.34 | 48.62 |
R203-1 | 3.55 | 1 601.81 | 1 331.16 | 270.65 | 0.62 | 159.81 | 50.57 |
1 | 梁狄刚,郭彤楼,陈建平,等. 中国南方海相生烃成藏研究的若干新进展(一):南方四套区域性海相烃源岩的分布[J].海相油气地质, 2008, 13(2): 1-16. |
Liang Digang, Guo Tonglou, Chen Jianping, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 1): Distribution of four suits of regional marine source rocks[J]. Marine Origin Petroleum Geology, 2008, 13(2): 1-16. | |
2 | 钟宁宁,赵喆,李艳霞,等. 论南方海相层系有效供烃能力的主要控制因素[J]. 地质学报, 2010, 84(2): 149-158. |
Zhong Ningning, Zhao Zhe, Li Yanxia, et al. An approach to the main controls on the potential of efficient hydrocarbon supply of marine sequences in South China[J]. Acta Geological Sinica, 2010, 84(2): 149-158. | |
3 | 邹才能,董大忠,王社教,等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. |
Zou Caineng, Dong Dazhong, Wang Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. | |
4 | 董大忠,程克明,王玉满,等. 中国上扬子区下古生界页岩气形成条件及特征[J]. 石油与天然气地质, 2010, 31(3): 288-299. |
Dong Dazhong, Cheng Keming, Wang Yuman, et al. Forming conditions and characteristics of shale gas in the Lower Paleozoic of the Upper Yangtze region, China[J]. Oil & Gas Geology, 2010, 31(3): 288-299. | |
5 | 金之钧,胡宗全,高波,等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10. |
Jin Zhijun, Hu Zongquan, Gao Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10. | |
6 | Chen X, Rong J, Mitchell C E, et al. Late Ordovician to earliest Silurian graptolite and brachiopod biozonation from the Yangtze region, South China, with a global correlation[J]. Geological Magazine, 2000, 137(6): 623-650. |
7 | Lüning S, Craig J, Loydell D K, et al. Lower Silurian ‘hot shales’ in North Africa and Arabia: regional distribution and depositional model[J]. Earth-Science Reviews, 2000, 49(1): 121-200. |
8 | Hao F, Zou H, Lu Y. Mechanisms of shale gas storage: Implications for shale gas exploration in China[J]. AAPG Bulletin, 2013, 97(8): 1325-1346. |
9 | 徐姝慧,何生,朱钢添,等. 鄂西渝东下古生界海相页岩饱和烃组成特征及其指示意义[J]. 石油与天然气地质, 2018, 39(2): 217-228. |
Xu Shuhui, He Sheng, Zhu Gangtian, et al. Characteristics of saturated hydrocarbons from Lower Paleozoic marine shales in western Hubei-eastern Chongqing area and their indications[J]. Oil & Gas Geology, 2018, 39(2): 217-228. | |
10 | 杨熙雅,刘成林,刘文平,等. 四川盆地富顺-永川地区龙马溪组页岩有机孔特征及其影响因素[J]. 石油与天然气地质, 2021, 42(6): 1321-1333. |
Yang Xiya, Liu Chenglin, Liu Wenpin, et al. Characteristics of and factors influencing organic pores in the Lower Silurian Longmaxi Formation, Fushun-Yongchuan area, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(6): 1321-1333. | |
11 | 徐亮,杨威,姜振学,等. 四川盆地川西坳陷三叠系须家河组页岩有机孔演化及成因[J]. 石油与天然气地质, 2022, 43(2): 325-340. |
Xu Liang, Yang Wei, Jiang Zhenxue, et al. Evolution and genesis of organic pores in Triassic Xujiahe Formation shale, Western Sichuan Depression, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 325-340. | |
12 | 陈康,张金川,唐玄,等. 湘鄂西地区下志留统龙马溪组页岩吸附能力主控因素[J]. 石油与天然气地质, 2016, 37(1): 23-29. |
Chen Kang, Zhang Jinchuan, Tang Xuan, et al. Main controlling factors on shale adsorption capacity of the Lower Silurian Longmaxi Formation in western Hunan-Hubei area[J]. Oil & Gas Geology, 2016, 37(1): 23-29. | |
13 | Hackley P C, Araujo C V, Borrego A G, et al. Standardization of reflectance measurements in dispersed organic matter: Results of an exercise to improve interlaboratory agreement[J]. Marine and Petroleum Geology, 2015, 59: 22-34. |
14 | 王晔,邱楠生,马中良,等. 固体沥青反射率与镜质体反射率的等效关系评价[J]. 中国矿业大学学报, 2020, 49(3): 563-575. |
Wang Ye, Qiu Nansheng, Ma Zhongliang, et al. Evaluation of equivalent relationship between vitrinite reflectance and solid bitumen reflectance[J]. Journal of China University of Mining & Technology, 2020, 49(3): 563-575. | |
15 | Mastalerz M, Drobniak A, Stankiewicz A B. Origin, properties, and implications of solid bitumen in source-rock reservoirs: A review[J]. International Journal of Coal Geology, 2018, 195: 14-36. |
16 | Carvajal-Ortiz H, Gentzis T. Critical considerations when assessing hydrocarbon plays using Rock-Eval pyrolysis and organic petrology data: Data quality revisited[J]. International Journal of Coal Geology, 2015, 152: 113-122. |
17 | Wilkins R W T, Wilmshurst J R, Hladky G, et al. Should fluorescence alteration replace vitrinite reflectance as a major tool for thermal maturity determination in oil exploration?[J]. Organic Geochemistry, 1995, 22(1): 191-209. |
18 | 卢双舫,张敏. 油气地球化学[M]. 北京: 石油工业出版社, 2008: 171-191. |
Lu Shuangfang, Zhang Min. Petroleum geochemistry[M]. Beijing: Petroleum Industry Press, 2008: 171-191. | |
19 | 陈旭,樊隽轩,张元动,等. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志, 2015, 39(4): 351-358. |
Chen Xu, Fan Junxuan, Zhang Yuandong, et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze Platform[J]. Journal of Stratigraphy, 2015, 39(4): 351-358. | |
20 | 陈旭,樊隽轩,王文卉,等. 黔渝地区志留系龙马溪组黑色笔石页岩的阶段性渐进展布模式[J]. 中国科学:地球科学, 2017, 47(6): 720-732. |
Chen Xu, Fan Junxuan, Wang Wenhui, et al. Stage-progressive distribution pattern of the Lungmachi black graptolitic shales from Guizhou to Chongqing, central China[J]. Science China Earth Sciences, 2017, 60(6): 720-732. | |
21 | 孙莎莎,芮昀,董大忠,等. 中、上扬子地区晚奥陶世—早志留世古地理演化及页岩沉积模式[J]. 石油与天然气地质, 2018, 39(6): 1087-1106. |
Sun Shasha, Rui Yun, Dong Dazhong, et al. Paleogeographic evolution of the Late Ordovician-Early Silurian in Upper and Middle Yangtze regions and depositional model of shale[J]. Oil & Gas Geology, 2018, 39(6): 1087-1106. | |
22 | Petersen H I, Schovsbo N H, Nielsen A T. Reflectance measurements of zooclasts and solid bitumen in Lower Paleozoic shales, southern Scandinavia: Correlation to vitrinite reflectance[J]. International Journal of Coal Geology, 2013, 114: 1-18. |
23 | 仰云峰. 川东南志留系龙马溪组页岩沥青反射率和笔石反射率的应用[J]. 石油实验地质, 2016, 38(4): 466-472. |
Yang Yunfeng. Application of bitumen and graptolite reflectance in the Silurian Longmaxi shale, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38(4): 466-472. | |
24 | Luo Q, Hao J, Skovsted C B, et al. Optical characteristics of graptolite-bearing sediments and its implication for thermal maturity assessment[J]. International Journal of Coal Geology, 2018, 195: 386-401. |
25 | Goodarzi F. Dispersion of optical properties of graptolite epiderms with increased maturity in early Paleozoic organic sediments[J]. Fuel, 1985, 64(12): 1735-1740. |
26 | Goodarzi F, Gentzis T, Harrison C, et al. The significance of graptolite reflectance in regional thermal maturity studies, Queen Elizabeth Islands, Arctic Canada[J]. Organic Geochemistry, 1992, 18(3): 347-357. |
27 | Luo Q, Zhong N, Dai N, et al. Graptolite-derived organic matter in the Wufeng-Longmaxi Formations (Upper Ordovician-Lower Silurian) of southeastern Chongqing, China: Implications for gas shale evaluation[J]. International Journal of Coal Geology, 2016, 153: 87-98. |
28 | Luo Q, Goodarzi F, Zhong N, et al. Graptolites as fossil geo-thermometers and source material of hydrocarbons: An overview of four decades of progress[J]. Earth-Science Reviews, 2020, 200: 103000. |
29 | Wang Y, Qiu N, Borjigin T, et al. Integrated assessment of thermal maturity of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi shale in Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 100: 447-465. |
30 | Malinconico M A L. Reflectance cross-plot analysis of graptolites from the anchi-metamorphic region of northern Maine, U.S.A.[J]. Organic Geochemistry, 1993, 20(2): 197-207. |
31 | Goodarzi F, Norford B S. Optical properties of graptolite epiderm A review[J]. Bulletin of the Geological Society of Denmark, 1987, 35: 141-147. |
32 | 刘德汉,肖贤明,田辉,等. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报, 2013, 58(13): 1228-1241. |
Liu Dehan, Xiao Xianming, Tian Hui, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58(13): 1228-1241. | |
33 | 王民, Li Zhongsheng. 激光拉曼技术评价沉积有机质热成熟度[J]. 石油学报, 2016, 37(9): 1129-1136. |
Wang Min, Li Zhongsheng. Thermal maturity evaluation of sedimentary organic matter using laser Raman spectroscopy[J]. Acta Petrolei Sinica, 2016, 37(9): 1129-1136. | |
34 | Hao J, Zhong N, Luo Q, et al. Raman spectroscopy of graptolite periderm and its potential as an organic maturity indicator for the Lower Paleozoic in southwestern China[J]. International Journal of Coal Geology, 2019, 213: 103278. |
35 | Schmidt Mumm A, İnan S. Microscale organic maturity determination of graptolites using Raman spectroscopy[J]. International Journal of Coal Geology, 2016, 162: 96-107. |
36 | 李纯泉,陈红汉,肖雪薇,等. 四川盆地中部高石梯-磨溪地区震旦系灯影组储层沥青拉曼光谱分析[J]. 石油与天然气地质,2022, 43(2): 456-466. |
Li Chunquan, Chen Honghan, Xiao Xuewei, et al. Raman spectroscopy of bitumen from the Sinian Dengying Formation reservoirs, Gaoshiti-Moxi area, central Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 456-466. | |
37 | Quirico E, Rouzaud J, Bonal L, et al. Maturation grade of coals as revealed by Raman spectroscopy: Progress and problems[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(10): 2368-2377. |
38 | Henry D G, Jarvis I, Gillmore G, et al. Assessing low-maturity organic matter in shales using Raman spectroscopy: Effects of sample preparation and operating procedure[J]. International Journal of Coal Geology, 2018, 191: 135-151. |
39 | Zhou Q, Xiao X, Pan L, et al. The relationship between micro-Raman spectral parameters and reflectance of solid bitumen[J]. International Journal of Coal Geology, 2014, 121: 19-25. |
40 | Wilkins R W T, Wang M, Gan H, et al. A RaMM study of thermal maturity of dispersed organic matter in marine source rocks[J]. International Journal of Coal Geology, 2015, 150-151: 252-264. |
41 | Wang Y, Qiu N, Xie X, et al. Maturity and thermal evolution differences between two sets of Lower Palaeozoic shales and its significance for shale gas formation in south-western Sichuan Basin, China[J]. Geological Journal, 2021, 56(7): 3698-3791. |
42 | 马新华,谢军,雍锐,等. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J]. 石油勘探与开发,2020,47(5):841-855. |
Ma Xinhua, Xie Jun, Yong Rui, et al. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(5): 841-855. | |
43 | 刘树根,邓宾,钟勇,等. 四川盆地及周缘下古生界页岩气深埋藏—强改造独特地质作用[J]. 地学前缘, 2016, 23(1): 11-28. |
Liu Shugen, Deng Bin, Zhong Yong, et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2016, 23(1): 11-28. | |
44 | Goodarzi F, Norford B S. Graptolites as indicators of the temperature histories of rocks[J]. Journal of the Geological Society, 1985, 142(6): 1089-1099. |
45 | Luo Q, Zhang L, Zhong N, et al. Thermal evolution behavior of the organic matter and a ray of light on the origin of vitrinite-like maceral in the Mesoproterozoic and Lower Cambrian black shales: Insights from artificial maturation[J]. International Journal of Coal Geology, 2021, 244: 103813. |
46 | Sanei H, Haeri-Ardakani O, Wood J M, et al. Effects of nanoporosity and surface imperfections on solid bitumen reflectance (BRo) measurements in unconventional reservoirs[J]. International Journal of Coal Geology, 2015, 138: 95-102. |
47 | 罗情勇,郝婧玥,李可文,等. 下古生界有机质成熟度评价新参数:笔石表皮体光学特征再研究[J]. 地质学报, 2019, 93(9): 2362-2371. |
Luo Qingyong, Hao Jingyue, Li Kewen, et al. A new parameter for the thermal maturity assessment of organic matter from the Lower Palaeozoic sediments: A re-study on the optical characteristics of graptolite periderms[J]. Acta Geologica Sinica, 2019, 93(9): 2362-2371. | |
48 | Sauerer B, Craddock P R, Aljohani M D, et al. Fast and accurate shale maturity determination by Raman spectroscopy measurement with minimal sample preparation[J]. International Journal of Coal Geology, 2017, 173: 150-157. |
49 | Hartkopf-Fröder C, Königshof P, Littke R, et al. Optical thermal maturity parameters and organic geochemical alteration at low grade diagenesis to anchimetamorphism: A review[J]. International Journal of Coal Geology, 2015, 150-151: 74-119. |
50 | 王保忠,王传尚,汪啸风,等 .海相高过成熟页岩芳烃特征及页岩气意义[J].地球科学,2019,44(11):3705-3716. |
Wang Baozhong, Wang Chuanshang, Wang Xiaofeng, et al. Characteristics of aromatic compounds in high-over matured marine shale and its significance to shale gas[J]. Earth Science, 2019, 44(11): 3705-3716. | |
51 | Haeri-Ardakani O, Sanei H. Dolomite fluorescence Red/Green quotient: A potential new thermal maturity indicator[J]. International Journal of Coal Geology, 2015, 137: 165-171. |
[1] | Rui FANG, Yuqiang JIANG, Changcheng YANG, Haibo DENG, Chan JIANG, Haitao HONG, Song TANG, Yifan GU, Xun ZHU, Shasha SUN, Guangyin CAI. Occurrence states and mobility of shale oil in different lithologic assemblages in the Jurassic Lianggaoshan Formation, Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(3): 752-769. |
[2] | Xiao HE, Maja ZHENG, Yong LIU, Qun ZHAO, Xuewen Shi, Zhenxue Jiang, Wei WU, Ya WU, Shitan NING, Xianglu TANG, Dadong LIU. Characteristics and differential origin of Qiongzhusi Formation shale reservoirs under the “aulacogen-uplift” tectonic setting, Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(2): 420-439. |
[3] | Changbo ZHAI, Liangbiao LIN, Donghua YOU, Fengbin LIU, Siyu LIU. Sedimentary microfacies characteristics and organic matter enrichment pattern of the 1st member of the Middle Permian Maokou Formation, southwestern Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(2): 440-456. |
[4] | Heyi ZHANG, Shuai YANG, Xihua ZHANG, Hanlin PENG, Qian LI, Cong CHEN, Zhaolong GAO, Anqing CHEN. Sedimentary microfacies and environmental evolution of the Middle Permian Maokou Formation in the eastern Sichuan Basin: A case study of the Yangjiao section in Wulong District, Chongqing, China [J]. Oil & Gas Geology, 2024, 45(2): 457-470. |
[5] | Hui PAN, Yuqiang JIANG, Xun ZHU, Haibo DENG, Linke SONG, Zhanlei WANG, Miao LI, Yadong ZHOU, Linjie FENG, Yongliang YUAN, Meng WANG. Evaluation of geological sweet spots in fluvial tight sandstone gas: A case study of the first submember of the second member of the Jurassic Shaximiao Formation, central Sichuan Basin [J]. Oil & Gas Geology, 2024, 45(2): 471-485. |
[6] | Baoshou ZHANG, Benjian ZHANG, Hua WANG, Jianfa CHEN, Kaixuan LIU, Shuang DOU, Xin DAI, Shuangling CHEN. The Jinqiu gas field in the Sichuan Basin: A typical helium-bearing to helium-rich gas field with the Mesozoic sedimentary rocks as helium source rocks [J]. Oil & Gas Geology, 2024, 45(1): 185-199. |
[7] | Zhili ZHANG, Yanping QIAO, Shuang DOU, Kunyu LI, Yuan ZHONG, Luya WU, Baoshou ZHANG, Xin Dai, Xin JIN, Bin WANG, Jinmin SONG. Karst paleogeomorphology and reservoir control model of the 2nd member of Dengying Formation in Penglai gas area, Sichuan Basin, China [J]. Oil & Gas Geology, 2024, 45(1): 200-214. |
[8] | Guangfu WANG, Fengxia LI, Haibo WANG, Tong ZHOU, Yaxiong ZHANG, Ruyue WANG, Ning LI, Yuxin CHEN, Xiaofei XIONG. Difficulties and countermeasures for fracturing of various shale gas reservoirs in the Sichuan Basin [J]. Oil & Gas Geology, 2023, 44(6): 1378-1392. |
[9] | Zongquan HU, Ruyue WANG, Jing LU, Dongjun FENG, Yuejiao LIU, Baojian SHEN, Zhongbao LIU, Guanping WANG, Jianhua HE. Storage characteristic comparison of pores between lacustrine shales and their interbeds and differential evolutionary patterns [J]. Oil & Gas Geology, 2023, 44(6): 1393-1404. |
[10] | Dongfeng HU, Zhihong WEI, Ruobing LIU, Xiangfeng WEI, Wei WANG, Qingbo WANG. Discovery of the Qijiang shale gas field in a structurally complex region on the southeastern margin of the Sichuan Basin and its implications [J]. Oil & Gas Geology, 2023, 44(6): 1418-1429. |
[11] | Hongyan WANG, Shangwen ZHOU, Qun ZHAO, Zhensheng SHI, Dexun LIU, Pengfei JIAO. Enrichment characteristics, exploration and exploitation progress, and prospects of deep shale gas in the southern Sichuan Basin, China [J]. Oil & Gas Geology, 2023, 44(6): 1430-1441. |
[12] | Zhensheng SHI, Shengxian ZHAO, Tianqi ZHOU, Shasha SUN, Yuan YUAN, Chenglin ZHANG, Bo LI, Ling QI. Types and genesis of horizontal bedding of marine gas-bearing shale and its significance for shale gas: A case study of the Wufeng-Longmaxi shale in southern Sichuan Basin, China [J]. Oil & Gas Geology, 2023, 44(6): 1499-1514. |
[13] | Ruikang BIAN, Chuanxiang SUN, Haikuan NIE, Zhujiang LIU, Wei DU, Pei LI, Ruyue WANG. Types, characteristics, and exploration targets of deep shale gas reservoirs in the Wufeng-Longmaxi formations, southeastern Sichuan Basin [J]. Oil & Gas Geology, 2023, 44(6): 1515-1529. |
[14] | Shuangjian LI, Zhi LI, Lei ZHANG, Yingqiang LI, Xianwu MENG, Haijun WANG. Hydrocarbon accumulation conditions and exploration targets of the Triassic subsalt ultra-deep sequences in the western Sichuan Depression, Sichuan Basin [J]. Oil & Gas Geology, 2023, 44(6): 1555-1567. |
[15] | Jianhui ZENG, Yaxiong ZHANG, Zaizhen ZHANG, Juncheng QIAO, Maoyun WANG, Dongxia CHEN, Jingli YAO, Jingchen DING, Liang XIONG, Yazhou LIU, Weibo ZHAO, Kebo REN. Complex gas-water contacts in tight sandstone gas reservoirs: Distribution pattern and dominant factors controlling their formation and distribution [J]. Oil & Gas Geology, 2023, 44(5): 1067-1083. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||