Oil & Gas Geology ›› 2023, Vol. 44 ›› Issue (4): 1054-1066.doi: 10.11743/ogg20230420
• Methods and Technologies • Previous Articles Next Articles
Tan ZHANG(), Wei YAO, Yongqiang ZHAO, Yushuang ZHOU, Jiwen HUANG, Xinyu FAN, Yu LUO
Received:
2022-12-12
Revised:
2023-03-27
Online:
2023-08-01
Published:
2023-08-09
CLC Number:
Tan ZHANG, Wei YAO, Yongqiang ZHAO, Yushuang ZHOU, Jiwen HUANG, Xinyu FAN, Yu LUO. Time scale and denudation thickness calculation of Carboniferous Kalashayi Formation in the Bamai area, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(4): 1054-1066.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Earth orbital parameter periodicities and their ratios during the deposition of the Carboniferous Kalashayi Formation, Baimai area"
参数 | 理论周期/kyr | 周期比值 | ||||||
---|---|---|---|---|---|---|---|---|
偏心率 | e1 | 405.00 | 23.657 | 19.912 | 12.169 | 9.785 | 4.263 | 3.240 |
e2 | 125.00 | 7.301 | 6.146 | 3.756 | 3.020 | 1.316 | 1 | |
e3 | 95.00 | 5.549 | 4.671 | 2.855 | 2.295 | 1 | ||
斜率 | o1 | 41.39 | 2.418 | 2.035 | 1.244 | 1 | ||
o2 | 33.28 | 1.944 | 1.636 | 1 | ||||
岁差 | σ1 | 20.34 | 1.188 | 1 | ||||
σ2 | 17.12 | 1 |
Table 2
Ratio of dominant frequency corresponding to Milankovitch cycle of the Carboniferous Kalashayi Formation, Bamai area"
井名 | 旋回参数 | 主导频率/(1/m) | 主导周期比值 | 天文旋回周期比值 | 单个旋回厚度/m | 误差率/% |
---|---|---|---|---|---|---|
YB1 | e1 | 0.019 5 | 12.03 | 12.17 | 6.410 | 1.17 |
e2 | 0.062 5 | 3.75 | 3.76 | 2.000 | 0.10 | |
e3 | 0.082 0 | 2.86 | 2.85 | 1.524 | 0.19 | |
o1 | 0.191 4 | 1.23 | 1.24 | 0.653 | 1.48 | |
o2 | 0.234 4 | 1 | 1 | 0.533 | 0.05 | |
YB8 | e1 | 0.019 5 | 11.43 | 12.17 | 6.410 | 6.11 |
e2 | 0.062 1 | 3.59 | 3.76 | 2.013 | 4.47 | |
e3 | 0.074 2 | 3.00 | 2.85 | 1.685 | 5.20 | |
o1 | 0.191 4 | 1.16 | 1.24 | 0.653 | 6.40 | |
o2 | 0.222 7 | 1 | 1 | 0.561 | 0.05 | |
HT1 | e1 | 0.021 5 | 12.17 | 12.17 | 5.814 | 0 |
e2 | 0.068 3 | 3.83 | 3.76 | 1.830 | 1.86 | |
e3 | 0.093 8 | 2.79 | 2.85 | 1.333 | 2.26 | |
o1 | 0.209 0 | 1.25 | 1.24 | 0.598 | 0.68 | |
o2 | 0.261 7 | 1 | 1 | 0.478 | 0.00 | |
H3 | e1 | 0.021 5 | 12.27 | 12.17 | 5.814 | 0.79 |
e2 | 0.068 4 | 3.86 | 3.76 | 1.827 | 2.65 | |
e3 | 0.091 8 | 2.87 | 2.85 | 1.362 | 0.63 | |
o1 | 0.207 0 | 1.27 | 1.24 | 0.604 | 2.44 | |
o2 | 0.263 7 | 1 | 1 | 0.474 | 0 |
Table 4
Astronomical periods and denudation thickness of the Carboniferous Kalashayi Formation, Bamai area"
井名 | 厚度/m | 长偏心率(e1)旋回数/个 | 平均旋回厚度/m | 缺失旋回数/个 | 剥蚀厚度/m |
---|---|---|---|---|---|
YB1 | 284.00 | 44.00 | 6.45 | 24.00 | 154.80 |
YB4 | 306.10 | 60.00 | 5.10 | 8.00 | 40.81 |
YB8 | 212.00 | 35.00 | 6.05 | 33.00 | 199.65 |
YB9 | 255.88 | 38.00 | 6.73 | 30.00 | 202.01 |
YB10 | 267.88 | 42.00 | 6.38 | 26.00 | 165.83 |
LN1 | 305.00 | 60.00 | 5.08 | 8.00 | 40.67 |
PSB2 | 262.00 | 44.00 | 5.95 | 24.00 | 142.91 |
BT4 | 55.00 | 9.00 | 6.11 | 59.00 | 360.56 |
BT5 | 204.00 | 33.00 | 6.18 | 35.00 | 216.36 |
BT6 | 66.00 | 11.00 | 6.00 | 57.00 | 342.00 |
BK8 | 24.00 | 4.00 | 6.00 | 64.00 | 384.00 |
Q5 | 284.00 | 42.00 | 6.76 | 26.00 | 175.81 |
J2 | 90.00 | 15.00 | 6.00 | 53.00 | 318.00 |
H2 | 379.00 | 64.00 | 5.92 | 4.00 | 23.69 |
H3 | 397.00 | 67.00 | 5.93 | 1.00 | 5.93 |
H4 | 216.00 | 35.00 | 6.17 | 33.00 | 203.66 |
HT1 | 393.00 | 66.00 | 5.95 | 2.00 | 11.91 |
BD4 | 351.00 | 58.00 | 6.05 | 10.00 | 60.52 |
K1 | 43.00 | 7.00 | 6.14 | 61.00 | 374.71 |
K2 | 117.00 | 20.00 | 5.85 | 48.00 | 280.80 |
1 | 李京昌, 吴疆, 何宏, 等. 塔里木盆地石炭系卡拉沙依组烃源岩研究[J]. 石油实验地质, 2017, 39(4): 511-519. |
LI Jingchang, WU Jiang, HE Hong, et al. Source rock characteristics of the Carboniferous Karashayi Formation in the Tarim Basin[J]. Petroleum Geology and Experiment, 2017, 39(4): 511-519. | |
2 | 黄智斌, 杜品德, 张师本, 等. 塔里木盆地石炭系卡拉沙依组的厘定[J]. 地层学杂志, 2005, 29(1): 55-61, 70. |
HUANG Zhibin, DU Pinde, ZHANG Shiben, et al. Revision of the carboniferous Kalashayi Formation of the Tarim Basin[J]. Journal of Stratigraphy, 2005, 29(1): 55-61, 70. | |
3 | 许杰, 何治亮, 郭建华, 等. 卡拉沙依组砂泥岩段层序地层及沉积体系[J]. 新疆地质, 2009, 27(2): 155-159. |
XU Jie, HE Zhiliang, GUO Jianhua, et al. Sequence stratigraphy and sedimentary system of Kalashayi Formation sandy mudstone member[J]. Xinjiang Geology, 2009, 27(2): 155-159. | |
4 | 曹强, 叶加仁, 王巍. 沉积盆地地层剥蚀厚度恢复方法及进展[J]. 中国石油勘探, 2007, 12(6): 41-46. |
CAO Qiang, YE Jiaren, WANG Wei. Methods of eroded strata thickness restoration in sedimentary basins and its advancement[J]. China Petroleum Exploration, 2007, 12(6): 41-46. | |
5 | 吴怀春, 张世红, 冯庆来, 等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学(中国地质大学学报), 2011, 36(3): 409-428. |
WU Huaichun, ZHANG Shihong, FENG Qinglai, et al. Theoretical basis, research advancement and prospects of cyclostratigraphy[J]. Earth Science(Journal of China University of Geoscience), 2011, 36(3): 409-428. | |
6 | 宋翠玉, 吕大炜. 米兰科维奇旋回时间序列分析法研究进展[J]. 沉积学报, 2022, 40(2): 380-395. |
SONG Cuiyu, Dawei LYU. Advances in time series analysis methods for Milankovitch cycles[J]. Acta Sedimentologica Sinica, 2022, 40(2): 380-395. | |
7 | HINNOV L A, OGG J G. Cyclostratigraphy and the astronomical time scale[J]. Stratigraphy, 2007, 4(2/3): 239-251. |
8 | 朱春霞, 张尚锋, 王雅宁, 等. 陆丰凹陷韩江组旋回地层学分析及天文年代标尺的建立[J]. 海洋地质前沿, 2022, 38(4): 42-52. |
ZHU Chunxia, ZHANG Shangfeng, WANG Yaning, et al. Cyclical stratigraphic analysis and establishment of astronomical chronograph of Hanjiang Formation in Lufeng Sag[J]. Marine Geology Frontiers, 2022, 38(4): 42-52. | |
9 | 马超, 王成善, 陈曦, 等. 藏南晚白垩世旋回地层学研究: 以定日贡扎剖面为例[J]. 地学前缘, 2009, 16(5): 134-142. |
MA Chao, WANG Chengshan, CHEN Xi, et al. Cyclostratigraphic study of the Upper Cretaceous of southern Tibet, China: A case study of Gongzha section[J]. Earth Science Frontiers, 2009, 16(5): 134-142. | |
10 | 彭军, 于乐丹, 许天宇, 等. 湖相泥页岩地层米氏旋回测井识别及环境响应特征[J]. 石油与天然气地质, 2022, 43(4): 957-969. |
PENG Jun, YU Ledan, XU Tianyu, et al. Logging identification of Milankovitch cycle and environmental response characteristics of lacustrine shale—A case study on Es4scs in Well Fanye 1, Dongying Sag, Jiyang Depression, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(4): 957-969. | |
11 | 高达, 林畅松, 胡明毅, 等. 利用自然伽马能谱测井识别碳酸盐岩高频层序——以塔里木盆地塔中地区T1井良里塔格组为例[J]. 沉积学报, 2016, 34(4): 707-715. |
GAO Da, LIN Changsong, HU Mingyi, et al. Using spectral gamma ray log to recognize high-frequency sequences in carbonate strata: A case study from the Lianglitage Formation from Well T1 in Tazhong area, Tarim Basin[J]. Acta Sedimentologica Sinica, 2016, 34(4): 707-715. | |
12 | 石巨业, 金之钧, 刘全有, 等. 基于米兰科维奇理论的湖相细粒沉积岩高频层序 定量划分[J]. 石油与天然气地质, 2019, 40(6): 1205-1214. |
SHI Juye, JIN Zhijun, LIU Quanyou, et al. Quantitative classification of high-frequency sequences in fine-grained lacustrine sedimentary rocks based on Milankovitch theory[J]. Oil & Gas Geology, 2019, 40(6): 1205-1214. | |
13 | 刘贤, 葛家旺, 赵晓明, 等. 东海陆架盆地西湖凹陷渐新统花港组年代标尺及层序界面定量识别[J]. 石油与天然气地质, 2022, 43(4): 990-1004. |
LIU Xian, GE Jiawang, ZHAO Xiaoming, et al. Time scale and quantitative identification of sequence boundaries for the Oligocene Huagang Formation in the Xihu Sag, East China Sea Shelf Basin[J]. Oil & Gas Geology, 2022, 43(4): 990-1004. | |
14 | WU Huaichun, ZHANG Shihong, HINNOV L A, et al. Time-calibrated Milankovitch cycles for the Late Permian[J]. Nature Communications, 2013, 4: 2452. |
15 | LI Mingsong, HUANG Chunju, HINNOV L, et al. Obliquity-forced climate during the Early Triassic hothouse in China[J]. Geology, 2016, 44(8): 623-626. |
16 | 郭颖, 汤良杰, 岳勇, 等. 旋回分析法在地层剥蚀量估算中的应用——以塔里木盆地玉北地区东部中下奥陶统鹰山组为例[J]. 中国矿业大学学报, 2015, 44(4): 664-672. |
GUO Ying, TANG Liangjie, YUE Yong, et al. Application of cycle analysis method to estimate the denuded strata thickness: A case study of Middle-Lower Ordovician Yingshan Formation of the eastern Yubei area, Tarim Basin[J]. Journal of China University of Mining & Technology, 2015, 44(4): 664-672. | |
17 | 赵军, 曹强, 付宪弟, 等. 基于米兰科维奇天文旋回恢复地层剥蚀厚度——以松辽盆地X油田青山口组为例[J]. 石油实验地质, 2018, 40(2): 260-267. |
ZHAO Jun, CAO Qiang, FU Xiandi, et al. Recovery of denuded strata thickness based on Milankovitch astronomical cycles: A case study of Qingshankou Formation in X Oilfield, Songliao Basin[J]. Petroleum Geology and Experiment, 2018, 40(2): 260-267. | |
18 | 刘高波, 施泽进, 佘晓宇. 巴楚-麦盖提的区域构造演化与油气分布规律[J]. 成都理工大学学报(自然科学版), 2004, 31(2): 157-161. |
LIU Gaobo, SHI Zejin, SHE Xiaoyu. Regional tectonic evolution and distribution of Bachu-Markit[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2004, 31(2): 157-161. | |
19 | 郭齐军, 赵省民. 塔河地区石炭系沉积特征[J]. 石油与天然气地质, 2002, 23(1): 99-102. |
GUO Qijun, ZHAO Shengmin. Depositional characteristics of carboniferous in Tahe region[J]. Oil & Gas Geology, 2002, 23(1): 99-102. | |
20 | 刘占红, 陈荣, 宋成兵, 等. 塔里木盆地石炭系卡拉沙依组旋回地层与层序地层综合研究[J]. 地球科学(中国地质大学学报), 2012, 37(5): 1051-1065. |
LIU Zhanhong, CHEN Rong, SONG Chengbing, et al. Cyclostratigraphy and sequence stratigraphy on carboniferous Karashayi Formation of Tarim Basin, China[J]. Earth Science(Journal of China University of Geoscience), 2012, 37(5): 1051-1065. | |
21 | 黄太柱, 蔡习尧, 郭书元. 塔里木盆地巴楚地区石炭纪地层问题讨论[J]. 石油实验地质, 2013, 35(6): 607-614. |
HUANG Taizhu, CAI Xiyao, GUO Shuyuan. Discussions on carboniferous stratigraphy of Bachu uplift, Tarim Basin[J]. Petroleum Geology and Experiment, 2013, 35(6): 607-614. | |
22 | ZHANG Jingyu, PAS D, KRIJGSMAN W, et al. Astronomical forcing of the Paleogene coal-bearing hydrocarbon source rocks of the East China Sea Shelf Basin[J]. Sedimentary Geology, 2020, 406: 105715. |
23 | 彭军, 于乐丹, 许天宇, 等. 天文地层学研究程序及其在渤海湾盆地东营凹陷的应用实例分析[J]. 石油与天然气地质, 2022, 43(6): 1292-1308. |
PENG Jun, YU Ledan, XU Tianyu, et al. Research procedure of astrostratigraphy and case study of Dongying Sag, Bohai Bay Basin[J].Oil & Gas Geology, 2022, 43(6): 1292-1308. | |
24 | HAMMER Ø, HARPER D A T, RYAN P D. PAST: Paleontological statistics software package for education and data analysis[J]. Palaeontologia Electronica, 2001, 4(1): 1-9. |
25 | SHI Siyu, DING Wenlong, ZHAO Gang, et al. Calculating the eroded thickness corresponding to a short-term tectonic uplift with Milankovitch theory: A case study of the Middle Permian Maokou Formation in southeastern Sichuan Basin, Southwest China[J]. ACS Omega, 2021, 6(11): 7558-7575. |
26 | DELAGE O, PORTAFAIX T, BENCHERIF H, et al. Empirical adaptive wavelet decomposition (EAWD): An adaptive decomposition for the variability analysis of observation time series in atmospheric science[J]. Nonlinear Processes in Geophysics, 2022, 29(3): 265-277. |
27 | STRASSER A H, HECKEL P H. Cyclostratigraphy concepts, definitions, and applications[J]. Newsletters on Stratigraphy, 2007, 42(2): 75-114. |
28 | BERGER A, LOUTRE M F, LASKAR J. Stability of the astronomical frequencies over the earth’s history for paleoclimate studies[J]. Science, 1992, 255(5044): 560-566. |
29 | 徐敬领, 霍家庆, 宋连腾, 等. 基于测井数据的米氏旋回分析及浮动天文年代标尺的建立[J]. 地球物理学报, 2022, 65(7): 2766-2778. |
XU Jingling, HUO Jiaqing, SONG Lianteng, et al. Analysis of Milankovitch cycles and establishment of floating astronomical date scale based on well-logging data[J]. Chinese Journal of Geophysics, 2022, 65(7): 2766-2778. | |
30 | 李江涛, 李增学, 余继峰, 等. 基于测井数据小波变换的层序地层对比——以鲁西和济阳地区石炭、二叠系含煤地层为例[J]. 沉积学报, 2005, 23(4): 639-645. |
LI Jiangtao, LI Zengxue, YU Jifeng, et al. Stratigraphic sequence correlation based on wavelet transform of well-logging data: Taking the coal-bearing strata of permo-carboniferous system in Luxi and Jiyang area as an example[J]. Acta Sedimentologica Sinica, 2005, 23(4): 639-645. | |
31 | 姜海健, 罗云, 李群, 等. 塔里木盆地麦盖提西部地区上石炭统不整合及储层发育模式[J]. 石油实验地质, 2017, 39(6): 776-782. |
JIANG Haijian, LUO Yun, LI Qun, et al. Upper carboniferous unconformity and reservoir development model of the western Maigaiti area, Tarim Basin[J]. Petroleum Geology and Experiment, 2017, 39(6): 776-782. | |
32 | 程逸凡, 董艳蕾, 朱筱敏, 等. 准噶尔盆地春光探区白垩纪古地貌恢复及其控砂机制[J]. 古地理学报, 2020, 22(6): 1127-1142. |
CHENG Yifan, DONG Yanlei, ZHU Xiaomin, et al. Cretaceous paleogeomorphology restoration and its controlling mechanism on sand-bodies in Chunguang exploration area, Junggar Basin[J]. Journal of Palaeogeography, 2020, 22(6): 1127-1142. | |
33 | 胡华蕊, 邢凤存, 齐荣, 等. 鄂尔多斯盆地杭锦旗地区晚古生代盆缘古地貌控砂及油气勘探意义[J]. 石油实验地质, 2019, 41(4): 491-497. |
HU Huarui, XING Fengcun, QI Rong, et al. Paleogeomorphologic features and their controls on sandbody distribution on basin margin during Late Paleozoic Era and significance for petroleum exploration, Hangjinqi area, Ordos Basin[J]. Peteoleum Geology and Experiment, 2019, 41(4): 491-497. | |
34 | 李进步, 王继平, 王龙, 等. 古地貌恢复及其对三角洲前缘沉积砂体的控制作用——以鄂尔多斯盆地庆阳气田二叠系山西组13亚段为例[J]. 石油与天然气地质, 2021, 42(5): 1136-1145, 1158. |
LI Jinbu, WANG Jiping, WANG Long, et al. Paleogeomorphologic restoration and its controlling effect on deposition of delta-front sand bodies: A case study of Shan 13 sub-member of the Permian Shanxi Formation, Qingyang gas field, Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1136-1145, 1158. | |
35 | 刘洪洲, 程奇, 宋洪亮, 等. 曹妃甸A油田沙二段缓坡微古地貌对沉积砂体的控制作用[J]. 石油地质与工程, 2021, 35(2): 01-04. |
LIU Hongzhou, CHENG Qi, SONG Hongliang, et al. Control effect of gentle slope micro paleogeomorphology on sedimentary sand body in the second member of Shahejie formation in Caofeidian A oilfield [J]. Petroleum Geology & Engineering, 2021, 35(2): 01-04. | |
36 | 江东辉, 杜学斌, 李昆, 等. 东海西湖凹陷保俶斜坡带平湖组“古地貌—古水系—古坡折”特征及其对沉积体系的控制[J]. 石油实验地质, 2022, 44(5): 771-779. |
JIANG Donghui, DU Xuebin, LI Kun, et al. Distribution of sedimentary system multi-controlled by palaeo-geomorphology, water system and break during the deposition of Pinghu Formation, Baochu slope belt, Xihu Sag, East China Sea Shelf Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 771-779. | |
37 | 廖新武, 谢润成, 周文, 等. 古地貌对渤海湾盆地B区块太古宇暴露型潜山变质岩风化带储层裂缝发育的影响[J]. 石油与天然气地质, 2023, 44(2): 406-417. |
LIAO Xinwu, XIE Runcheng, ZHOU Wen, et al. The effects of paleogeomorphology on the development of fractures in reservoirs of weathering metamorphic zone in an exposed Archean burial hill, Block B, Bohai Bay Basin[J]. Oil & Gas Geology, 2023, 44(2): 406-417. |
[1] | Pengyuan HAN, Wenlong DING, Debin YANG, Juan ZHANG, Hailong MA, Shenghui WANG. Characteristics of the S80 strike-slip fault zone and its controlling effects on the Ordovician reservoirs in the Tahe oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(3): 770-786. |
[2] | Yanqiu ZHANG, Honghan CHEN, Xiepei WANG, Peng WANG, Danmei SU, Zhou XIE. Assessment of connectivity between source rocks and strike-slip fault zone in the Fuman oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(3): 787-800. |
[3] | Wenlong DING, Yuntao LI, Jun HAN, Cheng HUANG, Laiyuan WANG, Qingxiu MENG. Methods for high-precision tectonic stress field simulation and multi-parameter prediction of fracture distribution for carbonate reservoirs and their application [J]. Oil & Gas Geology, 2024, 45(3): 827-851. |
[4] | Zicheng CAO, Lu YUN, Lixin QI, Haiying LI, Jun HAN, Feng GENG, Bo LIN, Jingping CHEN, Cheng HUANG, Qingyan MAO. A major discovery of hydrocarbon-bearing layers over 1,000-meter thick in well Shunbei 84X, Shunbei area, Tarim Basin and its implications [J]. Oil & Gas Geology, 2024, 45(2): 341-356. |
[5] | Debin YANG, Xinbian LU, Dian BAO, Fei CAO, Yan WANG, Ming WANG, Runcheng XIE. New insights into the genetic types and characteristics of the Ordovician marine fault-karst carbonate reservoirs in the northern Tarim Basin [J]. Oil & Gas Geology, 2024, 45(2): 357-366. |
[6] | Changjian ZHANG, Debin YANG, Lin JIANG, Yingbing JIANG, Qi CHANG, Xuejian MA. Characteristics and origin of over-dissolution residual fault-karst reservoirs in the northern Tahe oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(2): 367-383. |
[7] | Tongwen JIANG, Xingliang DENG, Peng CAO, Shaoying CHANG. Storage space types and water-flooding efficiency for fault-controlled fractured oil reservoirs in Fuman oilfield, Tarim Basin [J]. Oil & Gas Geology, 2024, 45(2): 542-552. |
[8] | Yuemeng NIU, Jun HAN, Yixin YU, Cheng Huang, Bo Lin, Fan YANG, Lang YU, Junyu CHEN. Igneous rock intrusions in the western Shunbei area, Tarim Basin: Characteristics and coupling relationships with faults [J]. Oil & Gas Geology, 2024, 45(1): 231-242. |
[9] | San ZHANG, Qiang JIN, Jinxiong SHI, Mingyi HU, Mengyue DUAN, Yongqiang LI, Xudong ZHANG, Fuqi CHENG. Filling patterns and reservoir property of the Ordovician buried-river karst caves in the Tabei area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(6): 1582-1594. |
[10] | Wei HU, Ting XU, Yang YANG, Zengmin LUN, Zongyu LI, Zhijiang KANG, Ruiming ZHAO, Shengwen MEI. Fluid phases and behaviors in ultra-deep oil and gas reservoirs, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(4): 1044-1053. |
[11] | Rui ZHANG, Zhijun JIN, Rukai ZHU, Mingsong LI, Xiao HUI, Ren WEI, Xiangwu HE, Qian ZHANG. Investigation of deposition rate of terrestrial organic-rich shales in China and its implications for shale oil exploration [J]. Oil & Gas Geology, 2023, 44(4): 829-845. |
[12] | Honghui GUO, Jianwei FENG, Libin ZHAO. Characteristics of passive strike-slip structure and its control effect on fracture development in Bozi-Dabei area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(4): 962-975. |
[13] | Bin LI, Xingxing ZHAO, Guanghui WU, Jianfa HAN, Baozhu GUAN, Chunguang SHEN. Differential hydrocarbon accumulation model of the Ordovician in Tazhong Ⅱ block, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(2): 308-320. |
[14] | Hongbo ZHANG, Yushuang ZHOU, Xuguang SHA, Shang DENG, Xiangcun SHEN, Zhongzheng JIANG. Development characteristics and evolution mechanism of the uplifted segment of the No. 5 strike-slip fault zone in Shunbei area, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(2): 321-334. |
[15] | Xingguo SONG, Shi CHEN, Zhou XIE, Pengfei KANG, Ting LI, Minghui YANG, Xinxin LIANG, Zijun PENG, Xukai SHI. Strike-slip faults and hydrocarbon accumulation in the eastern part of Fuman oilfield, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(2): 335-349. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||