石油与天然气地质 ›› 2020, Vol. 41 ›› Issue (2): 367-379.doi: 10.11743/ogg20200213
蔡振家1,2(), 雷裕红1,*(), 罗晓容1,2, 王香增3,4,5, 程明1, 张丽霞3,4,5, 姜呈馥3,4,5, 赵谦平3,4,5, 尹锦涛3,4,5, 张立宽1
收稿日期:
2019-10-20
出版日期:
2020-04-28
发布日期:
2020-04-03
通讯作者:
雷裕红
E-mail:caizj0223@163.com;leiyh@mail.iggcas.ac.cn
第一作者简介:
蔡振家(1993-),男,硕士研究生,非常规油气。E-mail:基金项目:
Zhenjia Cai1,2(), Yuhong Lei1,*(), Xiaorong Luo1,2, Xiangzeng Wang3,4,5, Ming Cheng1, Lixia Zhang3,4,5, Chengfu Jiang3,4,5, Qianping Zhao3,4,5, Jintao Yin3,4,5, Likuan Zhang1
Received:
2019-10-20
Online:
2020-04-28
Published:
2020-04-03
Contact:
Yuhong Lei
E-mail:caizj0223@163.com;leiyh@mail.iggcas.ac.cn
摘要:
近年来的研究发现,鄂尔多斯盆地东南部延长组7段(长7段)中-低成熟度页岩中发育有机孔,但是对于影响陆相页岩储层中有机孔发育的影响因素有待进一步深入研究。借助氩离子剖光和场发射扫描电镜分析等技术,研究了鄂尔多斯盆地东南部长7段页岩中不同类型固体有机质中有机孔发育特征,并统计分析了不同成熟度页岩样品中干酪根和运移固体有机质的有机孔径和有机孔面积占有机质面积的百分比(SR),以此为基础讨论了影响有机孔发育的主要因素。结果表明,长7段中不同成熟度页岩(Ro:0.50%~1.25%)中有机质均发育有机孔,但是干酪根和运移固体有机质中的有机孔发育程度具有明显差异。沉积有机质(干酪根)主要以顺层富集、孤立分散及与粘土矿物共生3种形式赋存在页岩中,有机孔发育程度相对较低,有机孔面积占有机质面积的百分比介于0~44.13%,一般小于10%,平均6.03%;有机孔孔径主要在10~40 nm。运移固体有机质主要赋存在刚性颗粒粒间孔/粒间溶蚀孔、刚性颗粒与粘土矿物间粒间孔/粒间溶蚀孔和黄铁矿晶间孔等无机矿物孔中,有机孔发育程度较高,有机孔面积占有机质面积的百分比介于0~46.51%,一般小于30%,平均23.05%;孔径较大,主要在50~100 nm。长7段页岩中有机孔的发育程度主要受控于固体有机质类型、运移有机质丰度和有机质成熟度,运移固体有机质丰度越大,有机质成熟度越高,有机孔越发育。
中图分类号:
图5
鄂尔多斯盆地东南部延长组干酪根中有机孔发育特征 a.长条弯曲状顺层富集型干酪根,受到长石、石英等刚性颗粒的挤压而发生变形,有机孔不发育,YW5井,埋深682.05 m;b.长条弯曲状顺层富集型干酪根,有机孔不发育,内部含有粘土碎屑矿物,埋深682.05 m,YW5井;c.长条弯曲状顺层富集型干酪根,内部含有粘土碎屑矿物,有机孔发育,YW3井,埋深1 340 m;d.孤立块状干酪根,有机孔不发育,YW5井,埋深682.05 m; e.孤立块状干酪根,与无机矿物一起受到挤压变形,发育少量定向有机孔,YW4井,埋深682.05 m;f.孤立块状干酪根,有机孔非常发育,YW3井,埋深1 340 m;g.与粘土矿物共生干酪根,粘土矿物与干酪根交织,有机孔不发育,YW3井,埋深1 340 m;h.与粘土矿物共生干酪根,粘土矿物与干酪根交织,与粘土矿物接触的有机质发育少量有机孔,YW3井,埋深1 340 m;i.与粘土矿物共生干酪根,有机孔较为发育,YW3井,埋深1 340 m"
图6
鄂尔多斯盆地东南部延长组运移固体有机质中有机孔发育特征 a.刚性颗粒粒间孔中充填的运移固体,海绵状有机孔发育,YW1井,埋深2 297.31 m;b.刚性颗粒与粘土碎屑粒间孔中充填的运移固体有机质,有机孔发育,YW3井,埋深1 340 m;c.刚性颗粒粒间溶蚀孔中充填的运移固体有机质,内部发育溶蚀残留的长石,海绵状有机孔发育,YW1井,埋深2 297.31 m;d.长石粒内溶蚀孔中充填的运移固体有机质,海绵状有机孔发育,YW1井,埋深2 297.31 m;e.交织状粘土间充填的运移固体有机质,内部含自生矿物,有机孔发育,YW2井,埋深1 340 m;f.绿泥石粘土矿物共生的运移固体有机质,海绵状有机孔发育,YW1井,埋深2 297.31 m;g.与粘土矿物共生的运移固体有机质,有机孔发育不均一,YW1井,埋深2 297.31 m;h.含黄铁矿粒间溶蚀孔中充填的运移固体有机质,有机孔发育,YW1井,埋深2 297.31 m;i.草莓状黄铁矿晶间孔中充填的运移固体有机质,有机孔发育,YW3井,埋深1 340 m"
1 |
Ambrose R J , Hartman R C , Diaz-Campos M , et al. Shale gas-in-place calculations part Ⅰ:new pore-scale considerations[J]. SPE Journal, 2012, 17 (1): 219- 229.
doi: 10.2118/131772-PA |
2 |
Ross D J K , Bustin R M . Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin:Application of an integrated formation evaluation[J]. AAPG Bulletin, 2008, 92 (1): 87- 125.
doi: 10.1306/09040707048 |
3 |
Ross D J K , Bustin R M . The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26 (6): 916- 927.
doi: 10.1016/j.marpetgeo.2008.06.004 |
4 |
Loucks R G , Reed R M , Ruppel S C , et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96 (6): 1071- 1098.
doi: 10.1306/08171111061 |
5 |
Milliken K L , Rudnicki M , Awwiller D N , et al. Organic matter-hosted pore system, Marcellus formation(Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97 (2): 177- 200.
doi: 10.1306/07231212048 |
6 |
Bernard S , Wirth R , Schreiber A , et al. Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale(Fort Worth Basin)[J]. International Journal of Coal Geology, 2012, 103, 3- 11.
doi: 10.1016/j.coal.2012.04.010 |
7 |
Cardott B J , Landis C R , Curtis M E . Post-oil solid bitumen network in the Woodford Shale, USA-a potential primary migration pathway[J]. International Journal of Coal Geology, 2015, 139, 106- 113.
doi: 10.1016/j.coal.2014.08.012 |
8 | 俞雨溪, 罗晓容, 雷裕红, 等. 陆相页岩孔隙结构特征研究——以鄂尔多斯盆地延长组页岩为例[J]. 天然气地球科学, 2016, 27 (4): 716- 726. |
Yu Yuxi , Luo Xiarong , Lei Yuhong , et al. Characterization of lacustrine shale pore structure:An example from the Upper-Triassic Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2016, 27 (4): 716- 726. | |
9 |
Loucks R G , Reed R M , Ruppel S C , et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79 (12): 848- 861.
doi: 10.2110/jsr.2009.092 |
10 |
Curtis M E , Cardott B J , Sondergeld C H , et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103, 26- 31.
doi: 10.1016/j.coal.2012.08.004 |
11 |
Milliken K L , Esch W L , Reed R M , et al. Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale(Mississippian), Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96 (8): 1553- 1578.
doi: 10.1306/12011111129 |
12 | Alcantar-Lopez L, Chipera S J.Improving Our Understanding of Porosity in Source Rock Reservoirs through Advanced Imaging Techniques[C].Unconventional Resources Technology Conference.Society of Exploration Geophysicists.The Denver, Colorado, USA: 2013. |
13 |
Löhr S C , Baruch E T , Hall P A , et al. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J]. Organic Geochemistry, 2015, 87, 119- 132.
doi: 10.1016/j.orggeochem.2015.07.010 |
14 | 杨巍, 陈国俊, 吕成福, 等. 鄂尔多斯盆地东南部延长组长7段富有机质页岩孔隙特征[J]. 天然气地球科学, 2015, 26 (3): 418- 426. |
Yang Wei , Chen Guojun , Lv Chengfu , et al. Micropore characteristics of the organic-rich shale in the 7~(th)Member of the Yanchang Formation in the Southeast of Ordos Basin[J]. Natural Gas Geoscience, 2015, 26 (3): 418- 426. | |
15 | 王香增, 刘国恒, 黄志龙, 等. 鄂尔多斯盆地东南部延长组长7段泥页岩储层特征[J]. 天然气地球科学, 2015, 26 (7): 1385- 1394. |
Wang Xiangzeng , Liu Guoheng , Huang Zhilong , et al. The characteristics of shale reservoir of the No.7 members in Yanchang Formation of Southeast Ordos Basin[J]. Natural Gas Geoscience, 2015, 26 (7): 1385- 1394. | |
16 | 王香增, 范柏江, 张丽霞, 等. 陆相页岩气的储集空间特征及赋存过程——以鄂尔多斯盆地陕北斜坡构造带延长探区延长组长7段为例[J]. 石油与天然气地质, 2015, 36 (4): 651- 659. |
Wang Xiangzeng , Fan Baijiang , Zhang Lixia , et al. Reservoir space characteristics and charging process of Lacustrine shale gas-a case study of the Chang 7 member in Yanchang Block in Shanbei slope of Erdos Basin[J]. Oil & Gas Geology, 2015, 36 (4): 651- 658. | |
17 | 王香增, 张丽霞, 李宗田, 等. 鄂尔多斯盆地延长组陆相页岩孔隙类型划分方案及其油气地质意义[J]. 石油与天然气地质, 2016, 37 (1): 1- 7. |
Wang Xiangzeng , Zhang Lixia , Li Zongtian , et al. Pore type classification scheme for continental Yanchang shale in Ordos Basin and its geological significance[J]. Oil & Gas Geology, 2016, 37 (1): 1- 7. | |
18 | 王香增, 张丽霞, 雷裕红, 等. 低熟湖相页岩内运移固体有机质和有机孔特征——以鄂尔多斯盆地东南部延长组长7段页岩为例[J]. 石油学报, 2018, 39 (2): 141- 151. |
Wang Xiangzeng , Zhang Lixia , Lei Yuhong , et al. Characteristics of migrated solid organic matters and organic pores in low maturity lacustrine shale:a case study of the shale in Chang 7 oil-bearing formation of Yanchang Formation, southeastern Ordos Basin[J]. Acta Petrolei Sinica, 2018, 39 (2): 141- 151. | |
19 | 何自新. 鄂尔多斯盆地演化与油气[M]. 石油工业出版社, 2003. |
He Zixin . The evolution and petroleum of Ordos Basin[M]. Beijing: Petroleum Industry Press, 2003. | |
20 |
杨明慧, 刘池洋. 鄂尔多斯中生代陆相盆地层序地层格架及多种能源矿产聚集[J]. 石油与天然气地质, 2006, 27 (4): 563- 570.
doi: 10.3321/j.issn:0253-9985.2006.04.019 |
Yang Minghui , Liu Chiyang . Sequence stratigraphic framework and its control on accumulation of various energy resources in the Mesozoic continental basins in Ordos[J]. Oil & Gas Geology, 2006, 27 (4): 563- 570.
doi: 10.3321/j.issn:0253-9985.2006.04.019 |
|
21 | 王香增, 高胜利, 高潮. 鄂尔多斯盆地南部中生界陆相页岩气地质特征[J]. 石油勘探与开发, 2014, 41 (3): 294- 304. |
Wang Xiangzeng , Gao Shengli , Gao Chao . Geological features of Mesozoic lacustrine shale gas in south of Ordos Basin, NW China[J]. Petroleum Exploration & Development, 2014, 41 (3): 294- 304. | |
22 |
张文正, 杨华, 杨奕华, 等. 鄂尔多斯盆地长7优质烃源岩的岩石学、元素地球化学特征及发育环境[J]. 地球化学, 2008, 37 (1): 59- 64.
doi: 10.3321/j.issn:0379-1726.2008.01.008 |
Zhang Wwenzheng , Hua Y , Yang Y H . Petrology and element geochemistry and development environment of Yanchang Formation Chang-7 high quality source rocks in Ordos Basin[J]. Geochimica, 2008, 37 (1): 59- 64.
doi: 10.3321/j.issn:0379-1726.2008.01.008 |
|
23 | 程明, 罗晓容, 雷裕红, 等. 鄂尔多斯盆地张家滩页岩粉砂质夹层/纹层分布、分形特征和估算方法研究[J]. 天然气地球科学, 2015, 26 (5): 845- 854. |
Cheng Ming , Luo X R , Lei Y H , et al. The distribution, fractal characteristic and thickness estimation of silty laminae and beds in the Zhangjiatan Shale, Ordos Basin[J]. Natural Gas Geoscience, 2015, 26 (5): 845- 854. | |
24 |
Lei Yuhong , Luo X R , Wang X Z , et al. Characteristics of silty laminae in Zhangjiatan Shale of southeastern Ordos Basin, China:Implications for shale gas formation[J]. AAPG Bulletin, 2015, 99 (4): 661- 687.
doi: 10.1306/09301414059 |
25 |
孔庆芬. 鄂尔多斯盆地延长组烃源岩有机显微组分特征[J]. 新疆石油地质, 2007, 28 (2): 163- 166.
doi: 10.3969/j.issn.1001-3873.2007.02.009 |
Kong Qingfen . The organic maceral characteristic of Yanchang source rock in Ordos Basin[J]. Xinjiang Petroleum Geology, 2007, 28 (2): 163- 166.
doi: 10.3969/j.issn.1001-3873.2007.02.009 |
|
26 |
Guo H , Jia W , Peng P , et al. The composition and its impact on the methane sorption of lacustrine shales from the Upper Triassic Yanchang Formation, Ordos Basin, China[J]. Marine and Petroleum Geology, 2014, 57, 509- 520.
doi: 10.1016/j.marpetgeo.2014.05.010 |
27 | 雷裕红, 王晖, 罗晓容, 等. 鄂尔多斯盆地张家滩页岩液态烃特征及对页岩气量估算的影响[J]. 石油学报, 2016, 37 (8): 952- 961. |
Lei Yuhong , Wang Hui , Luo Xiaorong , et al. The characteristics of liquid hydrocarbons and itseffects on the estimation of shale gas content in Zhangjiatan Shale, Ordos basin[J]. Acta Petrolei Sinica, 2016, 37 (8): 952- 961. | |
28 | 姜呈馥, 王香增, 张丽霞, 等. 鄂尔多斯盆地东南部延长组长7段陆相页岩气地质特征及勘探潜力评价[J]. 中国地质, 2013, 40 (6): 1880- 1888. |
Jiang Chengfu , Wang Xiangzeng , Zhang Lixia , et al. Geological characteristics of shale and exploration potential of continental shale gas in 7th member of Yanchang Formation, southeast Ordos Basin[J]. Geology in China, 2013, 40 (6): 1880- 1888. | |
29 |
刘化清, 袁剑英, 李相博, 等. 鄂尔多斯盆地延长期湖盆演化及其成因分析[J]. 岩性油气藏, 2007, 19 (1): 52- 56.
doi: 10.3969/j.issn.1673-8926.2007.01.009 |
Liu Huaqing , Yuan Jianying , Li Xiangbo . Lake basin evolution of Ordos Basin during Middle-Late Triassic and its origin analysis[J]. Lithologic Reservoirs, 2007, 19 (1): 52- 56.
doi: 10.3969/j.issn.1673-8926.2007.01.009 |
|
30 | Arango I, Katz B J.Artificially-induced changes to organic matter properties as a consequence of the act of observation[C].AAPG Annual Convention and Exhibition.The Chevron, Houston, Texas, USA: 2017. |
31 |
Sanei H , Ardakani O H . Alteration of organic matter by ion milling[J]. International Journal of Coal Geology, 2016, 163, 123- 131.
doi: 10.1016/j.coal.2016.06.021 |
32 |
Mastalerz M , Schieber J . Effect of ion milling on the perceived maturity of shale samples:Implications for organic petrography and SEM analysis[J]. International Journal of Coal Geology, 2017, 183, 110- 119.
doi: 10.1016/j.coal.2017.10.010 |
33 |
Grobe A , Schmatz J , Littke R , et al. Enhanced surface flatness of vitrinite particles by broad ion beam polishing and implications for reflectance measurements[J]. International Journal of Coal Geology, 2017, 180, 113- 121.
doi: 10.1016/j.coal.2017.05.006 |
34 |
Hackley P C , Valentine B J , Hatcherian J J . On the petrographic distinction of bituminite from solid bitumen in immature to early mature source rocks[J]. International Journal of Coal Geology, 2018, 196, 232- 245.
doi: 10.1016/j.coal.2018.06.004 |
35 |
Valentine B J , Hackley P C , Hatcherian J , et al. Reflectance increase from broad beam ion milling of coals and organic-rich shales due to increased surface flatness[J]. International Journal of Coal Geology, 2019, 201, 86- 101.
doi: 10.1016/j.coal.2018.11.004 |
36 | 耳闯, 赵靖舟, 白玉彬, 等. 鄂尔多斯盆地三叠系延长组富有机质泥页岩储层特征[J]. 石油与天然气地质, 2013, 34 (5): 708- 716. |
Er Chuang , Zhao Jingzhou , Bai Yubin , et al. Reservoir characteristics of the organic-rich shales of the Triassic Yanchang Formation in Ordos Basin[J]. Oil & Gas Geology, 2013, 34 (5): 708- 716. | |
37 |
Landis C R , Castaño J R . Maturation and bulk chemical properties of a suite of solid hydrocarbons[J]. Organic Geochemistry, 1995, 22 (1): 137- 149.
doi: 10.1016/0146-6380(95)90013-6 |
38 | Loucks R G , Reed R M . Scanning-electron-microscope petrographic evidence for distinguishing organic matter pores associated with depositional organic matter versus migrated organic matter in mudrocks[J]. GCAGS Transactions, 2014, 3, 51- 60. |
39 | Bernard S , Horsfield B , Schulz H M , et al. Geochemical evolution of organic-rich shales with increasing maturity:A STXM and TEM study of the Posidonia Shale(Lower Toarcian, northern Germany)[J]. Marine & Petroleum Geology, 2012, 31 (1): 70- 89. |
40 | Curiale J A . Origin of solid bitumens, with emphasis on biological marker results[J]. Organic Geochemistry, 1986, 10 (1): 559- 580. |
41 |
Hill R J , Tang Y , Kaplan I R . Insights into oil cracking based on laboratory experiments[J]. Organic Geochemistry, 2003, 34 (12): 1651- 1672.
doi: 10.1016/S0146-6380(03)00173-6 |
42 | Blanc P . Preservation, degradation, and destruction of trapped oil[J]. AAPG Memoir, 1994, 60, 237- 247. |
43 | Rogers M A , McAlary J D , Bailey N J L . Significance of reservoir bitumens to thermal-maturation studies, Western Canada Basin[J]. AAPG Bulletin, 1974, 58 (9): 1806- 1824. |
44 |
Larter S , Wilhelms A , Head I , et al. The controls on the composition of biodegraded oils in the deep subsurface-part 1:biodegradation rates in petroleum reservoirs[J]. Organic Geochemistry, 2003, 34 (4): 601- 613.
doi: 10.1016/S0146-6380(02)00240-1 |
45 |
Larter S , Huang H , Adams J , et al. The controls on the composition of biodegraded oils in the deep subsurface:Part Ⅱ-Geological controls on subsurface biodegradation fluxes and constraints on reservoir-fluid property prediction1[J]. AAPG Bulletin, 2006, 90 (6): 921- 938.
doi: 10.1306/01270605130 |
46 |
Milner C W D , Rogers M A , Evans C R . Petroleum transformations in reservoirs[J]. Journal of Geochemical Exploration, 1977, 7, 101- 153.
doi: 10.1016/0375-6742(77)90079-6 |
47 | 卢龙飞, 蔡进功, 刘文汇, 等. 泥质烃源岩中蒙皂石与有机质的水桥结合作用——来自原位漫反射红外光谱的证据[J]. 石油与天然气地质, 2011, 32 (1): 47- 56. |
Lu Longfei , Cai Jingong , Liu Wenhui , et al. Water bridges mechanism of organo-smectite interaction in argillaceous hydrocarbon source rocks:evidences from in situ DRIFT spectroscopic study[J]. Oil & Gas Geology, 2011, 32 (1): 47- 56. | |
48 |
Liu B , Schieber J , Mastalerz M . Combined SEM and reflected light petrography of organic matter in the New Albany Shale(Devonian-Mississippian)in the Illinois Basin:A perspective on organic pore development with thermal maturation[J]. International Journal of Coal Geology, 2017, 184, 57- 72.
doi: 10.1016/j.coal.2017.11.002 |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 吴伟涛, 冯炎松, 费世祥, 王一妃, 吴和源, 杨旭东. 鄂尔多斯盆地神木气田二叠系石千峰组5段致密气富集因素及有利区预测[J]. 石油与天然气地质, 2024, 45(3): 739-751. |
[4] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[5] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[6] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[7] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[8] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[9] | 刘成林, 丁振刚, 范立勇, 康锐, 洪思婕, 朱玉新, 陈践发, 王海东, 许诺. 鄂尔多斯盆地含氦天然气地球化学特征与富集影响因素[J]. 石油与天然气地质, 2024, 45(2): 384-392. |
[10] | 万俊雨, 朱建辉, 姚素平, 张毅, 李春堂, 张威, 姜海健, 王杰. 鄂尔多斯盆地中、东部奥陶系马家沟组成烃生物及烃源岩地球生物学评价[J]. 石油与天然气地质, 2024, 45(2): 393-405. |
[11] | 柳波, 蒙启安, 付晓飞, 林铁锋, 白云风, 田善思, 张金友, 姚瑶, 程心阳, 刘召. 松辽盆地白垩系青山口组一段页岩生、排烃组分特征及页岩油相态演化[J]. 石油与天然气地质, 2024, 45(2): 406-419. |
[12] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[13] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[14] | 杨丽华, 刘池洋, 黄雷, 周义军, 刘永涛, 秦阳. 鄂尔多斯盆地古峰庄地区疑似侵入岩体的发现及其地质意义[J]. 石油与天然气地质, 2024, 45(1): 142-156. |
[15] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||