石油与天然气地质 ›› 2020, Vol. 41 ›› Issue (6): 1151-1161.doi: 10.11743/ogg20200604
周冰1,2(), 金之钧1,2, 刘全有1,2, 伦增珉1,2, 孟庆强1,2, 朱东亚1,2
收稿日期:
2018-08-20
出版日期:
2020-12-28
发布日期:
2020-12-09
第一作者简介:
周冰(1988-),女,博士、副研究员,含油气盆地中流体-岩石相互作用。E-mail:基金项目:
Bing Zhou1,2(), Zhijun Jin1,2, Quanyou Liu1,2, Zengmin Lun1,2, Qingqiang Meng1,2, Dongya Zhu1,2
Received:
2018-08-20
Online:
2020-12-28
Published:
2020-12-09
摘要:
查明富CO2流体对储-盖系统的改造作用,对于研究CO2活动与油气成藏效应、CO2储存和CO2驱油提高采收率有着重要意义。选取下扬子苏北盆地黄桥地区和句容地区的二叠系龙潭组储层和大隆组盖层组合,分别作为有无CO2流体活动的对比研究对象。通过薄片观察统计、矿物成分和碳同位素分析,查明了两个地区储层的异同点。黄桥地区储层的自生矿物以石英次生加大边和高岭石充填为主,发育少量片钠铝石,句容地区不发育片钠铝石,且次生石英含量不高;黄桥地区储层孔隙度明显高于句容地区,薄片下观察到大量长石溶蚀孔隙,偶见长石溶蚀孔内生长片钠铝石雏晶,是CO2与长石发生水岩相互作用的直接证据;黄桥地区和句容地区盖层均为黑色块状泥岩,黄桥地区盖层发育微裂隙,但裂隙均已再充填方解石脉,碳同位素数据表明方解石脉为富CO2流体活动结果,在句容地区泥岩盖层中未见大量裂隙和矿物脉。综合研究分析表明,富CO2流体充注引起储层砂岩中长石大量溶蚀,增加了孔隙空间,片钠铝石、次生石英和高岭石自生矿物组合序列沉淀,同时富CO2流体的连续活动导致泥岩盖层发生方解石沉淀,充填盖层裂缝,有利于提高盖层的封盖能力。
中图分类号:
表1
苏北盆地黄桥地区和句容地区龙潭组砂岩自生矿物含量"
地区 | 样品编号 | 深度/m | 自生矿物含量/% | ||||||||
次生石英加大 | 高岭石 | 绢云母 | 方解石 | 片钠铝石 | 白云石 | 菱铁矿 | 泥晶碳酸盐 | 总计 | |||
黄桥地区 | 溪1-10 | 1 846.6 | 1.5 | 0 | 0 | 4.0 | 0 | 0 | 0 | 0 | 5.5 |
溪1-16 | 1 860.9 | 1.0 | 3.0 | 0 | 0 | 0.5 | 0 | 0 | 1.0 | 5.5 | |
溪1-17 | 1 873.4 | 1.0 | 1.0 | 3.0 | 0 | 0 | 0 | 2.0 | 0 | 7.0 | |
溪1-20 | 1 875.5 | 0.5 | 1.0 | 1.0 | 0 | 0 | 0 | 4.0 | 0 | 6.5 | |
溪3-5 | 1 593.6 | 4.0 | 0.5 | 1.0 | 0 | 0.5 | 0 | 0 | 0 | 6.0 | |
溪3-7 | 1 594.9 | 2.0 | 1.5 | 0.5 | 0 | 1.5 | 0.5 | 1.0 | 1.0 | 8.0 | |
溪3-8 | 1 596.9 | 1.5 | 2.0 | 0.5 | 0 | 1.0 | 0 | 1.5 | 1.0 | 7.5 | |
溪3-10 | 1 597.0 | 2.0 | 2.0 | 1.0 | 0 | 0.5 | 0 | 1.0 | 0.5 | 7.0 | |
平均值 | 1.7 | 1.4 | 0.9 | 0.5 | 0.5 | 0.1 | 1.2 | 0.4 | 6.6 | ||
句容地区 | 石狮1-5 | 1 386.2 | 0.5 | 2.5 | 0 | 0 | 0 | 0 | 1.5 | 0 | 4.5 |
石狮1-8 | 1 390.1 | 0.5 | 1.0 | 1.5 | 0 | 0 | 0 | 1.0 | 0 | 4.0 | |
平均值 | 0.5 | 1.8 | 0.8 | 0 | 0 | 0 | 1.3 | 0 | 4.3 |
表2
苏北盆地黄桥地区大隆组黑色泥岩裂缝中方解石碳同位素及与其平衡的CO2碳同位素"
井号 | 样品编号 | 深度/m | 取样位置 | δ13C方解石 (PDB) /‰ | *古地温/℃ | #δ13CCO2(PDB) / ‰ |
溪1 | X1-AC | 1 809.6 | 泥岩中方解石脉体 | 0.6 | 92.9 | -4.0 |
溪1 | X1-2C | 1 811.0 | 泥岩中方解石脉体 | 1.2 | 93.0 | -3.4 |
溪1 | X1-7C | 1 818.6 | 泥岩中方解石脉体 | -2.9 | 93.3 | -7.5 |
溪3 | X3-1C | 1 538.1 | 泥岩中方解石脉体 | -4.3 | 82.0 | -9.6 |
溪3 | X3-2C | 1 539.0 | 泥岩中方解石脉体 | -3.8 | 82.0 | -9.1 |
溪3 | X3-3C | 1 543.5 | 泥岩中方解石脉体 | -11.4 | 82.2 | -16.7 |
溪3 | X3-4C | 1 543.2 | 泥岩中方解石脉体 | -11.1 | 82.2 | -16.4 |
1 | Metz B, Davidson O, de Coninck H, et al.IPCC Special report on carbon dioxide capture and storage[C].Cambridge University Press, New York, 2005: 431-442. |
2 | Holloway S, Pearce J M, Ohsumi T, et al.A review of natural CO2 occurrences and their relevance to CO2 storage[R].International Energy Agency Greenhouse Gas R&D Programme Report, 2005, 5(8): 1-124. |
3 |
Dai J , Li J , Luo X , et al. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos Basin, China[J]. Organic Geochemistry, 2005, 36 (12): 1617- 1635.
doi: 10.1016/j.orggeochem.2005.08.017 |
4 | Allis R, Chidsey T, Gwynn W, et al.Natural CO2 reservoirs on the Colorado Plateau and southern Rocky Mountains: Candidates for CO2 sequestration[C]//Proceedings of the First National Conference on Carbon Sequestration.US Department of Energy, National Energy Technology Laboratory Washington, DC, 2001: 1-19. |
5 | Stevens S H , Schoell M , Ballentine C , et al. Isotopic analysis of natural CO2 fields:How long has nature stored CO2 underground?[M]. Greenhouse Gas: Control Technologies, 2005: 1375- 1379. |
6 | Baker J C , Bai G P , Hamilton P J , et al. Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney Basin system, eastern Australia[J]. Journal of Sedimentary research, 1995, 65 (3a): 522- 530. |
7 |
Zhou B , Liu L , Zhao S , et al. Dawsonite formation in the Beier Sag, Hailar Basin, NE China tuff:A natural analog for mineral carbon storage[J]. Applied Geochemistry, 2014, 48, 155- 167.
doi: 10.1016/j.apgeochem.2014.07.015 |
8 |
Worden R H . Dawsonite cement in the Triassic Lam formation, Shabwa basin, Yemen:A natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction[J]. Marine and Petroleum Geology, 2006, 23, 61- 77.
doi: 10.1016/j.marpetgeo.2005.07.001 |
9 |
Wilkinson M , Haszeldine R S , Fallick A E , et al. CO2-mineral reaction in a natural analogue for CO2 storage-implications for modeling[J]. Journal of Sedimentary Research, 2009, 79 (7): 486- 494.
doi: 10.2110/jsr.2009.052 |
10 |
Moore J , Adams M , Allis R , et al. Mineralogical and geochemical consequences of the long-term presence of CO2 in natural reservoirs:an example from the Springerville-St.Johns Field, Arizona, and New Mexico, USA[J]. Chemical Geology, 2005, 217 (3-4): 365- 385.
doi: 10.1016/j.chemgeo.2004.12.019 |
11 |
Gao Y , Liu L , Hu W . Petrology and isotopic geochemistry of dawsonite-bearing sandstones in Hailaer basin, northeastern China[J]. Applied Geochemistry, 2009, 24 (9): 1724- 1738.
doi: 10.1016/j.apgeochem.2009.05.002 |
12 |
Uysal I T , Golding S D , Bolhar R , et al. CO2 degassing and trapping during hydrothermal cycles related to Gondwana rifting in eastern Australia[J]. Geochimica et Cosmochimica Acta, 2011, 75 (19): 5444- 5466.
doi: 10.1016/j.gca.2011.07.018 |
13 |
Lu J , Wilkinson M , Haszeldine R S , et al. Long-term performance of a mudrock seal in natural CO2 storage[J]. Geology, 2009, 37 (1): 35- 38.
doi: 10.1130/G25412A.1 |
14 | 刘立, 王力娟, 杨永智, 等. 松辽盆地南部HX井上白垩统青山口组黑色泥岩的矿物组成与自生微晶石英成因[J]. 吉林大学学报, 2012, 42 (5): 1358- 1365. |
Liu Li , Wang Lijuan , Yang Yongzhi , et al. Mineral composition and origin of authigenic quartz crystals in black mudstone, in well HX, Qingshankou Formation, Upper Cretaceous, Songliao Basin[J]. Journal of Jilin University, 2012, 42 (5): 1358- 1365. | |
15 |
Kampman N , Busch A , Bertier P , et al. Observational evidence confirms modelling of the long-term integrity of CO2-reservoir caprocks:[J]. Nature Communications, 2016, 7, 12268.
doi: 10.1038/ncomms12268 |
16 | 黄俨然, 张枝焕, 王安龙, 等. 黄桥地区深源CO2对二叠系-三叠系油气成藏的影响[J]. 天然气地球科学, 2012, 34, 44- 48. |
Huang Yanran , Zhang Zhihuan , Wang Anlong , et al. Deep-sourced CO2 influence on permian and triassic oil and gas accumulation in Huangqiao Region[J]. Natural Gas Geoscience, 2012, 23 (3): 520- 525. | |
17 | 刘德汉, 宫色, 刘东鹰, 等. 江苏句容-黄桥地区有机包裹体形成期次和捕获温度、压力的PVT sim模拟计算[J]. 岩石学报, 2005, 21 (5): 1435- 1448. |
Liu Dehan , Gong Se , Liu Dongying , et al. Investigation on the phases of organic inclusion from Gourong-Huangqiao region, Jiangsu Province, and its trapped temperature & pressure calculated by PVT sim modeling[J]. Acta Petrologica Sinica, 2005, 21 (5): 1435- 1448. | |
18 | 俞昊. 下扬子黄桥地区龙潭组高CO2油藏成藏模式[J]. 海洋地质前沿, 2015, 31 (4): 21- 27. |
Yu Hao . Apreliminary study of accumulation model for high CO2 oilfield in Longtan Formation, Huangqiao Region, Lower Yangtze Basin[J]. Marine Geology Frontiers, 2015, 31 (4): 21- 27. | |
19 |
Liu Q , Zhu D , Jin Z , et al. Effects of deep CO2 on petroleum and thermal alteration:The case of the Huangqiao oil and gas field[J]. Chemical Geology, 2017, 469, 214- 229.
doi: 10.1016/j.chemgeo.2017.06.031 |
20 | 夏在连. 下扬子黄桥地区上古生界油气成藏研究[J]. 石油实验地质, 2011, 33 (5): 505- 508. |
Xia Zailian . Petroleum accumulation in Upper Paleozoic, Huangqiao Region, Lower Yangtez Basin[J]. Petroleum Geology & Experiment, 2011, 33 (5): 505- 508. | |
21 | 纪友亮, 周勇, 王改为, 等. 下扬子地区古生界海相碳酸盐岩层序地层发育模式及储层预测[J]. 石油与天然气地质, 2011, 32 (5): 724- 732. |
Ji Youliang , Zhou Yong , Wang Gaiwei , et al. Sequence stratigraphic models and reservoir prediction of the Paleozoic marine carbonates in the Lower Yangtze Area[J]. Oil & Gas Geology, 2011, 32 (5): 724- 732. | |
22 | 程石麟. 苏北黄桥地区二氧化碳气藏的地质特征和成因讨论[J]. 石油与天然气地质, 1987, 8 (2): 214- 218. |
Cheng Shilin . Geological features of CO2 pool in Huangqiao Region, North Jiangsu and its genesis[J]. Oil & Gas Geology, 1987, 8 (2): 214- 218. | |
23 | 郭念发, 尤孝忠, 雷一心, 等. 黄桥CO2气田特征及其勘探远景[J]. 天然气工业, 2000, 20 (4): 14- 18. |
Guo Nianfa , You Xiaozhong , Lei Yixin , et al. Characteristics of Huangqiao carbon dioxide gas field and its exploration potential[J]. Natural Gas Industry, 2000, 20 (4): 14- 18. | |
24 | 陈祖华. 苏北盆地注CO2提高采收率技术面临的挑战与对策[J]. 油气藏评价与开发, 2020, 10 (3): 60- 67. |
Chen Zuhua . Challenges and countermeasures of EOR by CO2 injection in North Jiangsu Basin[J]. Reservoir Evaluation and Development, 2020, 10 (3): 60- 67. | |
25 | Ohmoto H , Rye R O . Isotopes of sulfur and carbon, In:Barnes, H.L.(Ed.), Geochemistry of hydro-thermal ore deposits[M]. New York: Wiley Press, 1979: 509- 567. |
26 | 姚合法, 侯建国, 林承焰, 等. 多旋回沉积盆地地温场与烃源岩演化-以苏北盆地为例[J]. 西北大学学报:自然科学版, 2005, 35 (2): 195- 199. |
Yao Hefa , Hou Jianguo , Lin Chengya , et al. A Study on paleotemperature and thermal h istory in multicycle evolution basin:Taking north Jiangsu Basin as example[J]. Journal of Northwest University (Natural Science Edition), 2005, 35 (2): 195- 199. | |
27 | 蒋永平. 苏北稠油油藏CO2复合吞吐用新型降黏剂合成及效果评价[J]. 油气藏评价与开发, 2020, 10 (3): 39- 44. |
Jiang Yongping . Synthesis of a new viscosity reducer for CO2 compound huff and puff in North Jiangsu heavy oil reservoirs and its effectiveness evaluation[J]. Reservoir Evaluation and Development, 2020, 10 (3): 39- 44. | |
28 |
Bénézeth P , Palmer D A , Anovitz L M , et al. Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements:Implications for mineral trapping of CO2[J]. Geochimica Et Cosmochimica Acta, 2007, 71 (18): 4438- 4455.
doi: 10.1016/j.gca.2007.07.003 |
29 |
Gilfillan S M V , Lollar B S , Holland G , et al. Solubility trapping in formation water as dominant CO2 sink in natural gas fields[J]. Nature, 2009, 458 (7238): 614.
doi: 10.1038/nature07852 |
30 |
Lu J , Milliken K , Reed R M , et al. Diagenesis and sealing capacity of the middle Tuscaloosa mudstone at the Cranfield carbon dioxide injection site, Mississippi, USA[J]. Environmental Geosciences, 2011, 18 (1): 35- 53.
doi: 10.1306/eg.09091010015 |
31 |
Duan Z , Sun R . An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar[J]. Chemical Geology, 2003, 193 (3-4): 257- 271.
doi: 10.1016/S0009-2541(02)00263-2 |
32 |
Rosenbauer R J , Koksalan T , Palandri J L . Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure:Implications for CO2 sequestration in deep-saline aquifers[J]. Fuel Processing Technology, 2005, 86 (14-15): 1581- 1597.
doi: 10.1016/j.fuproc.2005.01.011 |
33 |
Gaus I . Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks[J]. International Journal of Greenhouse Gas Control, 2010, 4 (1): 73- 89.
doi: 10.1016/j.ijggc.2009.09.015 |
34 |
Berner R A , Morse J W . Dissolution kinetics of calcium carbonate in sea water theory of calcite dissolution[J]. American Journal of Science, 1974, 274 (2): 108- 134.
doi: 10.2475/ajs.274.2.108 |
35 |
Gautelier M , Oelkers E H , Schott J . An experimental study of dolomite dissolution rates as a function of pH from -0.5 to 5 and temperature from 25 to 80 C[J]. Chemical Geology, 1999, 157 (1-2): 13- 26.
doi: 10.1016/S0009-2541(98)00193-4 |
36 |
Stillings L L , Drever J I , Brantley S L , et al. Rates of feldspar dissolution at pH 3-7 with 0-8 m M oxalic acid[J]. Chemical Geology, 1996, 132 (1-4): 79- 89.
doi: 10.1016/S0009-2541(96)00043-5 |
37 |
Köhler S J , Dufaud F , Oelkers E H . An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50 C[J]. Geochimica et Cosmochimica Acta, 2003, 67 (19): 3583- 3594.
doi: 10.1016/S0016-7037(03)00163-7 |
38 | Liu F , Lu P , Griffith C , et al. CO2-brine-caprock interaction:Reactivity experiments on Eau Claire shale and a review of relevant literature[J]. International Journal of Greenhouse Gas Control, 2012, 8 (7): 153- 167. |
39 |
Credoz A , Bildstein O , Jullien M , et al. Experimental and modeling study of geochemical reactivity between clayey caprocks and CO2 in geological storage conditions[J]. Energy Procedia, 2009, 1 (1): 3445- 3452.
doi: 10.1016/j.egypro.2009.02.135 |
40 | Gaus I , Azaroual M , Czernichowski-Lauriol I . Reactive transport modelling of the impact of CO2, injection on the clayey cap rock at Sleipner(North Sea)[J]. Chemical Geology, 2005, 217 (3): 319- 337. |
41 | Gherardi F , Xu T , Pruess K . Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2, storage in a depleted gas reservoir[J]. Chemical Geology, 2007, 244 (1): 103- 129. |
42 | Bildstein O , Kervévan C , Lagneau V , et al. Integrative Modeling of caprock integrity in the context of CO2 storage:Evolution of transport and geochemical properties and impact on performance and safety assessment[J]. Oil & Gas Science & Technology-Revue De L'institut Français Du Pétrole, 2010, 65 (3): 485- 502. |
43 | 邵明礼, 门吉华, 魏志平. 松辽盆地南部二氧化碳成因类型及富集条件初探[J]. 大庆石油地质与开发, 2000, 19 (4): 1- 3. |
Shao Mingli , Men Jihua , Wei Zhiping . The genesis type and enrichment condition of the CO2 In the southern part of Songliao Basin[J]. Petroleum Geology & Oilfield Development In Daqing, 2000, 19 (4): 1- 3. | |
44 | 张林晔. 渤海湾盆地CO2气藏成因探讨[J]. 天然气工业, 1992, 12 (1): 20- 25. |
Zhang Linye . A Discussion on the geneses of the carbon dioxide pools in Bohai Bay Basin[J]. Natural Gas Industry, 1992, 12 (1): 20- 25. | |
45 | 何家雄, 张伟, 陈刚. 莺歌海盆地CO2成因及运聚特征的初步研究[J]. 石油勘探与开发, 1995, 22 (6): 8- 15. |
He Jiaxiong , Zhang Wei , Chen Gang . A preliminary study on the genesis of CO2 gas and characteristics in its migration and accumulation in the Yinggehai Basin[J]. Petroleum Exploration and Development, 1995, 22 (6): 8- 15. | |
46 | 田立新, 王清斌, 刘晓健, 等. 渤海海域莱州湾凹陷沙河街组硅化碎屑岩地质特征及其储层意义[J]. 石油与天然气地质, 2020, 41 (5): 1073- 1082. |
Tian Lixin , Wang Qingbin , Liu Xiaojian , et al. Geological features and their participation in the formation of silicified clastic reservoirs in the Shahejie Formation of Laizhouwan Sag, Bohai Sea[J]. Oil & Gas Geology, 2020, 41 (5): 1073- 1082. | |
47 | 孙福宁, 胡文瑄, 胡忠亚, 等. 断裂-层序双控机制下的热液活动及成储效应——以塔里木盆地塔河、玉北地区下奥陶统为例[J]. 石油与天然气地质, 2020, 41 (3): 558- 575. |
Sun Funing , Hu Wenxuan , Hu Zhongya , et al. Impact of hydrothermal activities on reservoir formation controlled by both faults and sequences boundaries:A case study from the Lower Ordovician in Tahe and Yubei areas, Tarim Basin[J]. Oil & Gas Geology, 2020, 41 (3): 558- 575. | |
48 | 付晓飞, 吴桐, 吕延防, 等. 油气藏盖层封闭性研究现状及未来发展趋势[J]. 石油与天然气地质, 2018, 39 (3): 454- 471. |
Fu Xiaofei , Wu Tong , Lyu Yanfang , et al. Research status and development trend of the reservoir caprock sealing properties[J]. Oil & Gas Geology, 2018, 39 (3): 454- 471. |
[1] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[2] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[3] | 田纳新, 龚承林, 吴高奎, 齐昆, 朱一杰, 刘静静. 重力流与海底地貌动态相互作用下深水沉积体系发育演化[J]. 石油与天然气地质, 2024, 45(1): 15-30. |
[4] | 方志雄, 肖秋生, 张殿伟, 段宏亮. 苏北盆地陆相“断块型”页岩油地质特征及勘探实践[J]. 石油与天然气地质, 2023, 44(6): 1468-1478. |
[5] | 刘天, 刘小平, 刘启东, 段宏亮, 刘世丽, 孙彪, 化祖献. 陆相页岩游离油定量表征及其影响因素[J]. 石油与天然气地质, 2023, 44(4): 910-922. |
[6] | 李志强, 杨波, 王军, 韩自军, 吴庆勋. 南黄海盆地中-新生界湖相烃源岩地球化学特征及生烃史[J]. 石油与天然气地质, 2022, 43(2): 419-431. |
[7] | 王建丰, 杨超, 柳宇柯, 熊永强. 纳米压痕技术在页岩力学性质表征中的应用进展[J]. 石油与天然气地质, 2022, 43(2): 477-488. |
[8] | 桂亚倩, 朱光有, 阮壮, 曹颖辉, 沈臻欢, 常秋红, 陈郭平, 于炳松. 塔里木盆地塔北隆起寒武系地层水化学特征、成因及矿物溶解-沉淀模拟[J]. 石油与天然气地质, 2022, 43(1): 196-206. |
[9] | 张东东, 刘文汇, 王晓锋, 罗厚勇, 王庆涛, 李忆宁, 李风娇. 深层油气藏成因类型及其特征[J]. 石油与天然气地质, 2021, 42(5): 1169-1180. |
[10] | 唐旭, 孙永河, 胡慧婷, 于雯泉, 唐海氢. 苏北盆地高邮凹陷古近系阜宁组断层形成过程及其砂箱物理模拟[J]. 石油与天然气地质, 2021, 42(2): 469-480. |
[11] | 曹自成, 路清华, 顾忆, 吴鲜, 尤东华, 朱秀香. 塔里木盆地顺北油气田1号和5号断裂带奥陶系油气藏特征[J]. 石油与天然气地质, 2020, 41(5): 975-984. |
[12] | 余一欣, 周心怀, 徐长贵, 吴奎, 周鑫, 柳屿博. 渤海海域断裂相互作用及其油气地质意义[J]. 石油与天然气地质, 2018, 39(1): 11-19. |
[13] | 刘玉瑞. 苏北盆地戴南组泥屑流扇沉积[J]. 石油与天然气地质, 2017, 38(3): 419-429. |
[14] | 吴林, 陈清华, 刘寅, 王玺, 张晓丹, 孙珂, 陈传浩. 裂陷盆地伸展方位与构造作用及对构造样式的控制——以苏北盆地高邮凹陷南部断阶带为例[J]. 石油与天然气地质, 2017, 38(1): 29-38. |
[15] | 杨鹏, 丁晓琪, 张哨楠, 韩玫梅, 刘曦翔, 湛小红, 张咏梅. 张家垛油田阜三段湖相滩坝砂储层特征[J]. 石油与天然气地质, 2015, 36(3): 456-462. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||