石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (5): 1098-1111.doi: 10.11743/ogg20210508
陈朝兵1,2(), 赵振宇3, 付玲3,*(), 高建荣3, 宋微3, 陈新晶4
收稿日期:
2020-02-24
出版日期:
2021-10-28
发布日期:
2021-10-26
通讯作者:
付玲
E-mail:zbchen@xsyu.edu.cn;fuling@petrochina.com.cn
第一作者简介:
陈朝兵(1984-), 男, 讲师, 石油地质与储层评价。E-mail: 基金项目:
Zhaobing Chen1,2(), Zhenyu Zhao3, Ling Fu3,*(), Jianrong Gao3, Wei Song3, Xinjing Chen4
Received:
2020-02-24
Online:
2021-10-28
Published:
2021-10-26
Contact:
Ling Fu
E-mail:zbchen@xsyu.edu.cn;fuling@petrochina.com.cn
摘要:
深水重力流成因的致密砂岩油藏是目前非常规油气勘探开发的新热点。深水环境水动力复杂,填隙物类型及含量变化大,储层微观非均质性强,严重制约了深水沉积储层油气资源的勘探开发进程。通过铸体薄片、扫描电镜、矿物自动识别与分析系统(QEMSCAN)、电子探针和纳米CT等实验分析手段,对鄂尔多斯盆地华庆地区延长组6段(长6段)深水致密砂岩不同填隙物的微观特征进行了精细表征,探讨了不同填隙物对储层孔隙结构及物性的影响。结果表明:杂基并非完全致密,经过成岩改造后的杂基能够产生一定数量的杂基晶间孔和杂基溶孔,孔径介于20~1 000 nm,构成了复杂的杂基次生孔隙网络。当杂基含量≤7%时,杂基次生孔隙发育,对储层产生积极影响。当杂基含量>7%时,杂基次生孔隙发育程度降低,加剧了储层的致密。粘土矿物胶结物的晶间孔在一定程度上缓解了孔隙度的降低,但不同粘土矿物的形态、产状及对储层造成的敏感性又加剧了粘土矿物与渗透率关系的复杂性。伊利石、伊/蒙混层和绿泥石含量的高值区,储层物性通常较差,优质储层多分布在高岭石的发育区;碳酸盐和硅质胶结物是深水致密砂岩储层物性降低的主要因素。综合分析认为,杂基含量≤7%,且高岭石胶结物相对发育的地区是深水致密砂岩油藏勘探开发的重点区域。
中图分类号:
表1
鄂尔多斯盆地华庆地区长6段砂岩X衍射粘土矿物分析结果"
样品号 | 深度/m | 粘土矿物相对含量/% | 伊/蒙混层比/% | |||
伊/蒙混层 | 伊利石 | 高岭石 | 绿泥石 | |||
HQ1-1 | 2 132.8 | 57 | 26 | 3 | 14 | 5 |
HQ2-2 | 2 073.3 | 38 | 5 | 11 | 46 | 5 |
HQ3-1 | 2 087.6 | 50 | 10 | 5 | 35 | 5 |
HQ4-1 | 2 091.0 | 25 | 7 | 11 | 57 | 5 |
HQ5-1 | 2 199.5 | 59 | 29 | 3 | 9 | 10 |
HQ6-4 | 2 259.1 | 59 | 20 | 4 | 17 | 10 |
HQ6-7 | 2 264.0 | 63 | 23 | 3 | 11 | 10 |
HQ7-1 | 2 269.1 | 61 | 8 | 4 | 27 | 5 |
HQ8-3 | 2 206.1 | 73 | 13 | 3 | 11 | 5 |
HQ10-1 | 2 241.3 | 42 | 7 | 6 | 45 | 10 |
HQ11-1 | 2 241.6 | 59 | 4 | 4 | 33 | 10 |
HQ11-3 | 2 055.2 | 60 | 7 | 5 | 28 | 10 |
HQ12-1 | 2 099.6 | 53 | 6 | 6 | 35 | 5 |
HQ12-3 | 2 103.6 | 41 | 4 | 7 | 48 | 5 |
HQ13-1 | 2 105.9 | 28 | 5 | 10 | 57 | 5 |
HQ14-1 | 2 208.4 | 10 | 2 | 15 | 73 | 5 |
HQ14-2 | 2 212.8 | 2 | 2 | 15 | 81 | 5 |
HQ14-4 | 2 222.4 | 11 | 2 | 16 | 71 | 5 |
平均 | 44 | 10 | 7 | 39 | 7 |
表2
鄂尔多斯盆地华庆地区长6段砂岩不同粘土矿物晶间孔尺度及孔隙贡献率统计"
粘土矿物 | 晶胞结构 | 产状 | 晶间孔占粘土矿物体积比/% | 晶间孔孔径/nm | 孔隙贡献率/% | 样品数/个 | |||
范围 | 平均 | 主体范围 | 平均 | ||||||
伊利石 | 2 ∶1 | 丝缕状 | 80~95 | 90 | 500~4 000 | 900 | 10.3 | 11 | |
片状 | 60~80 | 70 | 50~3 000 | 600 | |||||
伊/蒙混层 | 2 ∶1 | 蜂窝状、网状 | 60~70 | 65 | 100~4 000 | 750 | 8.6 | 8 | |
绿泥石 | 2 ∶1 | 叶片状 | 35~50 | 40 | 50~1 000 | 240 | 3.7 | 8 | |
绒球状 | 25~40 | 30 | 20~800 | 180 | |||||
高岭石 | 1 ∶1 | 松散书页状、蠕虫状 | 45~65 | 55 | 50~4000 | 700 | 7.8 | 12 |
图7
鄂尔多斯盆地华庆地区长6段砂岩粘土矿物显微特征 a.毛发状伊利石,主体孔径500~4 000 nm,HQ5-1井,埋深2 199.5 m, SEM;b.片状伊利石堵塞孔隙,主体孔径50~3 000 nm,HQ1-2井,埋深2 051.3 m, SEM;c.蜂窝状伊/蒙混层,主体孔径100~3 000 nm,HQ7-9井,埋深2 007.6 m, SEM;d.网状伊蒙混层,主体孔径500~4 000 nm,HQ7-1井,埋深2 269.1 m, SEM;e.孔隙衬里绿泥石膜,主体孔径50~1 000 nm,HQ14-1井,埋深2 208.4 m, SEM;f.孔隙充填状绿泥石,主体孔径20~800 nm,HQ4-1井,埋深2 091.0 m, SEM;g.绿泥石膜阻止石英的次生加大,HQ12-3井,埋深2 103.2 m, SEM;h.高岭石充填粒间孔,主体孔径50~1 500 nm,HQ8-3井,埋深2 206.1 m, SEM;i.高岭石晶间孔,主体孔径200~4 000 nm,HQ5-1井,埋深2 199.3 m, SEM;j.长石蚀变形成高岭石晶间孔,HQ3-1井,埋深2 087.3 m,探针;k.长石蚀变为高岭石,HQ1-1井,埋深2 132.6 m,探针;l.k样品中的高岭石探针能谱"
表3
鄂尔多斯盆地华庆地区长6段砂岩X衍射全岩矿物定量分析数据"
样品编号 | 深度/m | 矿物含量/% | ||||||
石英 | 斜长石 | 钾长石 | 方解石 | 白云石 | 菱铁矿 | 粘土矿物总量 | ||
HQ1-1 | 2 132.8 | 57.8 | 11.9 | 3.1 | 1.4 | 3.5 | 0.3 | 22.0 |
HQ2-2 | 2 073.3 | 28.6 | 40.7 | 6.6 | 4.4 | 4.7 | 0.0 | 15.0 |
HQ3-1 | 2 087.6 | 28.1 | 40.1 | 8.9 | 0.2 | 2.8 | 1.0 | 18.9 |
HQ4-1 | 2 091.0 | 36.2 | 42.3 | 8.0 | 2.1 | 1.5 | 0.3 | 9.6 |
HQ5-1 | 2 199.5 | 52.5 | 7.7 | 9.9 | 0.0 | 7.5 | 0.7 | 21.7 |
HQ6-4 | 2 259.1 | 67.1 | 9.1 | 2.9 | 0.7 | 4.3 | 1.4 | 14.5 |
HQ6-7 | 2 264.0 | 58.0 | 11.6 | 5.8 | 0.3 | 3.0 | 0.9 | 20.4 |
HQ7-1 | 2 269.1 | 43.0 | 18.4 | 8.3 | 3.1 | 3.2 | 2.0 | 22.0 |
HQ8-3 | 2 206.1 | 49.1 | 12.0 | 2.7 | 0.4 | 6.2 | 1.9 | 27.7 |
HQ10-1 | 2 241.3 | 39.2 | 27.0 | 6.4 | 1.3 | 3.2 | 0.6 | 22.3 |
HQ11-1 | 2 241.6 | 30.3 | 44.6 | 8.6 | 0.1 | 2.0 | 0.7 | 13.7 |
HQ11-3 | 2 055.2 | 39.1 | 29.6 | 4.5 | 0.8 | 4.6 | 0.0 | 21.4 |
HQ12-1 | 2 099.6 | 30.8 | 32.7 | 8.9 | 0.0 | 11.7 | 0.0 | 15.9 |
HQ12-3 | 2 103.6 | 37.9 | 33.0 | 4.8 | 4.2 | 2.7 | 0.0 | 17.4 |
HQ13-1 | 2 105.9 | 38.4 | 33.5 | 6.4 | 0.3 | 3.2 | 0.2 | 18.0 |
HQ14-1 | 2 208.4 | 29.7 | 39.6 | 18.0 | 0.2 | 0.8 | 0.0 | 11.7 |
HQ14-2 | 2 212.8 | 37.1 | 45.6 | 7.4 | 0.1 | 0.9 | 0.0 | 8.9 |
HQ14-4 | 2 222.4 | 31.0 | 43.2 | 10.2 | 1.6 | 2.3 | 0.5 | 11.2 |
平均 | 40.8 | 29.0 | 7.3 | 1.2 | 3.8 | 0.6 | 17.4 |
1 | 庞雄, 柳保军, 颜承志, 等. 关于南海北部深水重力流沉积问题的讨论[J]. 海洋学报, 2012, 34 (3): 114- 118. |
Pang Xiong , Liu Baojun , Yan Chengzhi , et al. Some reviews on deepwater gravity-flow deposition in the northern South China Sea[J]. Acta Oceanologica Sinica, 2012, 34 (3): 114- 118. | |
2 | 操应长, 杨田, 王艳忠, 等. 超临界沉积物重力流形成演化及特征[J]. 石油学报, 2017, 38 (6): 607- 620. |
Cao Yingchang , Yang Tian , Wang Yanzhong , et al. Formation, evolution and sedimentary characteristics of supercritical sediment gravity-flow[J]. Acta Petrolei Sinica, 2017, 38 (6): 607- 620. | |
3 |
李洪楠. 断陷湖盆陡坡带重力流沉积特征及模式[J]. 石油地质与工程, 2020, 34 (4): 12- 18.
doi: 10.3969/j.issn.1673-8217.2020.04.003 |
Li Hongnan . Sedimentary characteristics and models of gravity flow in steep slope zone of faulted lacustrine basin[J]. Petroleum Geology & Engineering, 2020, 34 (4): 12- 18.
doi: 10.3969/j.issn.1673-8217.2020.04.003 |
|
4 | 李振鹏, 王航, 常涛, 等. 歧南断阶带沙一段重力流类型及勘探潜力分析[J]. 断块油气田, 2019, 26 (1): 7- 11. |
Li Zhenpeng , Wang Hang , Chang Tao , et al. Gravity flow identification characteristics and exploration potential in Es1 of Qinan Fault step belt[J]. Fault-Block Oil and Gas Field, 2019, 26 (1): 7- 11. | |
5 | 杨仁超, 尹伟, 樊爱萍, 等. 鄂尔多斯盆地南部三叠系延长组湖相重力流沉积细粒岩及其油气地质意义[J]. 古地理学报, 2017, 19 (5): 791- 806. |
Yang Renchao , Yin Wei , Fan Aiping , et al. Fine-grained, lacustrine gravity-low deposits and their hydrocarbon significance in the Triassic Yanchang Formation in southern Ordos Basin[J]. Journal of Palaeogeography, 2017, 19 (5): 791- 806. | |
6 | 白斌, 朱如凯, 吴松涛, 等. 利用多尺度CT成像表征致密砂岩微观孔喉结构[J]. 石油勘探与开发, 2013, 40 (3): 329- 333. |
Bai Bin , Zhu Rukai , Wu Songtao , et al. Multi-scale method of nano(micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40 (3): 329- 333. | |
7 | 谢启超, 冯波, 宋鹏, 等. 合水地区长7致密砂岩储层微观孔喉结构分形特征[J]. 断块油气田, 2019, 26 (2): 215- 219. |
Xie Qichao , Feng Bo , Song Peng , et al. Fractal characteristics of microscopic pore-throat structures of Chang 7 tight sandstone reservoirs, Heshui area, Ordos Basin[J]. Fault-Block Oil and Gas Field, 2019, 26 (2): 215- 219. | |
8 | 全洪慧, 朱玉双, 张洪军, 等. 储层孔隙结构与水驱油微观渗流特征——以安塞油田王窑区长6油层组为例[J]. 石油与天然气地质, 2011, 32 (6): 952- 960. |
Quan Honghui , Zhu Yushuang , Zhang Hongjun , et al. Reservoir pore structure and microscopic seepage characteristics of water drive oil: A case study of Chang 6 reservoir group in Wangyao area, Ansai oilfield[J]. Petroleum Natural Gas Geology, 2011, 32 (6): 952- 960. | |
9 | 梁淑贤, 高建, 周体尧, 等. 吉林红岗北致密油特征、成因及开采技术[J]. 大庆石油地质与开发, 2014, 33 (2): 165- 169. |
Liang Shuxian , Gao Jian , Zhou Tiyao , et al. Characteristics, genesis and exploitation technology of tight oil in Honggang North, Jilin[J]. Petroleum Geology and Oilfield Development in Daqing, 2014, 33 (2): 165- 169. | |
10 | Lin W B , Chen L , Lu Y C , et al. Diagenesis and its impact on reservoir quality for the Chang 8 oil group tight sandstone of the Yanchang Formation(upper Triassic) in southwestern Ordos Basin, China[J]. Journal of Petroleum Exploration and Production Technology, 2017, 7, 947- 959. |
11 | Ehrenberge S N , Aagaard P , Wilson M J , et al. Depth-dependent transformation of kaolinite to dickite in sandstone of the Norwegian continental shelf[J]. Clay and Clay Mineral, 1993, 41 (28): 325- 352. |
12 | 伏万军. 粘土矿物成因及对砂岩储集性能的影响[J]. 古地理学报, 2000, 2 (3): 59- 68. |
Fu Wanjun . Genesis of clay minerals and its effect on sandstone reservoir properties[J]. Journal of Palaeogeography, 2000, 2 (3): 59- 68. | |
13 | Baker J C , Hacord P J , Martin K R , et al. Diagenesis and petrophysics of the Early Permian Moogooloo sandstone, southern Camarvon Basin, Western Australia[J]. AAPG Bulletin, 2000, 84 (2): 250- 265. |
14 | 黄思静, 谢连文, 张萌, 等. 中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J]. 成都理工大学学报(自然科学版), 2004, 31 (3): 273- 281. |
Huang Sijing , Xie Lianwen , Zhang Meng , et al. The formation mechanism of authigenic chlorite in the Triassic continental sandstone and its relation to reservoir pore preservation[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2004, 31 (3): 273- 281. | |
15 | 杨华, 梁晓伟, 牛小兵, 等. 陆相致密油形成地质条件及富集主控因素——以鄂尔多斯盆地三叠系延长组长7段为例[J]. 石油勘探与开发, 2017, 44 (1): 12- 20. |
Yang Hua , Liang Xiaowei , Niu Xiaobing , et al. Geological conditions for continental tight oil formation and the main controlling factors for the enrichment: A case of Chang 7 Member, Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44 (1): 12- 20. | |
16 | 闫林, 袁大伟, 陈福利, 等. 陆相致密油藏差异化含油控制因素及分布模式[J]. 新疆石油地质, 2019, 40 (3): 262- 268. |
Yan Lin , Yuan Dawei , Chen Fuli , et al. A study on differentiated oil-bearing controlling factors and distribution patterns of continental tight oil reservoir[J]. Xinjiang Petroleum Geology, 2019, 40 (3): 262- 268. | |
17 | 王玉祥. 砂砾岩致密储层填隙物特征及其对孔隙的影响[J]. 石油化工高等学校学报, 2017, 30 (1): 75- 81. |
Wang Yuxiang . Characteristics of interstitial material in sandy conglomerate and its effects on reservoir porosity[J]. Journal of Petrochemical Universities, 2017, 30 (1): 75- 81. | |
18 | 朱筱敏. 沉积岩石学[M]. 北京: 石油工业出版社, 2008. |
Zhu Xiaomin . Sedimentary petrology[M]. Beijing: Petroleum Industry Press, 2008. | |
19 | 禚喜准, 张林炎, 陈骁帅, 等. 泥质杂基含量对柴达木盆地昆2井孔隙演化模式影响的压实模拟实验研究[J]. 地质论评, 2016, 61 (6): 1447- 1455. |
Zhuo Xizhun , Zhang Linyan , Chen Xiaoshuai , et al. Influence of the deep argillaceous matrix on pore evolution model of the reservoir in Kung 2, Qaidam Basin[J]. Geological Review, 2016, 61 (6): 1447- 1455. | |
20 | 钟大康. 致密油储层微观特征及其形成机理——以鄂尔多斯盆地长6-长7段为例[J]. 石油与天然气地质, 2017, 38 (1): 49- 61. |
Zhong Dakang . Micro-etrology, pore throat characteristics and genetic mechanism of tight oil reservoirs-A case from the 6th and 7th members of Triassic Yanchang Formation in Ordos Basin[J]. Oil & Gas Geology, 2017, 38 (1): 49- 61. | |
21 | 崔维兰, 韩华峰, 张永, 等. 鄂尔多斯盆地靖边油田李家城则地区长6致密油储层微观特征与含油性[J]. 石油实验地质, 2019, 41 (3): 390- 397. |
Cui Weilan , Han Huafeng , Zhang Yong , et al. Microscopic characteri-stics and oil content of Chang 6 tight sandstone reservoirs in Lijia-chengze area, Jingbian oil field, Ordos Basin[J]. Petroleum Geology & Experiment, 2019, 41 (3): 390- 397. | |
22 | Chen Z B , Zhou C F , Chen X J , et al. Evaluation of the matrix influe-nce on the microscopic pore-throat structures of deep-water tight sandstone: A case study from the Upper Triassic Chang 6 oil group of the Yanchang Formation in the Huaqing area, Ordos Basin, China[J]. Interpretation, 2020, 8 (4): 763- 776. |
23 | 刘玲, 汤达祯, 王烽. 鄂尔多斯盆地临兴区块太原组致密砂岩黏土矿物特征及其对储层物性的影响[J]. 油气地质与采收率, 2019, 26 (6): 28- 35. |
Liu Ling , Tang Dazhen , Wang Yan . The characteristics of tight sandstone clay minerals of the Taiyuan Formation in the Linxing Block of the Ordos Basin and their effectson reservoir properties[J]. Petroleum Geology and Recovery Efficiency, 2019, 26 (6): 28- 35. | |
24 | 李霞, 王佳, 谭先锋, 等. 泥页岩成岩过程中黏土矿物脱水转化及热动力机制[J]. 石油化工高等学校学报, 2018, 31 (1): 61- 70. |
Li Xia , Wang Jia , Tan Xianfeng , et al. Dehydration and transformation of clay minerals and their thermodynamic mechanism during the formation of mud Shale[J]. Journal of Petrochemical Universities, 2018, 31 (1): 61- 70. | |
25 | 仙永凯. 粘土矿物的转化及对页岩储层的影响[J]. 四川地质学报, 2019, 39 (2): 244- 247. |
Xian Yongkai . Transformation of clay minerals and its effect on shale reservoirs[J]. Acta Geologica Sichuan, 2019, 39 (2): 244- 247. | |
26 | 师俊峰, 师永民, 高超利. 致密砂岩储层黏土矿物特征及敏感性分析——以鄂尔多斯盆地吴起油田寨子河地区长6油层为例[J]. 科学技术与工程, 2018, 18 (20): 88- 95. |
Shi Junfeng , Shi Yongmin , Gao Chaoli , et al. Clay Mineral characteri-stics and sensitivity analysis of tight sandstone reservoirs: A case study of Chang 6 reservoir in Zhaizihe area, Wuqi oilfield, Ordos Basin[J]. Science Technology and Engineering, 2018, 18 (20): 88- 95. | |
27 | 马世忠, 王海鹏, 孙雨, 等. 松辽盆地扶新隆起带北部扶余油层超低渗储层粘土矿物特征及其对敏感性的影响[J]. 地质论评, 2014, 60 (5): 1085- 1092. |
Ma Shizhong , Wang Haipeng , Sun Yu , et al. Clay mineral characteristics of ultra-low permeability reservoirs in Fuyu Reservoir in the northern Fuxin uplift zone of Songliao Basin and its influence on sensitivity[J]. Geological Review, 2014, 60 (5): 1085- 1092. | |
28 | 蒋裕强, 张春, 邓海波, 等. 黏土矿物对低渗致密砂岩储渗性能的影响[J]. 西南石油大学学报(自然科学版), 2013, 35 (6): 39- 47. |
Jiang Yuqiang , Zhang Chun , Deng Haibo , et al. Effect of clay minerals on storage and permeability of low permeability and tight sandstone[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2013, 35 (6): 39- 47. | |
29 | 卢欢, 徐长贵, 王清斌, 等. 碳酸盐胶结物形成机制及其对渤海海域C12和Q17构造中生界碎屑岩储层的影响[J]. 石油与天然气地质, 2019, 40 (6): 1270- 1280. |
Lu Huan , Xu Changgui , Wang Qingbin , et al. Formation mechanism of carbonate cement and its influence on Mesozoic clastic reservoirs in C12 and Q17 structures in the Bohai Sea[J]. Oil & Gas Geology, 2019, 40 (6): 1270- 1280. | |
30 | 王晔桐, 孙国强, 杨永恒, 等. 柴北缘冷湖七号地区碳酸盐胶结物特征及其意义[J]. 西南石油大学学报(自然科学版), 2020, 42 (1): 1- 12. |
Wang Yitong , Sun Guoqiang , Yang Yongheng , et al. Characteristics and significance of carbonate cement in Lianhu No.7 area on the Northern Margin of Chai[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42 (1): 1- 12. | |
31 | 吕成福, 李小燕, 陈国俊, 等. 酒东坳陷下白垩统砂岩中碳酸盐胶结物特征与储层物性[J]. 沉积学报, 2011, 29 (6): 1138- 1144. |
Lu Chengfu , Li Xiaoyan , Chen Guojun , et al. Characteristics of carbonate cements and reservoir properties in the Lower Cretaceous sandstones of Jiudong Depression[J]. Acta Sedimentologica Sinica, 2011, 29 (6): 1138- 1144. | |
32 | 高阳, 刘春, 白晓佳, 等. 自生"加大"含铁白云石胶结物特征及对致密砂岩储层的影响——以鄂尔多斯盆地陇东地区延长组4+5段为例[J]. 石油与天然气地质, 2019, 40 (5): 1065- 1073. |
Gao Yang , Liu Chun , Bai Xiaojia , et al. Cement characteristics of overgrown authigenic ferron dolomite and its impact on tight sandstone reservoirs qualities: Case study of the Chang 4&5 members of Triassic Yanchang Formation in Longdong area, Ordos Basin[J]. Oil & Gas Geology, 2019, 40 (5): 1065- 1073. | |
33 | 庄建建. 东海西湖凹陷砂岩硅质胶结物成因机制探讨[J]. 海洋石油, 2018, 38 (1): 9- 16. |
Zhuang Jianjian . Discussion on the genesis mechanism of sandstone siliceous cement in the West Lake Sag of the East China Sea[J]. Offshore Oil, 2018, 38 (1): 9- 16. | |
34 | 李泽民, 谭先锋, 薛伟伟, 等. 碎屑岩中硅质胶结物物质来源及沉淀机理[J]. 石油地质与工程, 2015, 29 (2): 19- 146.19-24, 145-146 |
Li Zemin , Tan Xianfeng , Xue Weiwei , et al. Material source and precipitation mechanism of siliceous cement in clastic rock[J]. Petroleum Geology and Engineering, 2015, 29 (2): 19- 146.19-24, 145-146 | |
35 | 罗龙, 孟万斌, 冯明石, 等. 致密砂岩中硅质胶结物的硅质来源及其对储层的影响——以川西坳陷新场构造带须家河组二段为例[J]. 天然气地球科学, 2015, 26 (3): 435- 443. |
Luo Long , Meng Wanbin , Feng Mingshi , et al. Selica sources of quartz cements and its effects on the reservoir in tight sandstones: A case study on the 2th Member of the Xujiahe Formation in Xinchang structural belt, Western Sichuan Depression[J]. Natural Gas Geoscience, 2015, 26 (3): 435- 443. | |
36 | 王朋, 孙灵辉, 王核, 等. 库车坳陷下侏罗统阿合组致密砂岩储层孔隙微观结构特征及其对致密气富集的控制作用[J]. 石油与天然气地质, 2020, 41 (2): 295- 304. |
Wang Peng , Sun Linghui , Wang He , et al. Microscopic pore structure of Ahe tight sand gas reservoirs of the Low Jurassic in Kuqa Depression and its controls on tight gas enrichment[J]. Oil & Gas Geology, 2020, 41 (2): 295- 304. | |
37 | 武文慧, 黄思静, 陈洪德, 等. 鄂尔多斯盆地上古生界碎屑岩硅质胶结物形成机制及其对储集层的影响[J]. 古地理学报, 2011, 13 (2): 193- 200. |
Wu Wenhui , Huang Sijing , Chen Hongde , et al. Formation mechanism of siliceous cements from clastic rocks in the Upper Paleozoic in the Ordos Basin and their effects on reservoirs[J]. Journal of Palaeogeography, 2011, 13 (2): 193- 200. | |
38 | 黄善炳. 应用SEM研究高邮凹陷Ed1段砂岩硅质胶结作用及其对储集性的影响[J]. 电子显微学报, 1994, 13 (4): 291- 296. |
Huang Shanbing . Silicon cementation of sandstone reservoirs in No.1 section of the Dainan Fr.of the Gaoyou Depression by study of SEM and its influence over the reservoir properties[J]. Journal of Chinese Electron Microscopy Society, 1994, 13 (4): 291- 296. | |
39 | Worden R H , Morad S . Quartz cementation in oil field sandstones: A review of the key controversies[M]. Hoboken: John Wiley & Sons, Ltd, 2009. |
40 | 黄思静, 黄培培, 王庆东, 等. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19 (3): 7- 13. |
Huang Sijing , Huang Peipei , Wang Qingdong , et al. The significance of cementation in preservation of pore of deep buried sandstone[J]. Lithologic Reservoirs, 2007, 19 (3): 7- 13. |
[1] | 吴伟涛, 冯炎松, 费世祥, 王一妃, 吴和源, 杨旭东. 鄂尔多斯盆地神木气田二叠系石千峰组5段致密气富集因素及有利区预测[J]. 石油与天然气地质, 2024, 45(3): 739-751. |
[2] | 刘成林, 丁振刚, 范立勇, 康锐, 洪思婕, 朱玉新, 陈践发, 王海东, 许诺. 鄂尔多斯盆地含氦天然气地球化学特征与富集影响因素[J]. 石油与天然气地质, 2024, 45(2): 384-392. |
[3] | 万俊雨, 朱建辉, 姚素平, 张毅, 李春堂, 张威, 姜海健, 王杰. 鄂尔多斯盆地中、东部奥陶系马家沟组成烃生物及烃源岩地球生物学评价[J]. 石油与天然气地质, 2024, 45(2): 393-405. |
[4] | 杨丽华, 刘池洋, 黄雷, 周义军, 刘永涛, 秦阳. 鄂尔多斯盆地古峰庄地区疑似侵入岩体的发现及其地质意义[J]. 石油与天然气地质, 2024, 45(1): 142-156. |
[5] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[6] | 曹江骏, 王继平, 张道锋, 王龙, 李笑天, 李娅, 张园园, 夏辉, 于占海. 深层致密砂岩储层成岩演化对含气性的影响[J]. 石油与天然气地质, 2024, 45(1): 169-184. |
[7] | 王冠民, 庞小军, 黄晓波, 张雪芳, 潘凯. 渤海海域辽中凹陷南部古近系东营组三段重力流砂岩优质储层特征及成因[J]. 石油与天然气地质, 2024, 45(1): 81-95. |
[8] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[9] | 刘成林, 丁振刚, 陈践发, 范立勇, 康锐, 王海东, 洪思婕, 田安琦, 陈学勇. 鄂尔多斯盆地氦源岩特征及生氦潜力[J]. 石油与天然气地质, 2023, 44(6): 1546-1554. |
[10] | 李勇, 朱治同, 吴鹏, 申陈州, 高计县. 鄂尔多斯盆地东缘上古生界致密储层含气系统压力演化[J]. 石油与天然气地质, 2023, 44(6): 1568-1581. |
[11] | 曾溅辉, 张亚雄, 张在振, 乔俊程, 王茂云, 陈冬霞, 姚泾利, 丁景辰, 熊亮, 刘亚洲, 赵伟波, 任克博. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067-1083. |
[12] | 刘惠民, 张关龙, 范婕, 曾治平, 郭瑞超, 宫亚军. 准噶尔盆地腹部征沙村地区征10井的勘探发现与启示[J]. 石油与天然气地质, 2023, 44(5): 1118-1128. |
[13] | 梁岳立, 赵晓明, 张喜, 李树新, 葛家旺, 聂志宏, 张廷山, 祝海华. 轨道周期约束下海-陆过渡相页岩层系高精度层序界面识别及其地质意义[J]. 石油与天然气地质, 2023, 44(5): 1231-1242. |
[14] | 李涵, 付金华, 季汉成, 张雷, 佘钰蔚, 官伟, 井向辉, 王红伟, 曹茜, 刘刚, 魏嘉怡. 鄂尔多斯盆地西南部上古生界风化壳型铝土岩系发育过程及优势储层分布规律[J]. 石油与天然气地质, 2023, 44(5): 1243-1255. |
[15] | 李晓, 郭鹏, 胡彦智, 李士祥, 杨伟伟. 陆相页岩压裂试验与数值模拟[J]. 石油与天然气地质, 2023, 44(4): 1009-1019. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||