石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (6): 1546-1554.doi: 10.11743/ogg20230616
刘成林1,2(), 丁振刚1,2, 陈践发1,2, 范立勇3, 康锐3, 王海东1,2, 洪思婕1,2, 田安琦1,2, 陈学勇1,2
收稿日期:
2023-06-05
修回日期:
2023-10-20
出版日期:
2023-12-01
发布日期:
2023-12-20
第一作者简介:
刘成林(1970—),男,教授、博士生导师,天然气成藏和资源评价。E-mail: 基金项目:
Chenglin LIU1,2(), Zhengang DING1,2, Jianfa CHEN1,2, Liyong FAN3, Rui KANG3, Haidong WANG1,2, Sijie HONG1,2, Anqi TIAN1,2, Xueyong CHEN1,2
Received:
2023-06-05
Revised:
2023-10-20
Online:
2023-12-01
Published:
2023-12-20
摘要:
氦源是氦气资源形成的首要条件,盆地基底变质岩、泥岩、泥质白云岩、煤和铝土岩等沉积岩为潜在氦源岩。通过野外地质调查、重磁资料解释、岩心描述与主、微量元素测试等方法,研究了鄂尔多斯盆地2大类5套潜在氦源岩及其成氦潜力。研究结果表明:鄂尔多斯盆地的潜在氦源岩分为基底型和沉积型两大类。基底型氦源岩发育在太古宇陆块及其上叠加的古元古界之中,岩性主要为高级变质片麻岩-变粒岩、大理岩、混合岩和花岗片麻岩,U和Th元素平均丰度分别为3.15×10-6和12.38×10-6,生氦强度为0.735×10-6 cm3/(a·g)。沉积型氦源岩主要发育在中元古界长城系沉积变质岩和古生界沉积岩之中。长城系黑色板岩主要分布在盆地北部和西南部,U和Th平均丰度分别为2.36×10-6和8.28 ×10-6,生氦强度为0.522×10-6 cm3/(a·g);下古生界下奥陶统马家沟组泥质白云岩分布在盆地中部及东部,U和Th平均丰度分别为1.71×10-6和9.80×10-6,生氦强度为0.487×10-6 cm3/(a·g);上古生界石炭系-二叠系泥岩和煤在全盆地广泛分布,太原组泥岩U和Th平均丰度分别为9.69×10-6和22.68×10-6,生氦强度为1.82×10-6 cm3/(a·g),太原组煤U和Th平均丰度分别为16.12×10-6和44.13×10-6,生氦强度为3.21×10-6 cm3/(a·g);上古生界石炭系铝土岩主要分布在盆地东部和西南部,U和Th平均丰度分别为7.14×10-6和38.57×10-6,生氦强度为1.97×10-6 cm3/(a·g)。鄂尔多斯盆地西南部发育各类氦源岩,具有“多源供氦”特征。该研究为鄂尔多斯盆地氦气资源勘查奠定了基础。
中图分类号:
图3
鄂尔多斯盆地潜在氦源岩特征照片a.深色二云母石英片岩,北秦岭,太古宇,野外露头;b.深色二云母石英片岩(+),北秦岭,太古宇,薄片;c.花岗片麻岩,杭探2井,太古宇,埋深2 468.60 m,岩心;d.紫苏花岗片麻岩,乌拉山-大青山,古元古界,野外露头;e.石英砂岩,杭探1井,长城系,埋深3 973.00 m,岩心;f.泥质白云岩,米109井,马五段,埋深2 410.82 m,SEM;g.砂岩中的高岭石,米109井,本溪组,埋深2 396.88 m,SEM;h.砂岩中的伊利石,米109井,太原组,埋深2 348.60 m,SEM;i.铝土岩中的水铝石团块斑状分布,陇81井,太原组,埋深3 910.19 m,SEM"
表1
鄂尔多斯盆地潜在氦源岩参数统计"
潜在层系 | 年龄/Ma | 岩性 | 分布区 | U平均丰度*/10-6 | Th平均丰度*/10-6 | 生氦强度/ [10-6 cm3/(a·g)] |
---|---|---|---|---|---|---|
太古宇- 下元古界 | 230 ~ 250 | 黑云母片岩、花岗片麻岩 | 北东-南西 向条带 | (3.97 ~ 0.26)/1.29 (12) | (18.75 ~ 1.42)/8.19 (12) | 0.391 |
中元古界 长城系 | 153.5 ~ 178.5 | 板岩 | 盆地北部、 西南部 | (4.33 ~ 0.39)/1.29 (29) | (8.33 ~ 0.75)/2.49 (29) | 0.227 |
下古生界下奥陶统马家沟组 | 48.7 | 泥质白云岩 | 古陆周边 | (8.98 ~ 1.53)/4.30 (8) | (25.61 ~ 2.28)/10.60 (8) | 0.820 |
上古生界石炭系、二叠系 | 28.5±5 | 泥岩 | 全盆地 | (16.12 ~ 3.22)/9.68 (26) | (54.28 ~ 1.57)/22.68 (26) | 1.820 |
煤 | 全盆地 | (40.49 ~ 2.87)/14.99 (15) | (88.12 ~ 2.00)/35.19 (15) | 2.820 | ||
铝土岩 | 盆地西南部 | (11.85 ~ 1.35)/7.14 (11) | (59.39 ~ 6.33)/38.57 (11) | 1.970 |
1 | BRADSHAW A M, HAMACHER T. Nuclear fusion and the helium supply problem[J]. Fusion Engineering and Design, 2013, 88(9/10): 2694-2697. |
2 | 王晓锋, 刘文汇, 李晓斌, 等. 氦气资源的形成聚集与中国氦资源前景[C]//中国矿物岩石地球化学学会第17届学术年会论文摘要集, 杭州, 2019. 贵阳: 中国矿物岩石地球化学学会, 2019: 1154-1155. |
WANG Xiaofeng, LIU Wenhui, LI Xiaobin, et al. The formation and accumulation of helium resources and the prospect of helium resources in China[C]//Abstracts of the 17th Annual Academic Conference of the Chinese Society of Mineral Petrogeochemistry, Hangzhou, 2019. Guiyang: Chinese Society for Mineralogy Petrology and Geochemistry, 2019: 1154-1155. | |
3 | 张哲, 王春燕, 王秋晨, 等. 中国氦气市场发展前景展望[J]. 油气与新能源, 2022, 34(1): 36-41. |
ZHANG Zhe, WANG Chunyan, WANG Qiuchen, et al. Development prospects of China’s helium market[J]. Petroleum and New Energy, 2022, 34(1): 36-41. | |
4 | 王先彬. 稀有气体地球化学与宇宙化学及其应用前景[J]. 地质地球化学, 1988, 16(8): 39-47. |
WANG Xianbin. Rare gas geochemistry and cosmic chemistry and their application prospects[J]. Earth and Environment, 1988, 16(8): 39-47. | |
5 | 杜建国, 刘文汇. 三水盆地天然气中的氦和氩同位素地球化学研究[J]. 天然气地球科学, 1991, 2(6): 283-285. |
DU Jianguo, LIU Wenhui. Helium and argon isotope geochemistry of natural gas in Sanshui Basin[J]. Natural Gas Geoscience, 1991, 2(6): 283-285. | |
6 | 徐永昌, 沈平, 陶明信, 等. 幔源氦的工业储聚和郯庐大断裂带[J]. 科学通报, 1990, 35(12): 932-935. |
XU Yongchang, SHEN Ping, TAO Mingxin, et al. Mantle-derived helium industrial accumulation and Tanlu fault[J]. Chinese Science Bulletin, 1990, 35(12): 932-935. | |
7 | 徐永昌, 沈平, 刘文汇, 等. 东部油气区天然气中幔源挥发份的地球化学——Ⅱ.幔源挥发份中的氦、氩及碳化合物[J]. 中国科学(D辑: 地球科学), 1996, 26(2): 187-192. |
XU Yongchang, SHEN Ping, LIU Wenhui, et al. The mantle-derived geochemical volatile in the natural gas-the new types of helium resources: The industry aggregation of mantle-derived helium in the deposition shell[J]. Science China Earth Sciences, 1996, 26(2): 187-192. | |
8 | 徐永昌. 天然气中氦同位素分布及构造环境[J]. 地学前缘, 1997, 4(3/4): 185-190. |
XU Yongchang. Helium isotope distribution of natural gasses and its structural setting[J]. Earth Science Frontiers, 1997, 4(3/4): 185-190. | |
9 | 徐永昌, 沈平, 刘文汇, 等. 天然气中稀有气体地球化学[M]. 北京: 科学出版社, 1998. |
XU Yongchang, SHEN Ping, LIU Wenhui, et al. Noble gas geochemistry in natural gas[M]. Beijing: Science Press, 1998. | |
10 | 刘文汇, 徐永昌. 沉积岩钾、氩分布与天然气氩同位素——以渤海湾、四川和鄂尔多斯盆地为例[J]. 沉积学报, 1992, 10(1): 83-92. |
LIU Wenhui, XU Yongchang. The distribution of K and Ar in sedimentary rock and the Ar isotope of natural gas from some oil-gas-bearing basins in China[J]. Acta Sedimentologica Sinica, 1992, 10(1): 83-92. | |
11 | 刘文汇, 徐永昌. 氩同位素气源对比原理及应用条件[J]. 地质地球化学, 1994, 22(6): 9-12, 76. |
LIU Wenhui, XU Yongchang. Principle and application conditions of argon isotope gas source correlation[J]. Geology-Geochemistry, 1994, 22(6): 9-12, 76. | |
12 | 樊然学. 氦、氩同位素分析在天然气成藏规律研究中的应用——以川西盆地中部天然气He、Ar同位素组成分析为例[J]. 质谱学报, 2000, 21(3/4): 183-184. |
FAN Ranxue. Isotopic analysis of helium, argon and their application on accumulation mechanism of natural gases——Cases studies from the central area of western Sichuan Basin[J]. Journal of Chinese Mass Spectrometry Society, 2000, 21(3): 2-11. | |
13 | 徐胜. 中国天然气中稀有气体丰度和同位素组成[J]. 矿物岩石地球化学通报, 1997, 16(2): 71-74. |
XU Sheng. Noble gas abundances and isotopes in natural gases in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1997, 16(2): 71-74. | |
14 | 徐胜, 徐永昌, 沈平, 等. 中国中西部盆地若干天然气藏中稀有气候同位素组成[J]. 科学通报, 1996, 41(12): 1115-1118. |
XU Sheng, XU Yongchang, SHEN Ping, et al. The rare gas isotope composition in several basins in the west-middle basins in China[J]. Chinese Science Bulletin, 1996, 41(12): 1115-1118. | |
15 | 戴金星, 李剑, 侯路. 鄂尔多斯盆地氦同位素的特征[J]. 高校地质学报, 2005, 11(4): 473-478. |
DAI Jinxing, LI Jian, HOU Lu. Characteristics of helium isotopes in the Ordos Basin[J]. Geological Journal of China Universities, 2005, 11(4): 473-478. | |
16 | 刘全有, 戴金星, 金之钧, 等. 塔里木盆地前陆区和台盆区天然气的地球化学特征及成因[J]. 地质学报, 2009, 83(1): 107-114. |
LIU Quanyou, DAI Jinxing, JIN Zhijun, et al. Geochemistry and genesis of natural gas in the foreland and platform of the Tarim Basin[J]. Acta Geologica Sinica, 2009, 83(1): 107-114. | |
17 | 常兴浩, 宋凯. 巴什托构造石炭系小海子组高氦气藏成藏机理浅析[J]. 天然气工业, 1997, 17(2): 18-20. |
CHANG Xinghao, SONG Kai. Analysis of reservoir forming mechanism of high He pool in the Carboniferous of Xiaohaizi Formation of Bashitou structure[J]. Natural Gas Industry, 1997, 17(2): 18-20. | |
18 | 曹忠祥, 车燕, 李军亮, 等. 济阳坳陷花沟地区高含He气藏成藏分析[J]. 石油实验地质, 2001, 23(4): 395-399. |
CAO Zhongxiang, CHE Yan, LI Junliang, et al. Accumulation analysis on a helium-enriched gas reservoir in Huagou area, the Jiyang Depression[J]. Petroleum Geology & Experiment, 2001, 23(4): 395-399. | |
19 | 王江, 张宏, 林东成. 海拉尔盆地乌尔逊含氦CO2气藏勘探前景[J]. 天然气工业, 2002, 22(4): 109-111. |
WANG Jiang, ZHANG Hong, LIN Dongcheng. Exploration prospect of helium-containing CO2 gas reservoir in Urxun, Hailaer Basin[J]. Natural Gas Industry, 2002, 22(4): 109-111. | |
20 | 余琪祥, 史政, 王登高, 等. 塔里木盆地西北部氦气富集特征与成藏条件分析[J]. 西北地质, 2013, 46(4): 215-222. |
YU Qixiang, SHI Zheng, WANG Denggao, et al. Analysis on helium enrichment characteristics and reservoir forming conditions in northwest Tarim Basin[J]. Northwestern Geology, 2013, 46(4): 215-222. | |
21 | 杨春, 陶士振, 侯连华, 等. 松辽盆地火山岩储层天然气藏He同位素组成累积效应[J]. 天然气地球科学, 2014, 25(1): 109-115. |
YANG Chun, TAO Shizhen, HOU Lianhua, et al. Accumulative effect of helium isotope in gas volcanic reservoirs in Songliao Basin[J]. Natural Gas Geoscience, 2014, 25(1): 109-115. | |
22 | 仵宗涛, 刘兴旺, 李孝甫, 等. 稀有气体同位素在四川盆地元坝气藏气源对比中的应用[J]. 天然气地球科学, 2017, 28(7): 1072-1077. |
WU Zongtao, LIU Xingwang, LI Xiaofu, et al. The application of noble gas isotope in gas-source correlation of Yuanba reservoir, Sichuan Basin[J]. Natural Gas Geoscience, 2017, 28(7): 1072-1077. | |
23 | 张晓宝, 周飞, 曹占元, 等. 柴达木盆地东坪氦工业气田发现及氦气来源和勘探前景[J]. 天然气地球科学, 2020, 31(11): 1585-1592. |
ZHANG Xiaobao, ZHOU Fei, CAO Zhanyuan, et al. Finding of the Dongping economic helium gas field in the Qaidam Basin, and helium source and exploration prospect[J]. Natural Gas Geoscience, 2020, 31(11): 1585-1592. | |
24 | 陈践发, 刘凯旋, 董勍伟, 等. 天然气中氦资源研究现状及我国氦资源前景[J]. 天然气地球科学, 2021, 32(10): 1436-1449. |
CHEN Jianfa, LIU Kaixuan, DONG Qingwei, et al. Research status of helium resources in natural gas and prospects of helium resources in China[J]. Natural Gas Geoscience, 2021, 32(10): 1436-1449. | |
25 | 彭威龙, 刘全有, 张英, 等. 中国首个特大致密砂岩型(烃类)富氦气田——鄂尔多斯盆地东胜气田特征[J]. 中国科学: 地球科学, 2022, 52(6): 1078-1085. |
PENG Weilong, LIU Quanyou, ZHANG Ying, et al. The first extra-large helium-rich gas field identified in a tight sandstone of the Dong Sheng Gas Field, Ordos Basin, China[J]. Science China Earth Sciences, 2022, 52(6): 1078-1085. | |
26 | 李玉宏, 张文, 王利, 等. 亨利定律与壳源氦气弱源成藏——以渭河盆地为例[J]. 天然气地球科学, 2017, 28(4): 495-501. |
LI Yuhong, ZHANG Wen, WANG Li, et al. Henry’s law and accumulation of crust-derived helium: A case from Weihe Basin, China[J]. Natural Gas Geoscience, 2017, 28(4): 495-501. | |
27 | 张文, 李玉宏, 王利, 等. 渭河盆地氦气成藏条件分析及资源量预测[J]. 天然气地球科学, 2018, 29(2): 236-244. |
ZHANG Wen, LI Yuhong, WANG Li, et al. The analysis of helium accumulation conditions and prediction of helium resource in Weihe Basin[J]. Natural Gas Geoscience, 2018, 29(2): 236-244. | |
28 | 陈新军, 丁一, 易晶晶, 等. 氦气资源的分类、特征及富集主控因素分析[J]. 石油实验地质, 2023, 45(1): 41-48. |
CHEN Xinjun, DING Yi, YI Jingjing, et al. Classified characteristics of helium gas resources and controlling factors for the enrichment[J]. Petroleum Geology and Experiment, 2023, 45(1): 41-48. | |
29 | 李玉宏, 卢进才, 李金超, 等. 渭河盆地富氦天然气井分布特征与氦气成因[J]. 吉林大学学报(地球科学版), 2011, 41(S1): 47-53. |
LI Yuhong, LU Jincai, LI Jinchao, et al. Distribution of the helium-rich wells and helium derivation in Weihe Basin[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(S1): 47-53. | |
30 | 蒙炳坤, 周世新, 李靖, 等. 上扬子地区不同类型岩石生氦潜力评价及泥页岩氦气开采条件理论计算[J]. 矿物岩石, 2021, 41(4): 102-113. |
MENG Bingkun, ZHOU Shixin, LI Jing, et al. Helium potential evaluation of different types of rocks in the Upper Yangtze region and theoretical calculation of helium recovery conditions for shale in Upper Yangtze region[J]. Mineralogy and Petrology, 2021, 41(4): 102-113. | |
31 | 聂海宽, 刘全有, 党伟, 等. 页岩型氦气富集机理与资源潜力——以四川盆地五峰组-龙马溪组为例[J]. 中国科学: 地球科学, 2023, 53(6): 1285-1294. |
NIE Haikuan, LIU Quanyou, DANG Wei, et al. Enrichment mechanism and resource potential of shale-type helium: A case study of Wufeng Formation-Longmaxi Formation in Sichuan Basin[J]. Science China Earth Sciences, 2023, 53(6): 1285-1294. | |
32 | TORGERSEN T, CLARKE W B. Helium accumulation in groundwater, I: An evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia[J]. Geochimica et Cosmochimica Acta, 1985, 49(5): 1211-1218. |
33 | LOWENSTERN J B, EVANS W C, BERGFELD D, et al. Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone[J]. Nature, 2014, 506(7488): 355-358. |
34 | BALLENTINE C J, BURNARD P G. Production, release and transport of noble gases in the continental crust[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 481-538. |
35 | BROWN A A. Formation of high Helium gases: A guide for explorationisits[C]. AAPG Convention, New Orleans, Louisiana, April 2010, 11-14. |
36 | BROWN A. Origin of helium and nitrogen in the Panhandle-Hugoton field of Texas, Oklahoma, and Kansas, United States[J]. AAPG Bulletin, 2019, 103(2): 369-403. |
37 | RUFER D, WABER H N, EICHINGER F, et al. Helium in porewater and rocks of crystalline bedrock from the Fennoscandian shield, Olkiluoto (Finland)[J]. Procedia Earth and Planetary Science, 2017, 17: 762-765. |
38 | HAND E. Massive helium fields found in rift zone of Tanzania[J]. Science, 2016, 353(6295): 109-110. |
39 | 杨俊杰. 鄂尔多斯盆地构造演化与油气分布规律, [M]. 北京: 石油工业出版社, 2002. |
YANG Junjie. Tectonic evolution and oil-gas reservoirs distribution in Ordos Basin[M]. Beijing: Petroleum Industry Press, 2002. | |
40 | 胡健民, 刘新社, 李振宏, 等. 鄂尔多斯盆地基底变质岩与花岗岩锆石SHRIMP U-Pb定年[J]. 科学通报, 2012, 57(26): 2482-2491. |
HU Jianmin, LIU Xinshe, LI Zhenhong, et al. SHRIMP U-Pb zircon dating of the Ordos Basin basement and its tectonic significance[J]. Chinese Science Bulletin, 2012, 57(26): 2482-2491. | |
41 | 吴东旭, 周进高, 任军峰, 等. 鄂尔多斯盆地奥陶系马家沟组沉积环境恢复与源储配置关系[J]. 地球科学, 2023, 48(2): 553-567. |
WU Dongxu, ZHOU Jingao, REN Junfeng, et al. Reconstruction of depositional environment and source-reservoir configuration relationship of Ordovician Majiagou Formation in Ordos Basin[J]. Earth Science, 2023, 48(2): 553-567. | |
42 | 胡安平, 沈安江, 张杰, 等. 碳酸盐岩-膏盐岩高频沉积旋回组合生-储特征——以鄂尔多斯盆地奥陶系马家沟组中-下组合为例[J]. 石油与天然气地质, 2022, 43(4): 943-956. |
HU Anping, SHEN Anjiang, ZHANG Jie, et al.Source-reservoir characteristics of high-frequency cyclic carbonate-evaporite assemblages: A case study of the lower and middle assemblages in the Ordovician Majiagou Formation, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(4): 943-956. | |
43 | 刘池洋, 王建强, 张东东, 等. 鄂尔多斯盆地油气资源丰富的成因与赋存-成藏特点[J]. 石油与天然气地质, 2021, 42(5): 1011-1029. |
LIU Chiyang, WANG Jianqiang, ZHANG Dongdong,et al. Genesis of rich hydrocarbon resources and their occurrence and accumulation characteristics in the Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1011-1029. | |
44 | 任战利, 祁凯, 李进步, 等. 鄂尔多斯盆地热动力演化史及其对油气成藏与富集的控制作用[J]. 石油与天然气地质, 2021, 42(5): 1030-1042. |
REN Zhanli, QI Kai, LI Jinbu, et al. Thermodynamic evolution and hydrocarbon accumulation in the Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1030-1042. | |
45 | 李相博, 王宏波, 黄军平, 等. 鄂尔多斯盆地怀远运动不整合面特征及油气勘探意义[J]. 石油与天然气地质, 2021, 42(5): 1043-1055. |
LI Xiangbo, WANG Hongbo, HUANG Junping, et al. Characteristics of unconformity resulted from Huaiyuan Movement in Ordos Basin and its significance for oil and gas exploration[J]. Oil & Gas Geology, 2021, 42(5): 1043-1055. | |
46 | 包洪平, 邵东波, 郝松立, 等. 鄂尔多斯盆地基底结构及早期沉积盖层演化[J]. 地学前缘, 2019, 26(1): 33-43. |
BAO Hongping, SHAO Dongbo, HAO Songli, et al. Basement structure and evolution of early sedimentary cover of the Ordos Basin[J]. Earth Science Frontiers, 2019, 26(1): 33-43. | |
47 | 张涛, 张亚雄, 金晓辉, 等. 鄂尔多斯盆地奥陶系马家沟组碳酸盐岩-蒸发岩层系层序地层模式及其对源-储的控制作用[J]. 石油与天然气地质, 2023, 44(1): 110-124. |
ZHANG Tao, ZHANG Yaxiong, JIN Xiaohui, et al. Sequence stratigraphy models of carbonate-evaporite successions and their controls on source rocks and reservoirs in the Ordovician Majiagou Formation, Ordos Basin[J]. Oil & Gas Geology, 2023, 44(1): 110-124. | |
48 | 何发岐, 张威, 丁晓琪, 等. 鄂尔多斯盆地乌审旗古隆起对岩溶气藏的控制机理[J]. 石油与天然气地质, 2023, 44(2): 276-291. |
HE Faqi, ZHANG Wei, DING Xiaoqi, et al. Controlling mechanism of Wushenqi paleo-uplift on paleo-karst gas reservoirs in Ordos Basin[J]. Oil & Gas Geology, 2023, 44(2): 276-291. |
[1] | 吴伟涛, 冯炎松, 费世祥, 王一妃, 吴和源, 杨旭东. 鄂尔多斯盆地神木气田二叠系石千峰组5段致密气富集因素及有利区预测[J]. 石油与天然气地质, 2024, 45(3): 739-751. |
[2] | 刘成林, 丁振刚, 范立勇, 康锐, 洪思婕, 朱玉新, 陈践发, 王海东, 许诺. 鄂尔多斯盆地含氦天然气地球化学特征与富集影响因素[J]. 石油与天然气地质, 2024, 45(2): 384-392. |
[3] | 万俊雨, 朱建辉, 姚素平, 张毅, 李春堂, 张威, 姜海健, 王杰. 鄂尔多斯盆地中、东部奥陶系马家沟组成烃生物及烃源岩地球生物学评价[J]. 石油与天然气地质, 2024, 45(2): 393-405. |
[4] | 杨丽华, 刘池洋, 黄雷, 周义军, 刘永涛, 秦阳. 鄂尔多斯盆地古峰庄地区疑似侵入岩体的发现及其地质意义[J]. 石油与天然气地质, 2024, 45(1): 142-156. |
[5] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[6] | 曹江骏, 王继平, 张道锋, 王龙, 李笑天, 李娅, 张园园, 夏辉, 于占海. 深层致密砂岩储层成岩演化对含气性的影响[J]. 石油与天然气地质, 2024, 45(1): 169-184. |
[7] | 张宝收, 张本健, 汪华, 陈践发, 刘凯旋, 豆霜, 戴鑫, 陈双玲. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[8] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[9] | 李勇, 朱治同, 吴鹏, 申陈州, 高计县. 鄂尔多斯盆地东缘上古生界致密储层含气系统压力演化[J]. 石油与天然气地质, 2023, 44(6): 1568-1581. |
[10] | 曾溅辉, 张亚雄, 张在振, 乔俊程, 王茂云, 陈冬霞, 姚泾利, 丁景辰, 熊亮, 刘亚洲, 赵伟波, 任克博. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067-1083. |
[11] | 梁岳立, 赵晓明, 张喜, 李树新, 葛家旺, 聂志宏, 张廷山, 祝海华. 轨道周期约束下海-陆过渡相页岩层系高精度层序界面识别及其地质意义[J]. 石油与天然气地质, 2023, 44(5): 1231-1242. |
[12] | 李涵, 付金华, 季汉成, 张雷, 佘钰蔚, 官伟, 井向辉, 王红伟, 曹茜, 刘刚, 魏嘉怡. 鄂尔多斯盆地西南部上古生界风化壳型铝土岩系发育过程及优势储层分布规律[J]. 石油与天然气地质, 2023, 44(5): 1243-1255. |
[13] | 张迎朝, 邹玮, 陈忠云, 蒋一鸣, 刁慧. 东海陆架盆地西湖凹陷中央反转构造带古近系花港组气藏“先汇后聚”机制及地质意义[J]. 石油与天然气地质, 2023, 44(5): 1256-1269. |
[14] | 李晓, 郭鹏, 胡彦智, 李士祥, 杨伟伟. 陆相页岩压裂试验与数值模拟[J]. 石油与天然气地质, 2023, 44(4): 1009-1019. |
[15] | 高嘉洪, 金之钧, 梁新平, 李士祥, 杨伟伟, 朱如凯, 杜晓宇, 刘全有, 李彤, 董琳, 李鹏, 张旺. 火山活动对鄂尔多斯盆地三叠系长7段淡水湖盆富营养化与沉积水体介质环境的影响[J]. 石油与天然气地质, 2023, 44(4): 887-898. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||