石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (6): 1617-1627.doi: 10.11743/ogg20240609
黄道军1,2(), 周国晓1,2, 杨兆彪3(), 顾俊雨3, 荆雪媛1,2, 王嘉楠3
收稿日期:
2024-05-20
修回日期:
2024-07-17
出版日期:
2024-12-30
发布日期:
2024-12-31
通讯作者:
杨兆彪
E-mail:hdj_cq@petrochina.com.cn;zhaobiaoyang@163.com
第一作者简介:
黄道军(1979—),男,高级工程师,石油天然气地质。E-mail:hdj_cq@petrochina.com.cn。
基金项目:
Daojun HUANG1,2(), Guoxiao ZHOU1,2, Zhaobiao YANG3(), Junyu GU3, Xueyuan JING1,2, Jianan WANG3
Received:
2024-05-20
Revised:
2024-07-17
Online:
2024-12-30
Published:
2024-12-31
Contact:
Zhaobiao YANG
E-mail:hdj_cq@petrochina.com.cn;zhaobiaoyang@163.com
摘要:
研究深部煤岩层气井产出气-水的地球化学特征,对认识煤岩气富集机理和开发规律具有重要意义。以鄂尔多斯盆地伊陕斜坡东缘9口深部煤岩气水平井为研究对象,开展了产出气气体组分、碳同位素及地层水常规离子以及氢、氧同位素特征研究,查明了煤岩气的成因类型、排采过程中的气体分馏效应以及产出水的来源。结果表明:① 研究区煤岩气为中-晚期热成因气,组分构成以甲烷(CH4)为主,重烃及非烃气体含量较低,碳同位素表现为正碳同位素组成序列。② 排采过程产出气中的甲烷碳同位素值(δ13C1)可辅助标定并划分游离气和吸附气产出阶段,甲烷碳同位素随着排采天数的增加而较大幅度地变轻,具体表现为初期以游离气为主,后期吸附气解吸、分馏叠加,与含气量测试中保压游离气-初始解吸气释放阶段的δ13C1变化规律吻合,甲烷碳同位素由重变轻过程持续时间越久,煤岩气高产可能性越大。③ 典型煤岩气井产出水矿化度(TDS)高达193.08 g/L,为钙-氯型(Ca-Cl型)水,以原始沉积水为主,低钠氯系数、脱硫系数、镁钙系数和高变质系数、盐化系数反映地层封闭性和煤岩气保存条件较好。④产出水氢、氧同位素值偏离大气降水线,大部分表现为明显的氧漂移(18O漂移),推测受到了高温地层环境下煤层顶、底板岩层水补给的影响。
中图分类号:
表1
鄂尔多斯盆地煤岩气井部分产出气气体组分及碳同位素特征"
井号 | 采样日期/ (年/月/日) | 气体组分含量/% | δ13C/‰ | ||||||
---|---|---|---|---|---|---|---|---|---|
CH4 | C2H6 | C3H8 | CO2 | N2 | C1 | C2 | C3 | ||
C1 | 2023/2/24 | 90.037 | 1.333 | 0.123 | 5.250 | 3.143 | -26.87 | -20.02 | — |
C2 | 2023/3/2 | 91.349 | 0.061 | 0.000 | 4.765 | 3.806 | -24.16 | — | — |
C3 | 2023/8/6 | 91.256 | 0.881 | 0.041 | 6.430 | 1.382 | -33.92 | -19.57 | -21.18 |
C4 | 2023/8/7 | 85.559 | 0.464 | 0.000 | 8.917 | 4.901 | -33.71 | — | — |
C5 | 2023/11/4 | 94.164 | 0.529 | 0.051 | 4.299 | 0.179 | -33.30 | -23.90 | — |
C6 | 2023/11/6 | 91.051 | 0.341 | 0.015 | 8.451 | 0.068 | -32.90 | -19.90 | — |
C7 | 2023/11/6 | 94.337 | 1.732 | 0.222 | 3.403 | 0.142 | -35.30 | -23.30 | — |
C8 | 2023/11/1 | 98.567 | 0.137 | — | — | 0.062 | -31.60 | -21.80 | — |
C9 | 2023/11/6 | 92.251 | 0.194 | 0.017 | 6.642 | 0.812 | -33.40 | -27.00 | — |
表2
鄂尔多斯盆地煤岩气井部分产出水常规离子及氢、氧同位素组成"
井号 | 采样日期/ (年/月/日) | 阳离子浓度/ (mg/L) | 阴离子浓度/ (mg/L) | TDS/ (mg/L) | pH | δ18O/ ‰ | δD/ ‰ | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | Na++K+ | Cl- | SO42- | HCO3- | ||||||
C1 | 2023/2/5 | 15 407 | 905 | 12 079 | 45 578 | 3 573 | 505 | 78 050 | — | — | — |
C2 | 2023/2/27 | 22 100 | 1 060 | 37 200 | 104 000 | 0 | 212 | 173 670 | — | — | — |
C3 | 2023/7/28 | 3 880 | 589 | 10 974 | 23 642 | 2 325 | 234 | 41 640 | 6 | — | — |
C5 | 2023/11/14 | — | — | — | — | — | — | — | — | -52.2 | -3.2 |
C6 | 2023/11/14 | — | — | — | — | — | — | — | — | -56.6 | -3.2 |
C7 | 2023/11/14 | — | — | — | — | — | — | — | — | -58.2 | -3.4 |
C4 | 2023/11/14 | — | — | — | — | — | — | — | — | -56.6 | -3.9 |
C8 | 2023/11/14 | — | — | — | — | — | — | — | — | -54.9 | -3.0 |
C9 | 2023/11/14 | — | — | — | — | — | — | — | — | -51.9 | -3.1 |
1 | HU Weiqiang, CHEN Xin, LI Yangbing, et al. Geochemical characteristics and genesis of coalbed methane in Baode area on the eastern margin of Ordos Basin[J]. E3S Web of Conferences, 2020, 206: 01019. |
2 | ZHANG Kun, MENG Zhaoping, WANG Xiaoming. Distribution of methane carbon isotope and its significance on CBM accumulation of No.2 coal seam in Yanchuannan CBM block, Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2019, 174: 92-105. |
3 | ZHANG Shuo, ZHANG Xiaodong, LI Guizhong, et al. Distribution characteristics and geochemistry mechanisms of carbon isotope of coalbed methane in central-southern Qinshui basin, China[J]. Fuel, 2019, 244: 1-12. |
4 | CORTES J, CASTRO A, ARBOLEDA G, et al. Hydrogeological and hydrogeochemical evaluation of groundwaters and surface waters in potential coalbed methane areas in Colombia[J]. International Journal of Coal Geology, 2022, 253: 103937. |
5 | GUO Zhidong, BAO Yuan, WANG Yubin, et al. Hydrogeochemical characteristics and water-rock interaction mechanism of coalbed-produced water in the Linfen mining area, eastern margin of Ordos Basin, China[J]. Frontiers in Earth Science, 2023, 10: 1108520. |
6 | ÜNAL B, PERRY V R, SHETH M, et al. Trace elements affect methanogenic activity and diversity in enrichments from subsurface coal bed produced water[J]. Frontiers in Microbiology, 2012, 3: 175. |
7 | 郭旭升, 周德华, 赵培荣, 等. 鄂尔多斯盆地石炭系-二叠系煤系非常规天然气勘探开发进展与攻关方向[J]. 石油与天然气地质, 2022, 43(5): 1013-1023. |
GUO Xusheng, ZHOU Dehua, ZHAO Peirong, et al. Progresses and directions of unconventional natural gas exploration and development in the Carboniferous-Permian coal measure strata, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(5): 1013-1023. | |
8 | 何发岐, 董昭雄. 深部煤层气资源开发潜力——以鄂尔多斯盆地大牛地气田为例[J]. 石油与天然气地质, 2022, 43(2): 277-285. |
HE Faqi, DONG Zhaoxiong. Development potential of deep coalbed methane: A case study in the Daniudi gas field, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(2): 277-285. | |
9 | 李进步, 崔越华, 黄有根, 等. 鄂尔多斯盆地低渗-致密气藏水平井全生命周期开发技术及展望[J]. 石油与天然气地质, 2023, 44(2): 480-494. |
LI Jinbu, CUI Yuehua, HUANG Yougen, et al. Technologies and prospect of full-cycle development of low-permeability tight gas reservoirs with horizontal wells, Ordos Basin[J]. Oil & Gas Geology, 2023, 44(2): 480-494. | |
10 | 张道勇, 朱杰, 赵先良, 等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报, 2018, 43(6): 1598-1604. |
ZHANG Daoyong, ZHU Jie, ZHAO Xianliang, et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society, 2018, 43(6): 1598-1604. | |
11 | 申建. 我国主要盆地深部煤层气资源量预测[R]. 徐州: 中国矿业大学, 2021. |
SHEN Jian. Prediction of deep coalbed methane resources in major basins in China[R]. Xuzhou: China University of Mining and Technology, 2021. | |
12 | 中国煤田地质总局. 鄂尔多斯盆地聚煤规律及煤炭资源评价[M]. 北京: 煤炭工业出版社, 1996. |
China National Administration of Coal Geology. Coal accumulating and coal resource evaluation of Ordos Basin[M]. Beijing: China Coal Industry Publishing House, 1996. | |
13 | 杨俊杰. 鄂尔多斯盆地构造演化与油气分布规律[M]. 北京: 石油工业出版社, 2002. |
YANG Junjie. Tectonic evolution and oil-gas reservoirs distribution in Ordos Basin[M]. Beijing: Petroleum Industry Press, 2002. | |
14 | BAO Yuan, WANG Wenbo, MA Dongmin, et al. Gas origin and constraint of δ13C(CH4) distribution in the Dafosi mine field in the southern margin of the Ordos Basin, China[J]. Energy & Fuels, 2020, 34(11): 14065-14073. |
15 | 琚宜文, 李清光, 颜志丰, 等. 煤层气成因类型及其地球化学研究进展[J]. 煤炭学报, 2014, 39(5): 806-815. |
JU Yiwen, LI Qingguang, YAN Zhifeng, et al. Origin types of CBM and their geochemical research progress[J]. Journal of China Coal Society, 2014, 39(5): 806-815. | |
16 | 唐淑玲, 汤达祯, 孙斌, 等. 富(含)CO2煤层气多源多阶成因研究进展及勘探开发启示[J]. 煤田地质与勘探, 2022, 50(3): 58-68. |
TANG Shuling, TANG Dazhen, SUN Bin, et al. Research progress of multi-source and multi-stage genesis of CO2-enriched CBM and the enlightenments for its exploration and development[J]. Coal Geology & Exploration, 2022, 50(3): 58-68. | |
17 | CLAYTON J L. Geochemistry of coalbed gas—A review[J]. International Journal of Coal Geology, 1998, 35(1/4): 159-173. |
18 | MOORE T A. Coalbed methane: A review[J]. International Journal of Coal Geology, 2012, 101: 36-81. |
19 | SCOTT A R, KAISER W R, AYERS W B, Jr. Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and New Mexico—Implications for coalbed gas producibility[J]. AAPG Bulletin, 1994, 78(8): 1186-1209. |
20 | TAO Mingxin, SHI Baoguang, LI Jinying, et al. Secondary biological coalbed gas in the Xinji area, Anhui province, China: Evidence from the geochemical features and secondary changes[J]. International Journal of Coal Geology, 2007, 71(2/3): 358-370. |
21 | 李剑, 王晓波, 侯连华, 等. 四川盆地页岩气地球化学特征及资源潜力[J]. 天然气地球科学, 2021, 32(8): 1093-1106. |
LI Jian, WANG Xiaobo, HOU Lianhua, et al. Geochemical characteristics and resource potential of shale gas in Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(8): 1093-1106. | |
22 | 孙晓, 王杰, 陶成, 等. 鄂尔多斯盆地大牛地下古生界天然气地球化学特征及其来源综合判识[J]. 石油实验地质, 2021, 43(2): 307-314. |
SUN Xiao, WANG Jie, TAO Cheng, et al. Evaluation of geochemical characteristics and source of natural gas in Lower Paleozoic, Daniudi area, Ordos Basin[J]. Petroleum Geology and Experiment, 2021, 43(2): 307-314. | |
23 | SONG Yan, LIU Shaobo, ZHANG Qun, et al. Coalbed methane genesis, occurrence and accumulation in China[J]. Petroleum Science, 2012, 9(3): 269-280. |
24 | 戴金星. 各类烷烃气的鉴别[J]. 中国科学:化学, 1992, 22(2): 185-193. |
DAI Jinxing. Identification of various alkane gases[J]. Scientia Sinica(Chimica), 1992, 22(2): 185-193. | |
25 | MILKOV A V, ETIOPE G. Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples[J]. Organic Geochemistry, 2018, 125: 109-120. |
26 | 杜明洋. 滇东煤层气合采井气水地球化学特征及气层层源判识[D]. 徐州: 中国矿业大学, 2020: 18-23. |
DU Mingyang. Geochemical characteristics of gas and water in coalbed methane production wells in east Yunnan and identification of gas sources[D]. Xuzhou: China University of Mining and Technology, 2020: 18-23. | |
27 | 胡国艺, 李谨, 马成华, 等. 沁水煤层气田高阶煤解吸气碳同位素分馏特征及其意义[J]. 地学前缘, 2007, 14(6): 267-272. |
HU Guoyi, LI Jin, MA Chenghua, et al. Characteristics and implications of the carbon isotope fractionation of desorbed coalbed methane in Qinshui coalbed methane field[J]. Earth Science Frontiers, 2007, 14(6): 267-272. | |
28 | 刘洪林, 王红岩, 赵国良, 等. 稳定碳同位素δ13C1在煤层气田勘探中的应用[J]. 西安科技大学学报, 2004, 24(4): 442-446. |
LIU Honglin, WANG Hongyan, ZHAO Guoliang, et al. Application of coal bed methane stable carbon isotope in exploration of coal bed methane field[J]. Journal of Xi’an University of Science and Technology, 2004, 24(4): 442-446. | |
29 | GAO Li, WU Sheng, DEEV A, et al. The gas isotope interpretation tool: A novel method to better predict production decline[J]. AAPG Bulletin, 2017, 101(8): 1263-1275. |
30 | NIEMANN M, WHITICAR M J. Stable isotope systematics of coalbed methane: Desorption and production[J]. Geochimica et Cosmochimica Acta, 2008, 72(12): A682-A682. |
31 | 马勇, 李大华, 黄越, 等. 页岩气析出过程中的H同位素分馏及地质意义[J]. 地球化学, 2024, 53(2): 163-173. |
MA Yong, LI Dahua, HUANG Yue, et al. Hydrogen isotopic fractionation during shale gas release and its geological significance[J]. Geochimica, 2024, 53(2): 163-173. | |
32 | 刘文汇, 徐永昌. 煤型气碳同位素演化二阶段分馏模式及机理[J]. 地球化学, 1999, 28(4): 359-366. |
LIU Wenhui, XU Yongchang. A two stage model of carbon isotopic fractionation in coal gas[J]. Geochimica, 1999, 28(4): 359-366. | |
33 | 李文镖, 卢双舫, 李俊乾, 等. 页岩气/煤层气运移过程中的同位素分馏研究进展[J]. 石油勘探与开发, 2022, 49(5): 929-942. |
LI Wenbiao, LU Shuangfang, LI Junqian, et al. Research progress on isotopic fractionation in the process of shale gas/coalbed methane migration[J]. Petroleum Exploration and Development, 2022, 49(5): 929-942. | |
34 | 李洋冰, 曾磊, 胡维强, 等. 保德地区煤层气地球化学特征及成因探讨[J]. 煤田地质与勘探, 2021, 49(2): 133-141, 151. |
LI Yangbing, ZENG Lei, HU Weiqiang, et al. Geochemical characteristics and genesis of coalbed methane in Baode area[J]. Coal Geology & Exploration, 2021, 49(2): 133-141, 151. | |
35 | 许浩, 汤达祯, 陶树, 等. 深、浅部煤层气地质条件差异性及其形成机制[J]. 煤田地质与勘探, 2024, 52(2): 33-39. |
XU Hao, TANG Dazhen, TAO Shu, et al. Differences in geological conditions of deep and shallow coalbed methane and their formation mechanisms[J]. Coal Geology & Exploration, 2024, 52(2): 33-39. | |
36 | 王相业, 孙保平. 鄂尔多斯盆地兴县地区煤层气地球化学特征及成因[J]. 煤田地质与勘探, 2020, 48(4): 156-164, 173. |
WANG Xiangye, SUN Baoping. Geochemical characteristics and their origin of CBM in Xingxian area, Ordos Basin[J]. Coal Geology & Exploration, 2020, 48(4): 156-164, 173. | |
37 | 康志勇, 李晓涛, 田文, 等. 地表水/地层水水型分类及其划分方法[J]. 地球科学与环境学报, 2022, 44(1): 65-77. |
KANG Zhiyong, LI Xiaotao, TIAN Wen, et al. Type classification of surface water/formation water and its classified method[J]. Journal of Earth Sciences and Environment, 2022, 44(1): 65-77. | |
38 | 赵馨悦, 韦波, 袁亮, 等. 煤储层水文地质特征及其煤层气开发意义研究综述[J]. 煤炭科学技术, 2023, 51(4): 105-117. |
ZHAO Xinyue, WEI Bo, YUAN Liang, et al. Hydrological characters of coal reservoir and their significances on coalbed methane development: A review[J]. Coal Science and Technology, 2023, 51(4): 105-117. | |
39 | 赵永强, 倪春华, 吴小奇, 等. 鄂尔多斯盆地杭锦旗地区二叠系地层水地球化学特征和来源[J]. 石油实验地质, 2022, 44(2): 279-287. |
ZHAO Yongqiang, NI Chunhua, WU Xiaoqi, et al. Geochemical characteristics and source of Permian formation water in Hangjinqi area, Ordos Basin[J]. Petroleum Geology and Experiment, 2022, 44(2): 279-287. | |
40 | LU Lingling, GUO Chen, CHEN Zhenlong, et al. Quantitative identification of water sources of coalbed methane wells, based on the hydrogen and oxygen isotopes of produced water—A case of the Zhijin Block, South China[J]. Energies, 2022, 15(24): 9550. |
41 | CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703. |
42 | 王善博, 唐书恒, 万毅, 等. 山西沁水盆地南部太原组煤储层产出水氢氧同位素特征[J]. 煤炭学报, 2013, 38(3): 448-454. |
WANG Shanbo, TANG Shuheng, WAN Yi, et al. The hydrogen and oxygen isotope characteristics of drainage water from Taiyuan coal reservoir[J]. Journal of China Coal Society, 2013, 38(3): 448-454. | |
43 | 郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983, 28(13): 801-806. |
ZHENG Shuhui, HOU Fagao, NI Baoling. Hydrogen and oxygen stable isotope study of meteoric water line in China[J]. Chinese Science Bulletin, 1983, 28(13): 801-806. | |
44 | CLAYTON R N, FRIEDMAN I, GRAF D L, et al. The origin of saline formation waters: 1. Isotopic composition[J]. Journal of Geophysical Research, 1966, 71(16): 3869-3882. |
45 | HAMILTON S K, GOLDING S D, BAUBLYS K A, et al. Stable isotopic and molecular composition of desorbed coal seam gases from the Walloon Subgroup, eastern Surat Basin, Australia[J]. International Journal of Coal Geology, 2014, 122: 21-36. |
[1] | 刘大锰, 王子豪, 陈佳明, 邱峰, 朱凯, 高羚杰, 周柯宇, 许少博, 孙逢瑞. 基于ResNet残差神经网络识别的深部煤层显微组分和微裂缝分类[J]. 石油与天然气地质, 2024, 45(6): 1524-1536. |
[2] | 李亚辉. 鄂尔多斯盆地大牛地气田深层中煤阶煤层气勘探实践及产能新突破[J]. 石油与天然气地质, 2024, 45(6): 1555-1566. |
[3] | 何发岐, 雷涛, 齐荣, 徐兵威, 李晓慧, 张茹. 鄂尔多斯盆地大牛地气田深部煤层气勘探突破及其关键技术[J]. 石油与天然气地质, 2024, 45(6): 1567-1576. |
[4] | 牛小兵, 张辉, 王怀厂, 虎建玲, 吴陈君, 赵伟波, 潘博. 鄂尔多斯盆地中、东部石炭系本溪组煤储层纵向非均质性特征及成因[J]. 石油与天然气地质, 2024, 45(6): 1577-1589. |
[5] | 李明瑞, 史云鹤, 范立勇, 戴贤铎, 荆雪媛, 张沂. 鄂尔多斯盆地上古生界本溪组8#煤岩煤岩气与致密砂岩气主要气藏特征对比[J]. 石油与天然气地质, 2024, 45(6): 1590-1604. |
[6] | 侯雨庭, 周国晓, 黄道军, 王彦卿, 焦鹏帅. 鄂尔多斯盆地纳林河地区煤岩气成藏地质特征[J]. 石油与天然气地质, 2024, 45(6): 1605-1616. |
[7] | 赵石虎, 刘曾勤, 申宝剑, 罗兵, 陈刚, 陈新军, 张嘉琪, 万俊雨, 刘子驿, 刘友祥. 鄂尔多斯盆地东北部斜坡区深层煤层气地质特征与勘探潜力[J]. 石油与天然气地质, 2024, 45(6): 1628-1639. |
[8] | 牟朋威, 李珮杰, 姚艳斌, 刘大锰, 马立民, 孙晓晓, 邱勇凯. 鄂尔多斯盆地佳县地区深部煤层地应力特征及其对储层物性的控制[J]. 石油与天然气地质, 2024, 45(6): 1640-1652. |
[9] | 陈平, 李维, 周义军, 裴文瑞, 于小伟, 韩伟, 梁国平, 路鹏程, 王雷. 鄂尔多斯盆地乌审旗古隆起与中央古隆起形成演化及其对油气的控制作用[J]. 石油与天然气地质, 2024, 45(6): 1653-1664. |
[10] | 王舵, 刘之的, 王成旺, 刘天定, 陈高杰, 郝晋美, 孙博文. 鄂尔多斯盆地DJ区块深部煤储层地质-工程甜点测井评价技术[J]. 石油与天然气地质, 2024, 45(6): 1772-1788. |
[11] | 于洲, 周进高, 罗晓容, 李永洲, 于小伟, 谭秀成, 吴东旭. 鄂尔多斯盆地东部奥陶系马家沟组四段神木-志丹低古隆起的发现及油气勘探意义[J]. 石油与天然气地质, 2024, 45(5): 1383-1399. |
[12] | 张琴, 邱振, 赵群, 董大忠, 刘雯, 孔维亮, 庞正炼, 高万里, 蔡光银, 李永洲, 李星涛, 林文姬. 海-陆过渡相与海相页岩气“甜点段”差异特征与形成机理[J]. 石油与天然气地质, 2024, 45(5): 1400-1416. |
[13] | 吕文雅, 安小平, 刘艳祥, 李德生, 曾联波, 皇甫展鸿, 唐英航, 张克宁, 张玉银. 致密砂岩储层注水诱导裂缝动态识别及演化特征[J]. 石油与天然气地质, 2024, 45(5): 1431-1446. |
[14] | 解馨慧, 邓虎成, 胡蓝霄, 李勇, 毛金昕, 刘佳杰, 张鑫, 李柏洋. 湖相细粒沉积岩颗粒微观力学特征及类型划分[J]. 石油与天然气地质, 2024, 45(4): 1079-1088. |
[15] | 吴伟涛, 冯炎松, 费世祥, 王一妃, 吴和源, 杨旭东. 鄂尔多斯盆地神木气田二叠系石千峰组5段致密气富集因素及有利区预测[J]. 石油与天然气地质, 2024, 45(3): 739-751. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||