石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (5): 1431-1446.doi: 10.11743/ogg20240516
吕文雅1,2(), 安小平3,4, 刘艳祥5, 李德生3,4, 曾联波1,2(), 皇甫展鸿1,2, 唐英航1,2, 张克宁1,2, 张玉银6
收稿日期:
2024-01-31
修回日期:
2024-09-08
出版日期:
2024-10-30
发布日期:
2024-11-06
通讯作者:
曾联波
E-mail:wylvwenwen@163.com;lbzeng@sina.com
第一作者简介:
吕文雅(1990—),女,博士、副教授,储层裂缝形成、分布及预测与非常规油气田开发地质。E‑mail: wylvwenwen@163.com。
基金项目:
Wenya LYU1,2(), Xiaoping AN3,4, Yanxiang LIU5, Desheng LI3,4, Lianbo ZENG1,2(), Zhanhong HUANGFU1,2, Yinghang TANG1,2, Kening ZHANG1,2, Yuyin ZHANG6
Received:
2024-01-31
Revised:
2024-09-08
Online:
2024-10-30
Published:
2024-11-06
Contact:
Lianbo ZENG
E-mail:wylvwenwen@163.com;lbzeng@sina.com
摘要:
致密砂岩储层长期注水开发导致储层诱导裂缝发育,研究注水诱导裂缝动态响应及演化特征对致密砂岩油藏井网加密部署及剩余油挖潜具有重要地质意义。综合利用岩心、测井、生产数据、压力试井和吸水剖面等资料,以鄂尔多斯盆地姬塬油田L井区三叠系延长组8段(长8段)致密砂岩储层为例,研究了L井区长8段致密砂岩储层不同开发时间段注水诱导裂缝的动态响应特征及展布特征。研究结果表明:①L井区长8段致密砂岩储层注水诱导裂缝为天然裂缝扩展延伸导致,天然裂缝优先开启方位为NEE-SWW向和NE-SW向,其次为NW-SE向。②注水诱导裂缝的形成会导致注水井吸水剖面呈现出吸水厚度小、吸水量大的特征。采油井生产动态曲线含水率陡增或阶梯状上升,压力试井双对数导数曲线开口并呈现“1/2”斜率上升。采油井与注水井间存在注水诱导裂缝,因而采油井试井解释地层压力高于未发育注水诱导裂缝井甚至超过原始地层压力。③L井区长8段致密砂岩储层开发初期注水诱导裂缝主要分布在井区中部偏东、东北部以及东南部的天然裂缝发育带。注水导致储层地应力变化,天然裂缝开启压力降低,开发中期在井区南部以及中北部进一步形成NW-SW向注水诱导裂缝,先存注水诱导裂缝存在小范围扩展延伸。开发后期受注水开发的不断深入,导致注水井周围不同方向开启天然裂缝,形成小规模注水诱导裂缝,进一步加剧了采油井裂缝性水淹。
中图分类号:
表1
姬塬油田L井区试井解释地层压力与双对数曲线裂缝线性流特征统计"
井名 | 井类型 | 试井日期 | 试井解释目前地层压力/MPa | 试井曲线裂缝线性流特征 | 见水类型 |
---|---|---|---|---|---|
L1井 | 采油井 | 2020-07-13 | 16.20 | 无 | 孔隙型 |
L4井 | 采油井 | 2015-12-11 | 14.93 | 无 | 孔隙型 |
L7井 | 采油井 | 2011-05-31 | 13.02 | 无 | 孔隙型 |
L7井 | 采油井 | 2014-05-08 | 24.89 | 无 | 裂缝型 |
L11井 | 注水井 | 2019-05-11 | 35.44 | 有 | — |
L11井 | 注水井 | 2020-06-17 | 38.83 | 有 | — |
L11井 | 注水井 | 2021-05-27 | 39.68 | 有 | — |
L11井 | 注水井 | 2022-04-23 | 39.78 | 有 | — |
L12井 | 采油井 | 2021-06-08 | 17.52 | 无 | 孔隙-裂缝型 |
L12井 | 采油井 | 2022-06-06 | 17.68 | 无 | 孔隙-裂缝型 |
L15井 | 采油井 | 2015-05-02 | 12.28 | 无 | 孔隙型 |
L15井 | 采油井 | 2016-03-19 | 11.19 | 有 | 孔隙型 |
L15井 | 采油井 | 2020-05-07 | 11.01 | 无 | 孔隙型 |
L16井 | 采油井 | 2011-05-15 | 9.31 | 无 | 孔隙型 |
L16井 | 采油井 | 2018-04-20 | 13.29 | 无 | 孔隙-裂缝型 |
L26井 | 采油井 | 2011-06-03 | 13.98 | 有 | 裂缝型 |
L26井 | 采油井 | 2012-07-30 | 24.64 | 有 | 裂缝型 |
L31井 | 采油井 | 2012-04-21 | 11.18 | 无 | 孔隙型 |
L31井 | 采油井 | 2015-08-03 | 16.12 | 有 | 孔隙-裂缝型 |
L31井 | 采油井 | 2017-06-28 | 11.48 | 无 | 孔隙型 |
L31井 | 采油井 | 2020-04-22 | 11.07 | 无 | 孔隙型 |
L42井 | 采油井 | 2014-04-21 | 17.27 | 无 | 裂缝型 |
L42井 | 采油井 | 2015-06-09 | 19.43 | 无 | 裂缝型 |
L42井 | 采油井 | 2018-05-24 | 18.71 | 无 | 裂缝型 |
L42井 | 采油井 | 2019-09-28 | 21.33 | 无 | 裂缝型 |
L42井 | 采油井 | 2020-06-27 | 19.62 | 无 | 裂缝型 |
L47井 | 采油井 | 2019-04-21 | 11.47 | 无 | 孔隙-裂缝型 |
L49井 | 采油井 | 2011-05-19 | 21.45 | 有 | 裂缝型 |
1 | 贾爱林, 位云生, 郭智, 等. 中国致密砂岩气开发现状与前景展望[J]. 天然气工业, 2022, 42(1): 83-92. |
JIA Ailin, WEI Yunsheng, GUO Zhi, et al. Development status and prospect of tight sandstone gas in China[J]. Natural Gas Industry, 2022, 42(1): 83-92. | |
2 | 贾承造, 庞雄奇, 姜福杰. 中国油气资源研究现状与发展方向[J]. 石油科学通报, 2016, 1(1): 2-23. |
JIA Chengzao, PANG Xiongqi, JIANG Fujie. Research status and development directions of hydrocarbon resources in China[J]. Petroleum Science Bulletin, 2016, 1(1): 2-23. | |
3 | 朱如凯, 邹才能, 吴松涛, 等. 中国陆相致密油形成机理与富集规律[J]. 石油与天然气地质, 2019, 40(6): 1168-1184. |
ZHU Rukai, ZOU Caineng, WU Songtao, et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil & Gas Geology, 2019, 40(6): 1168-1184. | |
4 | 曾联波, 高春宇, 漆家福, 等. 鄂尔多斯盆地陇东地区特低渗透砂岩储层裂缝分布规律及其渗流作用[J]. 中国科学: 地球科学, 2008, 38(): 41-47. |
ZENG Lianbo, GAO Chunyu, QI Jiafu, et al. The distribution rule and seepage effect of the fractures in the ultra-low permeability sandstone reservoir in east Gansu Province, Ordos Basin[J]. Science China Earth Sciences, 2008, 38(S1): 41-47. | |
5 | ZHANG Yunzhao, ZENG Lianbo, Wenya LYU, et al. Natural fractures in tight gas sandstones: A case study of the Upper Triassic Xujiahe Formation in Xinchang gas field, Western Sichuan Basin, China[J]. Geological Magazine, 2021, 158(9): 1543-1560. |
6 | HAGOORT J, WEATHERILL B D, SETTARI A. Modeling the propagation of Waterflood-Induced hydraulic fractures[J]. SPE Journal, 1980, 20(4): 293-303. |
7 | BRYANT S L, PARUCHURI R K, PRASAD SARIPALLI K. Flow and solute transport around injection wells through a single, growing fracture[J]. Advances in Water Resources, 2003, 26(8): 803-813. |
8 | ELTVIK P, SKOGLUNN T, SETTARI A. Waterflood-induced fracturing: Water injection above parting pressure at Valhall[C]//SPE Annual Technical Conference and Exhibition, Washington, D.C., 1992. Houston: Society of Petroleum Engineers, 1992: SPE-24912-MS. |
9 | KUO M C T, HANSON H G, DESBRISAY C L. Prediction of fracture extension during waterflood operations[C]//SPE California Regional Meeting, Long Beach, 1984. Houston: Society of Petroleum Engineers, 1984: SPE-12769-MS. |
10 | PERKINS T K, GONZALEZ J A. The effect of thermoelastic stresses on injection well fracturing[J]. SPE Journal, 1985, 25(1): 78-88. |
11 | WRIGHT C A, CONANT R A, GOLICH G M, et al. Hydraulic fracture orientation and production/injection induced reservoir stress changes in diatomite waterfloods[C]//SPE Western Regional Meeting, Bakersfield, 1995. Houston: Society of Petroleum Engineers, 1995: SPE-29625-MS. |
12 | ABOU-SAYED A S, ZHAI Zongyu. Thermal-poro elastic stress effect on stress reorientation in production and injection wells[C]//SPE Middle East Oil and Gas Show and Conference, Manama, 2011. Houston: Society of Petroleum Engineers, 2011: SPE-140949-MS. |
13 | 郭恩昌, 胡靖邦. 在注水过程中地层温度、压力的改变对井底周围地应力的影响[J]. 大庆石油学院学报, 1988, 12(4): 25-29. |
GUO Enchang, HU Jingbang. The effects of the changes of temperature and pressure on the formation stress around bottom hole during water-flooding[J]. Journal of Daqing Petroleum Institute, 1988, 12(4): 25-29. | |
14 | 刘洪, 张仕强, 钟水清, 等. 裂缝性油藏注水开发水淹力学机理研究[J]. 钻采工艺, 2006, 29(4): 57-60. |
LIU Hong, ZHANG Shiqiang, ZHONG Shuiqing, et al. Study on the mechanics mechanism of watered-out in waterflooding fractured reservoir[J]. Drilling & Production Technology, 2006, 29(4): 57-60. | |
15 | 陈淑利, 孙庆和, 宋正江. 特低渗透裂缝型储层注水开发中后期地应力场变化及开发对策[J]. 现代地质, 2008, 22(4): 647-654. |
CHEN Shuli, SUN Qinghe, SONG Zhengjiang. Changes of ground stress field and development policy in later half period of water injection for the extremely low permeability reservoirs with fractures[J]. Geoscience, 2008, 22(4): 647-654. | |
16 | 曾联波, 史成恩, 王永康, 等. 鄂尔多斯盆地特低渗透砂岩储层裂缝压力敏感性及其开发意义[J]. 中国工程科学, 2007, 9(11): 35-38. |
ZENG Lianbo, SHI Chengen, WANG Yongkang, et al. The pressure sensitivity of fractures and its development significance for extra low-permeability sandstone reservoirs in Ordos Basin[J]. Engineering Science, 2007, 9(11): 35-38. | |
17 | 刘洪涛, 曾联波, 房宝才, 等. 裂缝对大庆台肇地区低渗透砂岩储层注水的影响[J]. 石油大学学报(自然科学版), 2005, 29(4): 68-72. |
LIU Hongtao, ZENG Lianbo, FANG Baocai, et al. Influence of fractures on injection for low-permeability sandstone reservoir in Taizhao area, Daqing Oilfield[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 2005, 29(4): 68-72. | |
18 | 王文环, 彭缓缓, 李光泉, 等. 长庆特低渗透油藏注水动态裂缝及井网加密调整模式研究[J]. 石油钻探技术, 2015, 43(1): 106-110. |
WANG Wenhuan, PENG Huanhuan, LI Guangquan, et al. Research on water flooding dynamic fractures to optimize infill drilling spacing in ultra-low permeability reservoirs, Changqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(1): 106-110. | |
19 | 王文环, 彭缓缓, 李光泉, 等. 大庆低渗透油藏注水动态裂缝开启机理及有效调整对策[J]. 石油与天然气地质, 2015(5): 842-847. |
WANG Wenhuan, PENG Huanhuan, LI Guangquan, et al. Opening mechanism of dynamic fractures caused by water injection and effective adjustments in low permeability reservoirs, Daqing oilfield in Songliao Basin[J]. Oil & Gas Geology, 2015(5): 842-847. | |
20 | WANG Youjing, SONG Xinmin. Comprehensive characterization integrating static and dynamic data for dynamic fractures in ultra-low permeability reservoirs: A case study of the Chang 6 reservoir of the Triassic Yanchang Formation in the Ordos Basin, China[J]. Minerals, 2022, 12(10): 1277. |
21 | 王友净, 宋新民, 李佳鸿, 等. 特低渗透油藏动态裂缝非均质性和复合砂体内部构型对开发的意义[J]. 西北大学学报(自然科学版), 2018, 48(1): 123-131. |
WANG Youjing, SONG Xinmin, LI Jiahong, et al. Heterogeneity on dynamic fracture, internal configuration of compound sand body and significance to the development of ultra-low permeability reservoir in Ordos Basin[J]. Journal of Northwest University(Natural Science Edition), 2018, 48(1): 123-131. | |
22 | 王友净, 宋新民, 田昌炳, 等. 动态裂缝是特低渗透油藏注水开发中出现的新的开发地质属性[J]. 石油勘探与开发, 2015, 42(2): 222-228. |
WANG Youjing, SONG Xinmin, TIAN Changbing, et al. Dynamic fractures are an emerging new development geological attribute in water-flooding development of ultra-low permeability reservoirs[J]. Petroleum Exploration and Development, 2015, 42(2): 222-228. | |
23 | 赵向原, 曾联波, 靳宝光, 等. 低渗透油藏注水诱导裂缝特征及形成机理——以鄂尔多斯盆地安塞油田长6油藏为例[J]. 石油与天然气地质, 2018, 39(4): 696-705. |
ZHAO Xiangyuan, ZENG Lianbo, JIN Baoguang, et al. Characteristics and formation mechanisms of waterflood induced fractures in low-permeability reservoirs: A case study from Chang 6 reservoir in Ansai Oilfield, Ordos Basin[J]. Oil & Gas Geology, 2018, 39(4): 696-705. | |
24 | 赵向原, 曾联波, 胡向阳, 等. 低渗透砂岩油藏注水诱导裂缝特征及其识别方法——以鄂尔多斯盆地安塞油田W区长6油藏为例[J]. 石油与天然气地质, 2017, 38(6): 1187-1197. |
ZHAO Xiangyuan, ZENG Lianbo, HU Xiangyang, et al. Characteristics of waterflood induced fracture in low-permeability sandstone reservoirs and its identification methods: A case study from Chang 6 reservoir in W area in Ansai Oilfield, Ordos Basin[J]. Oil & Gas Geology, 2017, 38(6): 1187-1197. | |
25 | 赵向原, 吕文雅, 王策, 等. 低渗透砂岩油藏注水诱导裂缝发育的主控因素——以鄂尔多斯盆地安塞油田W区长6油藏为例[J]. 石油与天然气地质, 2020, 41(3): 586-595. |
ZHAO Xiangyuan, LV Wenya, WANG Ce, et al. Major factors controlling waterflooding-induced fracture development in low-permeability reservoirs—A case study of Chang 6 reservoir in W block in Ansai Oilfield, Ordos Basin[J]. Oil & Gas Geology, 2020, 41(3): 586-595. | |
26 | 吴义志, 马栋, 张凯迪, 等. 致密油藏动态裂缝影响下水驱开发数值模拟[J]. 科学技术与工程, 2020, 20(27): 11059-11066. |
WU Yizhi, MA Dong, ZHANG Kaidi, et al. Reservoir simulation of waterflooding under the influence of dynamic fractures for tight oil reservior[J]. Science Technology and Engineering, 2020, 20(27): 11059-11066. | |
27 | 汪洋, 程时清, 秦佳正, 等. 超低渗透油藏注水诱导动态裂缝开发理论及实践[J]. 中国科学(技术科学), 2022, 52(4): 613-626. |
WANG Yang, CHENG Shiqing, QIN Jiazheng, et al. Development theory and practice of water injection induced fractures in ultra-low permeability reservoirs[J]. SCIENTIA SINICA Technologica, 2022, 52(4): 613-626. | |
28 | 梁卫卫, 党海龙, 刘滨, 等. 特低渗透油藏注水诱导动态裂缝实验及数值模拟[J]. 石油实验地质, 2023, 45(3): 566-575. |
LIANG Weiwei, DANG Hailong, LIU Bin, et al. Experiment and numerical simulation of water injection induced dynamic fractures in ultra-low permeability reservoirs[J]. Petroleum Geology and Experiment, 2023, 45(3): 566-575. | |
29 | 曾联波, 赵向原. 鄂尔多斯盆地天然裂缝与注水诱导裂缝[M]. 北京: 科学出版社, 2019: |
ZENG Lianbo, ZHAO Xiangyuan. Natural fractures and water injection induced fractures in the Ordos Basin[M]. Beijing: Science Press, 2019. | |
30 | 田景春, 梁庆韶, 王峰, 等. 陆相湖盆致密油储集砂体成因及发育模式——以鄂尔多斯盆地上三叠统长6油层组为例[J]. 石油与天然气地质, 2022, 43(4): 877-888. |
TIAN Jingchun, LIANG Qingshao, WANG Feng, et al. Genesis and development model of tight oil reservoir sand body in continental lacustrine basin: A case study on the Upper Triassic Chang 6 pay zone, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(4): 877-888. | |
31 | 李渊, 丁熊, 王兴志, 等. 鄂尔多斯盆地延长组长8段浅水三角洲砂体结构特征[J]. 天然气地球科学, 2021, 32(1): 57-72. |
LI Yuan, DING Xiong, WANG Xingzhi, et al. Structural characteristics of sand bodies in shallow-water deltas in the Chang 8 member of Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(1): 57-72. | |
32 | 胡艳飞, 孔庆莹. 鄂尔多斯盆地西南部长8油层储层主控因素及分布规律[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1078-1090. |
HU Yanfei, KONG Qingying. Main controlling factors and distribution laws of reservoirs in the Chang 8 oil layer in the southwestern Ordos Basin[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(4): 1078-1090. | |
33 | 任静, 何江, 余浩杰, 等. 姬塬东部中生界延长组长8段储层特征及综合评价[J]. 中国石油和化工标准与质量, 2021, 41(15): 9-13, 19. |
REN Jing, HE Jiang, YU Haojie, et al. Characteristics and comprehensive evaluation of the 8th member reservoir in the Mesozoic Yanchang Formation in the eastern part of Jiyuan[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(15): 9-13, 19. | |
34 | 乞照. 罗1区块长8油藏精细描述[D]. 西安: 西安石油大学, 2013. |
QI Zhao. The fine description of Chang 8 reservoir in Luo 1 block[D]. Xi’an: Xi’an Shiyou University, 2013. | |
35 | 罗安湘, 喻建, 刘显阳, 等. 鄂尔多斯盆地中生界石油勘探实践及主要认识[J]. 新疆石油地质, 2022, 43(3): 253-260. |
LUO Anxiang, YU Jian, LIU Xianyang, et al. Practices and cognitions of petroleum exploration in Mesozoic, Ordos Basin[J]. Xinjiang Petroleum Geology, 2022, 43(3): 253-260. | |
36 | 肖正录, 路俊刚, 李勇, 等. 鄂尔多斯盆地延长组裂缝特征及其控藏作用[J]. 新疆石油地质, 2023, 44(5): 535-542. |
XIAO Zhenglu, LU Jungang, LI Yong, et al. Characteristics of fractures and their controls on Yanchang Formation reservoir in Ordos Basin[J]. Xinjiang Petroleum Geology, 2023, 44(5): 535-542. | |
37 | Wenya LYU, ZENG Lianbo, LIU Zhongqun, et al. Fracture responses of conventional logs in tight-oil sandstones: A case study of the Upper Triassic Yanchang Formation in southwest Ordos Basin, China[J]. AAPG Bulletin, 2016, 100(9): 1399-1417. |
38 | 吕文雅, 曾联波, 陈双全, 等. 致密低渗透砂岩储层多尺度天然裂缝表征方法[J]. 地质论评, 2021, 67(2): 543-556. |
LV Wenya, ZENG Lianbo, CHEN Shuangquan, et al. Characterization methods of multi-scale natural fractures in tight and low-permeability sandstone reservoirs[J]. Geological Review, 2021, 67(2): 543-556. | |
39 | 赵向原, 游瑜春, 胡向阳, 等. 基于成因机理及主控因素约束的多尺度裂缝“分级-分期-分组”建模方法——以四川盆地元坝地区上二叠统长兴组生物礁相碳酸盐岩储层为例[J]. 石油与天然气地质, 2023, 44(1): 213-225. |
ZHAO Xiangyuan, YOU Yuchun, HU Xiangyang, et al. Classified-staged-grouped 3D modeling of multi-scale fractures constrained by genetic mechanisms and main controlling factors: A case study on biohermal carbonate reservoir of the Upper Permian Changxing Fm. in Yuanba area, Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(1): 213-225. | |
40 | Wenya LYU, HUI Chen, ZENG Lianbo, et al. Determining the present-day in-situ stresses of tight-oil sandstones by conventional logs: An approach in the Triassic Yanchang Formation, southern Ordos Basin[J]. Energy Exploration & Exploitation, 2023, 41(6): 2036-2057. |
41 | 刘建, 惠晨, 樊建明, 等. 鄂尔多斯盆地合水地区长6致密砂岩储层现今地应力分布特征及其开发建议[J]. 地质力学学报, 2021, 27(1): 31-39. |
LIU Jian, HUI Chen, FAN Jianming, et al. Distribution characteristics of the present-day in-situ stress in the Chang 6 tight sandstone reservoirs of the Yanchang Formation in the Heshui area, Ordos Basin, China and suggestions for development[J]. Journal of Geomechanics, 2021, 27(1): 31-39. | |
42 | 赖锦, 白天宇, 肖露, 等. 地应力测井评价方法及其地质与工程意义[J]. 石油与天然气地质, 2023, 44(4): 1033-1043. |
LAI Jin, BAI Tianyu, XIAO Lu, et al. Well-logging evaluation of in-situ stress fields and its geological and engineering significances[J]. Oil & Gas Geology, 2023, 44(4): 1033-1043. | |
43 | 段洋, 李琴, 贾艳芬, 等. 北美非常规储层地应力预测技术发展现状与趋势[J]. 石油地质与工程, 2023, 37(2): 43-50. |
DUAN Yang, LI Qin, JIA Yanfen, et al. Development status and trend of in-situ stress prediction technology for unconventional reservoirs in North America[J]. Petroleum Geology and Engineering, 2023, 37(2): 43-50. | |
44 | 张建华, 王改红, 尹帅. 深部致密油储层现今地应力测井评价方法[J]. 桂林理工大学学报, 2019, 39(2): 362-368. |
ZHANG Jianhua, WANG Gaihong, YIN Shuai. Logging assessment of deep tight sandstone oil reservoir current in situ stresses[J]. Journal of Guilin University of Technology, 2019, 39(2): 362-368. | |
45 | ZANG A, STEPHANSSON O. Stress field of the earth’s crust[M]. Dordrecht: Springer, 2010. |
46 | BELL J S. Petro geoscience 1. In situ stresses in sedimentary rocks (part 1): Measurement techniques[J]. Geoscience Canada, 1996, 23(2): 85-100. |
47 | BHARDWAJ P, HWANG J, MANCHANDA R, et al. Injection induced fracture propagation and stress reorientation in waterflooded reservoirs[C]//SPE Annual Technical Conference and Exhibition, Dubai, 2016. Houston: Society of Petroleum Engineers, 2016: SPE-181883-MS. |
48 | HWANG J, BRYANT E C, SHARMA M M. Stress reorientation in waterflooded reservoirs[C]//SPE Reservoir Simulation Symposium, Houston, 2015. Houston: Society of Petroleum Engineers, 2015: SPE-173220-MS. |
49 | ZHU Haiyan, SONG Yujia, LEI Zhengdong, et al. 4D-stress evolution of tight sandstone reservoir during horizontal wells injection and production: A case study of Yuan 284 block, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 156-169. |
50 | ROUSSEL N P, FLOREZ H A, RODRIGUEZ A A. Hydraulic fracture propagation from Infill horizontal wells[C]//SPE Annual Technical Conference and Exhibition, New Orleans, 2013. Houston: Society of Petroleum Engineers, 2013: SPE-166503-MS. |
51 | ZHANG Fengshou, HUANG Liuke, YANG Lin, et al. Numerical investigation on the effect of depletion-induced stress reorientation on infill well hydraulic fracture propagation[J]. Petroleum Science, 2022, 19(1): 296-308. |
52 | 赵波, 张广清, 唐梅荣, 等. 长期注水对致密砂岩油藏岩石力学性质影响机制研究[J]. 岩土力学, 2019, 40(9): 3344-3350. |
ZHAO Bo, ZHANG Guangqing, TANG Meirong, et al. Mechanism of the effect of long-term water injection on mechanical properties of tight sandstone[J]. Rock and Soil Mechanics, 2019, 40(9): 3344-3350. | |
53 | GAO Yingchao, WEI Wei, JIANG Qinghui. Effect of water content on mechanical properties and internal microcrack evolution in mudstone[J]. Arabian Journal for Science and Engineering, 2023, 48(10): 12775-12791. |
54 | LIU Xiaofei, XU Guang, ZHANG Chong, et al. Time effect of water injection on the mechanical properties of coal and its application in rockburst prevention in mining[J]. Energies, 2017, 10(11): 1783. |
55 | ZHOU Zilong, CAI Xin, MA Dan, et al. Effects of water content on fracture and mechanical behavior of sandstone with a low clay mineral content[J]. Engineering Fracture Mechanics, 2018, 193: 47-65. |
56 | 张磊, 文志刚, 孙钰杰, 等. 鄂尔多斯盆地合水地区庄36井区油井见水特征分析及治理措施[J]. 重庆科技学院学报(自然科学版), 2012, 14(3): 27-30. |
ZHANG Lei, WEN Zhigang, SUN Yujie, et al. Characteristics analysis and comprehensive treatment of water breakthrough in Zhuang-36 well block of Ordos Basin[J]. Journal of Chongqing University of Science and Technology(Natural Science Edition), 2012, 14(3): 27-30. | |
57 | WANG Yang, CHENG Shiqing, FENG Naichao, et al. Semi-analytical modeling for water injection well in tight reservoir considering the variation of waterflood-Induced fracture properties-Case studies in Changqing Oilfield, China[J]. Journal of Petroleum Science and Engineering, 2017, 159: 740-753. |
58 | SPIVEY J P, LEE W J. 实用试井解释方法[M]. 韩永新, 孙贺东, 邓兴, 等译. 北京: 石油工业出版社, 2016. |
SPIVEY J P, LEE W J. Applied well test interpretation[M]. HAN Yongxin, SUN Hedong, DENG Xing, et al, translated. Beijing: Petroleum Industry Press, 2016. | |
59 | 魏操, 程时清, 白江, 等. 多井干扰下有限导流裂缝井解析试井分析方法[J]. 大庆石油地质与开发, 2022, 41(4): 90-97. |
WEI Cao, CHENG Shiqing, BAI Jiang, et al. Analytical well test method for finite conductivity fractured wells with multiple wells interference[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(4): 90-97. | |
60 | 温柔, 张彬, 杨学武, 等. 井间储层微裂缝及断层对注水开发的影响分析[J]. 测井技术, 2021, 45(5): 540-544. |
WEN Rou, ZHANG Bin, YANG Xuewu, et al. Effect of interwell reservoir micro-fractures and faults on water injection development[J]. Well Logging Technology, 2021, 45(5): 540-544. |
[1] | 于洲, 周进高, 罗晓容, 李永洲, 于小伟, 谭秀成, 吴东旭. 鄂尔多斯盆地东部奥陶系马家沟组四段神木-志丹低古隆起的发现及油气勘探意义[J]. 石油与天然气地质, 2024, 45(5): 1383-1399. |
[2] | 张琴, 邱振, 赵群, 董大忠, 刘雯, 孔维亮, 庞正炼, 高万里, 蔡光银, 李永洲, 李星涛, 林文姬. 海-陆过渡相与海相页岩气“甜点段”差异特征与形成机理[J]. 石油与天然气地质, 2024, 45(5): 1400-1416. |
[3] | 解馨慧, 邓虎成, 胡蓝霄, 李勇, 毛金昕, 刘佳杰, 张鑫, 李柏洋. 湖相细粒沉积岩颗粒微观力学特征及类型划分[J]. 石油与天然气地质, 2024, 45(4): 1079-1088. |
[4] | 吴伟涛, 冯炎松, 费世祥, 王一妃, 吴和源, 杨旭东. 鄂尔多斯盆地神木气田二叠系石千峰组5段致密气富集因素及有利区预测[J]. 石油与天然气地质, 2024, 45(3): 739-751. |
[5] | 刘成林, 丁振刚, 范立勇, 康锐, 洪思婕, 朱玉新, 陈践发, 王海东, 许诺. 鄂尔多斯盆地含氦天然气地球化学特征与富集影响因素[J]. 石油与天然气地质, 2024, 45(2): 384-392. |
[6] | 万俊雨, 朱建辉, 姚素平, 张毅, 李春堂, 张威, 姜海健, 王杰. 鄂尔多斯盆地中、东部奥陶系马家沟组成烃生物及烃源岩地球生物学评价[J]. 石油与天然气地质, 2024, 45(2): 393-405. |
[7] | 杨丽华, 刘池洋, 黄雷, 周义军, 刘永涛, 秦阳. 鄂尔多斯盆地古峰庄地区疑似侵入岩体的发现及其地质意义[J]. 石油与天然气地质, 2024, 45(1): 142-156. |
[8] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[9] | 曹江骏, 王继平, 张道锋, 王龙, 李笑天, 李娅, 张园园, 夏辉, 于占海. 深层致密砂岩储层成岩演化对含气性的影响[J]. 石油与天然气地质, 2024, 45(1): 169-184. |
[10] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[11] | 刘成林, 丁振刚, 陈践发, 范立勇, 康锐, 王海东, 洪思婕, 田安琦, 陈学勇. 鄂尔多斯盆地氦源岩特征及生氦潜力[J]. 石油与天然气地质, 2023, 44(6): 1546-1554. |
[12] | 李勇, 朱治同, 吴鹏, 申陈州, 高计县. 鄂尔多斯盆地东缘上古生界致密储层含气系统压力演化[J]. 石油与天然气地质, 2023, 44(6): 1568-1581. |
[13] | 曾溅辉, 张亚雄, 张在振, 乔俊程, 王茂云, 陈冬霞, 姚泾利, 丁景辰, 熊亮, 刘亚洲, 赵伟波, 任克博. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067-1083. |
[14] | 梁岳立, 赵晓明, 张喜, 李树新, 葛家旺, 聂志宏, 张廷山, 祝海华. 轨道周期约束下海-陆过渡相页岩层系高精度层序界面识别及其地质意义[J]. 石油与天然气地质, 2023, 44(5): 1231-1242. |
[15] | 李涵, 付金华, 季汉成, 张雷, 佘钰蔚, 官伟, 井向辉, 王红伟, 曹茜, 刘刚, 魏嘉怡. 鄂尔多斯盆地西南部上古生界风化壳型铝土岩系发育过程及优势储层分布规律[J]. 石油与天然气地质, 2023, 44(5): 1243-1255. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||