石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (5): 1400-1416.doi: 10.11743/ogg20240514
张琴1,2(), 邱振1,2(), 赵群1,2, 董大忠1,2, 刘雯1,2, 孔维亮1,2, 庞正炼1, 高万里1,2, 蔡光银1,2, 李永洲3, 李星涛3, 林文姬3
收稿日期:
2024-04-18
修回日期:
2024-06-26
出版日期:
2024-10-30
发布日期:
2024-11-06
通讯作者:
邱振
E-mail:zhangqin2169@petrochina.com.cn;qiuzhen316@163.com
第一作者简介:
张琴(1985—)女,博士、高级工程师,非常规油气地质。E‑mail: zhangqin2169@petrochina.com.cn。
基金项目:
Qin ZHANG1,2(), Zhen QIU1,2(), Qun ZHAO1,2, Dazhong DONG1,2, Wen LIU1,2, Weiliang KONG1,2, Zhenglian PANG1, Wanli GAO1,2, Guangyin CAI1,2, Yongzhou LI3, Xingtao LI3, Wenji LIN3
Received:
2024-04-18
Revised:
2024-06-26
Online:
2024-10-30
Published:
2024-11-06
Contact:
Zhen QIU
E-mail:zhangqin2169@petrochina.com.cn;qiuzhen316@163.com
摘要:
为了指导海-陆过渡相页岩气的勘探开发,以鄂尔多斯盆地东缘大宁—吉县地区二叠系山西组2段3亚段(山23亚段)海-陆过渡相页岩气甜点段与四川盆地南部地区志留系龙马溪组一段1亚段(龙一1亚段)1小层海相页岩气甜点段作为研究对象,开展系统的岩心观察、薄片鉴定、全岩-黏土X射线衍射、有机地球化学分析、扫描电镜观察、N2低温吸附、CH4等温吸附以及主、微量元素分析实验,系统对比研究了海-陆过渡相与海相页岩气甜点段的特征与形成机理。研究结果表明:① 海相页岩气甜点段稳定分布与发育;海-陆过渡相页岩气甜点段横向不连续,纵向多层段发育。② 海-陆过渡相页岩气甜点段总有机碳含量(TOC)高,处于中-高成熟阶段,有机质以Ⅱ2-Ⅲ型为主;海相页岩气甜点段TOC较高,处于高-过成熟阶段,有机质以Ⅰ-Ⅱ1型为主。③ 海-陆过渡相页岩气甜点段矿物组成以黏土矿物为主,黏土矿物孔隙以介孔和宏孔为主,它们控制游离气的赋存;有机质以发育微孔为主,它是比表面积的主要贡献者,控制吸附气的赋存。海相页岩气甜点段以石英矿物为主;页岩有机质同时发育微孔和介孔,它们是页岩气赋存的主要储存空间。④ 海-陆过渡相页岩气甜点段以吸附气为主,平均占66.06 %;海相页岩气以游离气为主,吸附气占11.15 % ~ 43.75 %。⑤ 海-陆过渡相和海相页岩气甜点段有机质富集均受到古气候、古环境以及地质事件控制,但陆源碎屑输入对海-陆过渡相页岩气甜点段有机质富集具有重要控制作用。⑥ 鄂尔多斯盆地海-陆过渡相页岩气单井最高产量达到7.9×104 m3/d,研究和勘探表明海-陆过渡相页岩气具有良好的勘探前景。
中图分类号:
图8
四川盆地南部海相龙马溪组与鄂尔多斯盆地东缘大宁—吉县区块海-陆过渡相山西组页岩气甜点段有机质分布与孔隙发育特征显微照片a—f.海相有机质及其孔隙特征:a,b.泸205井,埋深4 030.36 m,TOC=5.00 %,藻类体和无定型组分分布;c. 自201井,埋深3 669.80 m,TOC=4.67 %,无定型分布的有机质孔隙发育;d. 自201井,埋深3 670.80 m,TOC=7.83 %,顺层分布的笔石体;e.为d图中笔石体局部放大,孔隙发育明显;f. 自201井,埋深3 670.55 m,TOC=5.15 %,生物壳体被有机质充填,蜂窝状孔隙发育;g—l.海-陆过渡相有机质及其孔隙特征:g. 大吉51井,埋深2 295.84 m,TOC=5.98 %,镜质体边缘界限清晰,呈灰黑色,局部见沥青体;h. 大吉51井,埋深2 298.45 m,TOC=9.96 %,丝质体,具有胞腔结构,被疑似方解石充填;i. 大吉51井,埋深2 295.84 m,TOC=5.98 %,丝质体,具胞腔结构;j. 大吉51井,埋深2 293.61 m,TOC=8.96 %,镜质体与丝质体,镜质体边缘界限清晰,在内部发育高岭石,丝质体的胞腔结构被矿物填充,具有圆滑的弧形边界;k. 为j图局部放大,高岭石周边发育有机质孔隙;l. 为k图局部放大,有机质孔隙形态不规则,菱角状,孔隙大小不一,孔径10~100 nm范围内孔隙均发育"
表1
鄂尔多斯盆地东缘大宁—吉县区块海-陆过渡相山西组与四川盆地南部海相龙马溪组页岩气甜点段差异对比"
参数 | 海相页岩气 | 海-陆过渡相页岩气 |
---|---|---|
页岩气区块 | 威远地区 | 鄂东地区 |
沉积盆地 | 四川盆地 | 鄂尔多斯盆地 |
地层时代 | S1l | P1s |
埋藏深度/m | 1 500~4 000 | 800~2 600 |
厚度/m | 0~7.0 | 2.0~7.5 |
连续性 | 发育在LM1—LM3笔石带,横向稳定分布 | 发育在2小层与3小层,分布不连续 |
TOC/% | 3.22~7.83 | 4.19~34.70 |
干酪根类型 | Ⅰ-Ⅱ2型 | Ⅱ2-Ⅲ型 |
Ro/% | 2.76~2.82 | 2.02~2.61 |
矿物组分含量/% | 石英为主,42.2~91.8 | 黏土矿物为主,26.8~61.1 |
黏土矿物组分含量/% | 伊利石为主,>80 | 高岭石、伊/蒙混层和伊利石三者相当 |
孔隙特征 | 有机质孔为主,介孔和微孔均发育 | 有机质微孔为主,介孔和宏孔为无机质孔隙 |
气体赋存特征 | 游离态为主,占比>50 % | 吸附态为主,占比>60 % |
含气量/(m3/t) | 2.30~8.85[ | 0.17~4.05,平均1.54 |
吸附气含量/(m3/t) | 2.00~5.00[ | 3.00~14.00[ |
形成机理 | 古生产力、氧化还原条件、火山喷发和上升洋流等综合影响 | 古生产力、氧化还原条件、陆源碎屑输入和间歇性海侵等综合影响 |
地层压力系数 | 1.20~1.96[ | 0.95~1.05 |
1 | 董大忠, 邹才能, 戴金星, 等. 中国页岩气发展战略对策建议[J]. 天然气地球科学, 2016, 27(3): 397-406. |
DONG Dazhong, ZOU Caineng, DAI Jinxing, et al. Suggestions on the development strategy of shale gas in China[J]. Natural Gas Geoscience, 2016, 27(3): 397-406. | |
2 | 董大忠, 王玉满, 李新景, 等. 中国页岩气勘探开发新突破及发展前景思考[J]. 天然气工业, 2016, 36(1): 19-32. |
DONG Dazhong, WANG Yuman, LI Xinjing, et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016, 36(1): 19-32. | |
3 | 邹才能, 董大忠, 熊伟, 等. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
ZOU Caineng, DONG Dazhong, XIONG Wei, et al. Advances, challenges, and countermeasures in shale gas exploration of underexplored plays, sequences and new types in China[J]. Oil & Gas Geology, 2024, 45(2): 309-326. | |
4 | 马新华, 谢军, 雍锐, 等. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J]. 石油勘探与开发, 2020, 47(5): 841-855. |
MA Xinhua, XIE Jun, YONG Rui, et al. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(5): 841-855. | |
5 | 徐敏. 页岩气地质和工程甜点评价指标体系研究[D]. 北京: 中国石油大学(北京), 2016. |
XU Min. Research on the geological and engineering sweet spot index of shale gas[D]. Beijing: China University of Petroleum(Beijing), 2016. | |
6 | 何希鹏. 四川盆地东部页岩气甜点评价体系与富集高产影响因素[J]. 天然气工业, 2021, 41(1): 59-71. |
HE Xipeng. Sweet spot evaluation system and enrichment and high yield influential factors of shale gas in Nanchuan area of eastern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 59-71. | |
7 | 聂海宽, 何治亮, 刘光祥, 等. 四川盆地五峰组—龙马溪组页岩气优质储层成因机制[J]. 天然气工业, 2020, 40(6): 31-41. |
NIE Haikuan, HE Zhiliang, LIU Guangxiang, et al. Genetic mechanism of high-quality shale gas reservoirs in the Wufeng-Longmaxi Fms in the Sichuan Basin[J]. Natural Gas Industry, 2020, 40(6): 31-41. | |
8 | 梁峰, 张琴, 卢斌, 等. 威远五峰组—龙马溪组页岩岩相展布及对水平井产量的影响[J]. 沉积学报, 2022, 40(4): 1019-1029. |
LIANG Feng, ZHANG Qin, LU Bin, et al. Lithofacies and distribution of Wufeng Formation-Longmaxi Formation organic-rich shale and its impact on shale gas production in Weiyuan shale gas play, southern Sichuan Basin, China[J]. Acta Sedimentologica Sinica, 2022, 40(4): 1019-1029. | |
9 | 董大忠, 邱振, 张磊夫, 等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报, 2021, 39(1): 29-45. |
DONG Dazhong, QIU Zhen, ZHANG Leifu, et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica, 2021, 39(1): 29-45. | |
10 | 孙越, 蒋裕强, 熊先钺, 等. 鄂尔多斯盆地东缘大宁–吉县地区山西组山23亚段海陆过渡相页岩岩相与沉积环境变化[J]. 煤田地质与勘探, 2022, 50(9): 104-114. |
SUN Yue, JIANG Yuqiang, XIONG Xianyue, et al. Lithofacies and sedimentary environment evolution of the Shan 23 sub-member transitional shale of the Shanxi Formation in the Daning-Jixian area, eastern Ordos Basin[J]. Coal Geology & Exploration, 2022, 50(9): 104-114. | |
11 | ZHANG Leifu, DONG Dazhong, QIU Zhen, et al. Sedimentology and geochemistry of Carboniferous-Permian marine-continental transitional shales in the eastern Ordos Basin, North China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 571: 110389. |
12 | 张琴, 邱振, 张磊夫, 等. 海陆过渡相页岩气储层特征与主控因素——以鄂尔多斯盆地大宁—吉县区块二叠系山西组为例[J]. 天然气地球科学, 2022, 33(3): 396-407. |
ZHANG Qin, QIU Zhen, ZHANG Leifu, et al. Reservoir characteristics and its influence on transitional shale: An example from Permian Shanxi Formation shale, Daning-Jixian blocks, Ordos Basin[J]. Natural Gas Geoscience, 2022, 33(3): 396-407. | |
13 | ZHANG Qin, QIU Zhen, ZHAO Qun, et al. Composition effect on the pore structure of transitional shale: A case study of the Permian Shanxi Formation in the Daning-Jixian Block at the eastern margin of the Ordos Basin[J]. Frontiers in Earth Science, 2022, 9: 802713. |
14 | 曹涛涛, 宋之光, 罗厚勇, 等. 下扬子地区二叠系海陆过渡相页岩孔隙体系特征[J]. 天然气地球科学, 2016, 27(7): 1332-1345. |
CAO Taotao, SONG Zhiguang, LUO Houyong, et al. Pore system characteristics of Permian transitional shale reservoir in the Lower Yangtze region, China[J]. Natural Gas Geoscience, 2016, 27(7): 1332-1345. | |
15 | 郭旭升, 胡东风, 刘若冰, 等. 四川盆地二叠系海陆过渡相页岩气地质条件及勘探潜力[J]. 天然气工业, 2018, 38(10): 11-18. |
GUO Xusheng, HU Dongfeng, LIU Ruobing, et al. Geological conditions and exploration potential of Permian marine-continent transitional facies shale gas in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10): 11-18. | |
16 | 匡立春, 董大忠, 何文渊, 等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J]. 石油勘探与开发, 2020, 47(3): 435-446. |
KUANG Lichun, DONG Dazhong, HE Wenyuan, et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 435-446. | |
17 | 焦方正, 温声明, 刘向君, 等. 鄂尔多斯盆地海陆过渡相页岩气勘探理论与技术研究新进展[J]. 天然气工业, 2023, 43(4): 11-23. |
JIAO Fangzheng, WEN Shengming, LIU Xiangjun, et al. Research progress in exploration theory and technology of transitional shale gas in the Ordos Basin[J]. Natural Gas Industry, 2023, 43(4): 11-23. | |
18 | 武瑾, 王红岩, 施振生, 等. 海陆过渡相黑色页岩优势岩相类型及成因机制——以鄂尔多斯盆地东缘二叠系山西组为例[J]. 石油勘探与开发, 2021, 48(6): 1137-1149. |
WU Jin, WANG Hongyan, SHI Zhensheng, et al. Favorable lithofacies types and genesis of marine-continental transitional black shale: A case study of Permian Shanxi Formation in the eastern margin of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(6): 1137-1149. | |
19 | GU Yifan, LI Xingtao, QI Lin, et al. Sedimentology and geochemistry of the Lower Permian Shanxi Formation Shan 23 submember transitional shale, eastern Ordos Basin, North China[J]. Frontiers in Earth Science, 2022, 10: 859845. |
20 | 邱振, 窦立荣, 吴建发, 等. 川北-鄂西地区中二叠统层序岩相古地理演化及页岩气勘探潜力[J]. 地球科学, 2024, 49(2): 712-748. |
QIU Zhen, DOU Lirong, WU Jianfa, et al. Lithofacies palaeogeographic evolution of the Middle Permian sequence stratigraphy and its implications for shale gas exploration in the northern Sichuan and western Hubei provinces[J]. Earth Science, 2024, 49(2): 712-748. | |
21 | 刘畅, 张道旻, 李超, 等. 鄂尔多斯盆地临兴区块上古生界致密砂岩气藏成藏条件及主控因素[J]. 石油与天然气地质, 2021, 42(5): 1146-1158. |
LIU Chang, ZHANG Daomin, LI Chao, et al. Upper Paleozoic tight gas sandstone reservoirs and main controls, Linxing Block, Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1146-1158. | |
22 | 赵喆, 徐旺林, 赵振宇, 等. 鄂尔多斯盆地石炭系本溪组煤岩气地质特征与勘探突破[J]. 石油勘探与开发, 2024, 51(2): 234-247, 259. |
ZHAO Zhe, XU Wanglin, ZHAO Zhenyu, et al. Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2024, 51(2): 234-247, 259. | |
23 | 付金华. 鄂尔多斯盆地太原组致密灰岩天然气成藏地质特征与勘探潜力[J]. 地学前缘, 2023, 30(1): 20-29. |
FU Jinhua. Accumulation characteristics and exploration potential of tight limestone gas in the Taiyuan Formation of the Ordos Basin[J]. Earth Science Frontiers, 2023, 30(1): 20-29. | |
24 | 蔡光银, 蒋裕强, 李星涛, 等. 海陆过渡相与海相富有机质页岩储层特征差异[J]. 沉积学报, 2022, 40(4): 1030-1042. |
CAI Guangyin, JIANG Yuqiang, LI Xingtao, et al. Comparison of characteristics of transitional and marine organic-rich shale reservoirs[J]. Acta Sedimentologica Sinica, 2022, 40(4): 1030-1042. | |
25 | 马新华, 李熙喆, 梁峰, 等. 威远页岩气田单井产能主控因素与开发优化技术对策[J]. 石油勘探与开发, 2020, 47(3): 555-563. |
MA Xinhua, LI Xizhe, LIANG Feng, et al. Dominating factors on well productivity and development strategies optimization in Weiyuan shale gas play, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(3): 555-563. | |
26 | 陈旭, 戎嘉余, 樊隽轩, 等. 奥陶-志留系界线地层生物带的全球对比[J]. 古生物学报, 2000, 39(1): 100-114. |
CHEN Xu, RONG Jiayu, FAN Juanxuan, et al. A global correlation of biozones across the Ordovician-Silurian boundary[J]. Acta palaeontologica Sinica, 2000, 39(1): 100-114. | |
27 | LIU Bei, MASTALERZ M, SCHIEBER J. SEM petrography of dispersed organic matter in black shales: A review[J]. Earth-Science Reviews, 2022, 224: 103874. |
28 | TENG Juan, LIU Bei, MASTALERZ M, et al. Origin of organic matter and organic pores in the overmature Ordovician-Silurian Wufeng-Longmaxi Shale of the Sichuan Basin, China[J]. International Journal of Coal Geology, 2022, 253: 103970. |
29 | 高凤琳, 王成锡, 宋岩, 等. 氩离子抛光—场发射扫描电镜分析方法在识别有机显微组分中的应用[J]. 石油实验地质, 2021, 43(2): 360-367. |
GAO Fenglin, WANG Chengxi, SONG Yan, et al. Ar-ion polishing FE-SEM analysis of organic maceral identification[J]. Petroleum Geology and Experiment, 2021, 43(2): 360-367. | |
30 | YANG Chao, ZHANG Jinchuan, HAN Shuangbiao, et al. Classification and the developmental regularity of organic-associated pores (OAP) through a comparative study of marine, transitional, and terrestrial shales in China[J]. Journal of Natural Gas Science and Engineering, 2016, 36(Part A): 358-368. |
31 | 吴诗情, 郭建华, 李智宇, 等. 中国南方海相地层牛蹄塘组页岩气 “甜点段” 识别和优选[J]. 石油与天然气地质, 2020, 41(5): 1048-1059. |
WU Shiqing, GUO Jianhua, LI Zhiyu, et al. Identification and optimization of shale gas “sweet spots” in marine Niutitang Formation, South China[J]. Oil & Gas Geology, 2020, 41(5): 1048-1059. | |
32 | 孙龙德, 赵文智, 刘合, 等. 页岩油 “甜点” 概念及其应用讨论[J]. 石油学报, 2023, 44(1): 1-13. |
SUN Longde, ZHAO Wenzhi, LIU He, et al. Concept and application of “sweet spot” in shale oil[J]. Acta Petrolei Sinica, 2023, 44(1): 1-13. | |
33 | 施振生, 袁渊, 赵群, 等. 川南地区五峰组—龙马溪组沉积期古地貌及含气页岩特征[J]. 天然气地球科学, 2022, 33(12): 1969-1985. |
SHI Zhensheng, YUAN Yuan, ZHAO Qun, et al. Paleogeomorphology and oil-bearing shale characteristics of the Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Natural Gas Geoscience, 2022, 33(12): 1969-1985. | |
34 | 黄籍中. 干酪根的稳定碳同位素分类依据[J]. 地球与环境, 1988, 16(3): 66-68. |
HUANG Jizhong. The classification of kerogen based on stable carbon isotopes[J]. Earth and Environment, 1988, 16(3): 66-68. | |
35 | 张琴, 赵群, 罗超, 等. 有机质石墨化及其对页岩气储层的影响——以四川盆地南部海相页岩为例[J]. 天然气工业, 2022, 42(10): 25-36. |
ZHANG Qin, ZHAO Qun, LUO Chao, et al. Effect of graphitization of organic matter on shale gas reservoirs: Take the marine shales in the southern Sichuan Basin as examples[J]. Natural Gas Industry, 2022, 42(10): 25-36. | |
36 | 张琴, 梁峰, 梁萍萍, 等. 页岩分形特征及主控因素研究——以威远页岩气田龙马溪组页岩为例[J]. 中国矿业大学学报, 2020, 49(1): 110-122. |
ZHANG Qin, LIANG Feng, LIANG Pingping, et al. Investigation of fractal characteristics and its main controlling factors of shale reservoir: A case study of the Longmaxi shale in Weiyuan shale gas field[J]. Journal of China University of Mining & Technology, 2020, 49(1): 110-122. | |
37 | ZHANG Qin, XIONG Wei, LI Xingtao, et al. Discussion on transitional shale gas accumulation conditions from the perspective of source-reservoir-caprock controlling hydrocarbon: Examples from Permian Shanxi Formation and Taiyuan Formation in the eastern margin of Ordos Basin, NW China[J]. Energies, 2023, 16(9): 3710. |
38 | 谢国梁, 刘树根, 焦堃, 等. 受显微组分控制的深层页岩有机质孔隙:四川盆地五峰组—龙马溪组有机质组分分类及其孔隙结构特征[J]. 天然气工业, 2021, 41(9): 23-34. |
XIE Guoliang, LIU Shugen, JIAO Kun, et al. Organic pores in deep shale controlled by macerals: Classification and pore characteristics of organic matter components in Wufeng Formation-Longmaxi Formation of the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(9): 23-34. | |
39 | 高之业, 范毓鹏, 胡钦红, 等. 川南地区龙马溪组页岩有机质孔隙差异化发育特征及其对储集空间的影响[J]. 石油科学通报, 2020, 5(1): 1-16. |
GAO Zhiye, FAN Yupeng, HU Qinhong, et al. Differential development characteristics of organic matter pores and their impact on reservoir space of Longmaxi Formation shale from the South Sichuan Basin[J]. Petroleum Science Bulletin, 2020, 5(1): 1-16. | |
40 | 施振生, 武瑾, 董大忠, 等. 四川盆地五峰组—龙马溪组重点井含气页岩孔隙类型与孔径分布[J]. 地学前缘, 2021, 28(1): 249-260. |
SHI Zhensheng, WU Jin, DONG Dazhong, et al. Pore types and pore size distribution of the typical Wufeng-Lungmachi shale wells in the Sichuan Basin, China[J]. Earth Science Frontiers, 2021, 28(1): 249-260. | |
41 | ZHANG Yifan, YU Bingsong, PAN Zhejun, et al. Effect of thermal maturity on shale pore structure: A combined study using extracted organic matter and bulk shale from Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2020, 74: 103089. |
42 | 姜振学, 唐相路, 李卓, 等. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J]. 地学前缘, 2016, 23(2): 126-134. |
JIANG Zhenxue, TANG Xianglu, LI Zhuo, et al. The whole-aperture pore structure characteristics and its effect on gas content of the Longmaxi Formation shale in the southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(2): 126-134. | |
43 | 朱彤, 曹艳, 张快. 美国典型页岩气藏类型及勘探开发启示[J]. 石油实验地质, 2014, 36(6): 718-724. |
ZHU Tong, CAO Yan, ZHANG Kuai. Typical shale gas reservoirs in USA and enlightenment to exploration and development[J]. Petroleum Geology and Experiment, 2014, 36(6): 718-724. | |
44 | LI Wenbiao, LI Junqian, LU Shuangfang, et al. Evaluation of gas-in-place content and gas-adsorbed ratio using carbon isotope fractionation model: A case study from Longmaxi shales in Sichuan Basin, China[J]. International Journal of Coal Geology, 2022, 249: 103881. |
45 | LI Wenbiao, LI Xiao, ZHAO Shengxian, et al. Evaluation on carbon isotope fractionation and gas-in-place content based on pressure-holding coring technique[J]. Fuel, 2022, 315: 123243. |
46 | YANG Chao, XIONG Yongqiang, ZHANG Jinchuan, et al. Comprehensive understanding of OM-hosted pores in transitional shale: A case study of Permian Longtan Shale in South China based on organic petrographic analysis, gas adsorption, and X-ray diffraction measurements[J]. Energy & Fuels, 2019, 33(9): 8055-8064. |
47 | WANG H, ZHANG L, ZHAO Q, et al. Reservoir characteristics of the Lower Permian marine-continental transitional shales: Example from the Shanxi Formation and Taiyuan Formation in the Ordos Basin[J]. Geofluids, 2021: 9373948. |
48 | 曹涛涛, 宋之光, 王思波, 等. 不同页岩及干酪根比表面积和孔隙结构的比较研究[J]. 中国科学: 地球科学, 2015, 45(2): 139-151. |
CAO Taotao, SONG Zhiguang, WANG Sibo, et al. A comparative study of the specific surface area and pore structure of different shales and their kerogens[J]. Science China: Earth Sciences, 2015, 45(2): 139-151. | |
49 | DANG Wei, ZHANG Jinchuan, NIE Haikuan, et al. Isotherms, thermodynamics and kinetics of methane-shale adsorption pair under supercritical condition: Implications for understanding the nature of shale gas adsorption process[J]. Chemical Engineering Journal, 2020, 383: 123191. |
50 | 王鹏万, 张磊, 李昌, 等. 黑色页岩氧化还原条件与有机质富集机制——以昭通页岩气示范区A井五峰组-龙马溪组下段为例[J]. 石油与天然气地质, 2017, 38(5): 933-943. |
WANG Pengwan, ZHANG Lei, LI Chang, et al. Redox conditions and organic enrichment mechanisms of black shale: A case from the Wufeng-lower Longmaxi Formations in Well A in Zhaotong shale gas demonstration area[J]. Oil & Gas Geology, 2017, 38(5): 933-943. | |
51 | 吴蓝宇, 陆永潮, 蒋恕, 等. 上扬子区奥陶系五峰组—志留系龙马溪组沉积期火山活动对页岩有机质富集程度的影响[J]. 石油勘探与开发, 2018, 45(5): 806-816. |
WU Lanyu, LU Yongchao, JIANG Shu, et al. Effects of volcanic activities in Ordovician Wufeng-Silurian Longmaxi period on organic-rich shale in the Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2018, 45(5): 806-816. | |
52 | 杨雪, 石学文, 朱逸青, 等. 四川盆地南部泸州地区凯迪阶—埃隆阶深水页岩沉积演化与有机质富集[J]. 石油学报, 2022, 43(4): 469-482. |
YANG Xue, SHI Xuewen, ZHU Yiqing, et al. Sedimentary evolution and organic matter enrichment of Katian-Aeronian deep-water shale in Luzhou area, southern Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(4): 469-482. | |
53 | 邱振, 邹才能. 非常规油气沉积学: 内涵与展望[J]. 沉积学报, 2020, 38(1): 1-29. |
QIU Zhen, ZOU Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29. | |
54 | QIU Zhen, ZOU Caineng, MILLS B J W, et al. A nutrient control on expanded anoxia and global cooling during the Late Ordovician mass extinction[J]. Communications Earth & Environment, 2022, 3(1): 82. |
55 | 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1): 69-78. |
TENGER Borjigin, SHEN Baojian, YU Lingjie, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78. | |
56 | 王玉满, 李新景, 王皓, 等. 四川盆地东部上奥陶统五峰组—下志留统龙马溪组斑脱岩发育特征及地质意义[J]. 石油勘探与开发, 2019, 46(4): 653-665. |
WANG Yuman, LI Xinjing, WANG Hao, et al. Developmental characteristics and geological significance of the bentonite in the Upper Ordovician Wufeng-Lower Silurian Longmaxi Formation in eastern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(4): 653-665. | |
57 | 王玉满, 王红岩, 沈均均, 等. 川北-鄂西地区下志留统龙马溪组上段厚层斑脱岩的新发现及地质意义[J]. 石油学报, 2020, 41(11): 1309-1323. |
WANG Yuman, WANG Hongyan, SHEN Junjun, et al. A new discovery and geological significance of thick-layered bentonites in the Upper Member of Lower Silurian Longmaxi Formation in the northern Sichuan-Western Hubei area[J]. Acta Petrolei Sinica, 2020, 41(11): 1309-1323. | |
58 | XI Zhaodong, TANG Shuheng, ZHANG Songhang, et al. Characterization of quartz in the Wufeng Formation in northwest Hunan Province, South China and its implications for reservoir quality[J]. Journal of Petroleum Science and Engineering, 2019, 179: 979-996. |
59 | 仲钰天, 陈吉涛, 高彪, 等. 晚古生代大冰期碳-水循环回顾与展望[J]. 科学通报, 2023, 68(12): 1544-1556. |
ZHONG Yutian, CHEN Jitao, GAO Biao, et al. Carbon-water cycles during the Late Paleozoic Ice Age: Reviews and prospects[J]. Chinese Science Bulletin, 2023, 68(12): 1544-1556. | |
60 | 殷鸿福, 喻建新, 罗根明, 等. 地史时期生物对冰室气候形成的作用[J]. 地球科学, 2018, 43(11): 3809-3822. |
YIN Hongfu, YU Jianxin, LUO Genming, et al. Biotic influence on the formation of icehouse climates in geologic history[J]. Earth Science, 2018, 43(11): 3809-3822. | |
61 | WILSON J P, MONTAÑEZ I P, WHITE J D, et al. Dynamic Carboniferous tropical forests: New views of plant function and potential for physiological forcing of climate[J]. New Phytologist, 2017, 215(4): 1333-1353. |
62 | 聂海宽, 张光荣, 李沛, 等. 页岩有机孔研究现状和展望[J]. 石油学报, 2022, 43(12): 1770-1787. |
NIE Haikuan, ZHANG Guangrong, LI Pei, et al. Research status and prospect on organic matter pores in shale[J]. Acta Petrolei Sinica, 2022, 43(12): 1770-1787. | |
63 | 曹涛涛, 邓模, 肖娟宜, 等. 海陆过渡相页岩储层特征及含气赋存机理——基于与海相页岩储层对比的认识[J]. 天然气地球科学, 2023, 34(1): 122-139. |
CAO Taotao, DENG Mo, XIAO Juanyi, et al. Reservoir characteristics of marine-continental transitional shale and gas-bearing mechanism: Understanding based on comparison with marine shale reservoir[J]. Natural Gas Geoscience, 2023, 34(1): 122-139. | |
64 | 王红岩, 周尚文, 赵群, 等. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
WANG Hongyan, ZHOU Shangwen, ZHAO Qun, et al. Enrichment characteristics, exploration and exploitation progress, and prospects of deep shale gas in the southern Sichuan Basin, China[J]. Oil & Gas Geology, 2023, 44(6): 1430-1441. | |
65 | 王光付, 李凤霞, 王海波, 等. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
WANG Guangfu, LI Fengxia, WANG Haibo, et al. Difficulties and countermeasures for fracturing of various shale gas reservoirs in the Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(6): 1378-1392. |
[1] | 彭军, 刘芳兰, 张连进, 郑斌嵩, 唐松, 李顺, 梁新玉. 川中龙女寺地区中二叠统茅口组储层特征及其主控因素[J]. 石油与天然气地质, 2024, 45(5): 1337-1354. |
[2] | 王威, 刘珠江, 魏富彬, 李飞. 川东北地区二叠系大隆组页岩储层特征及其主控因素[J]. 石油与天然气地质, 2024, 45(5): 1355-1367. |
[3] | 冯潇飞, 赵晓明, 张喜, 葛家旺, 杨长城, 梁岳立, Bouchakour Massine. 川中地区中侏罗世早期天文驱动下的湖平面波动及沉积物分布规律[J]. 石油与天然气地质, 2024, 45(5): 1368-1382. |
[4] | 于洲, 周进高, 罗晓容, 李永洲, 于小伟, 谭秀成, 吴东旭. 鄂尔多斯盆地东部奥陶系马家沟组四段神木-志丹低古隆起的发现及油气勘探意义[J]. 石油与天然气地质, 2024, 45(5): 1383-1399. |
[5] | 吕文雅, 安小平, 刘艳祥, 李德生, 曾联波, 皇甫展鸿, 唐英航, 张克宁, 张玉银. 致密砂岩储层注水诱导裂缝动态识别及演化特征[J]. 石油与天然气地质, 2024, 45(5): 1431-1446. |
[6] | 解馨慧, 邓虎成, 胡蓝霄, 李勇, 毛金昕, 刘佳杰, 张鑫, 李柏洋. 湖相细粒沉积岩颗粒微观力学特征及类型划分[J]. 石油与天然气地质, 2024, 45(4): 1079-1088. |
[7] | 张琴, 卢东连, 王凯, 刘畅, 郭明强, 张梦婕, 郭超杰, 王颖, 胡文忠, 朱筱敏. 下扬子地区荷塘组细粒沉积岩岩相划分及微观孔隙发育特征[J]. 石油与天然气地质, 2024, 45(4): 1089-1105. |
[8] | 李一波, 陈耀旺, 赵金洲, 王志强, 魏兵, Valeriy Kadet. 超临界二氧化碳与页岩相互作用机制[J]. 石油与天然气地质, 2024, 45(4): 1180-1194. |
[9] | 胡宗全, 刘忠宝, 李倩文, 吴舟凡. 基于变尺度岩相组合的陆相页岩源-储耦合机理探讨[J]. 石油与天然气地质, 2024, 45(4): 893-909. |
[10] | 叶玥豪, 陈伟, 汪华, 宋金民, 明盈, 戴鑫, 李智武, 孙豪飞, 马小刚, 刘婷婷, 唐辉, 刘树根. 四川盆地上二叠统大隆组页岩储层特征及其控制因素[J]. 石油与天然气地质, 2024, 45(4): 979-991. |
[11] | 吴伟涛, 冯炎松, 费世祥, 王一妃, 吴和源, 杨旭东. 鄂尔多斯盆地神木气田二叠系石千峰组5段致密气富集因素及有利区预测[J]. 石油与天然气地质, 2024, 45(3): 739-751. |
[12] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[13] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[14] | 刘成林, 丁振刚, 范立勇, 康锐, 洪思婕, 朱玉新, 陈践发, 王海东, 许诺. 鄂尔多斯盆地含氦天然气地球化学特征与富集影响因素[J]. 石油与天然气地质, 2024, 45(2): 384-392. |
[15] | 万俊雨, 朱建辉, 姚素平, 张毅, 李春堂, 张威, 姜海健, 王杰. 鄂尔多斯盆地中、东部奥陶系马家沟组成烃生物及烃源岩地球生物学评价[J]. 石油与天然气地质, 2024, 45(2): 393-405. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||