石油与天然气地质 ›› 2025, Vol. 46 ›› Issue (1): 178-191.doi: 10.11743/ogg20250113
杨跃明1(), 王茂云2,3(
), 吴长江1, 曾溅辉2,3, 潘珂1, 张欢乐4, 王小娟1, 陈冬霞2,3, 崔虎旺2,3
收稿日期:
2024-09-09
修回日期:
2024-12-06
出版日期:
2025-02-28
发布日期:
2025-03-03
通讯作者:
王茂云
E-mail:yangym@petrochina.com.cn;wmy950904@163.com
第一作者简介:
杨跃明(1963—),男,博士、正高级工程师,油气勘探开发生产管理及研究。E‑mail: yangym@petrochina.com.cn。
基金项目:
Yueming YANG1(), Maoyun WANG2,3(
), Changjiang WU1, Jianhui ZENG2,3, Ke PAN1, Huanle ZHANG4, Xiaojuan WANG1, Dongxia CHEN2,3, Huwang CUI2,3
Received:
2024-09-09
Revised:
2024-12-06
Online:
2025-02-28
Published:
2025-03-03
Contact:
Maoyun WANG
E-mail:yangym@petrochina.com.cn;wmy950904@163.com
摘要:
基于34口井的地层水地球化学数据、含气饱和度数据和岩矿资料,分析了川中地区侏罗系沙溪庙组二段(沙二段)富钙地层水成因,探讨了地层水对源-储分离型致密砂岩气运聚的指示意义。研究结果表明:川中地区沙二段地层水较中国其他致密砂岩气藏具有明显的“钙富集和钠亏损”的特征。地层水矿化度为3.3 ~ 45.6 g/L,为CaCl2型,Ca2+当量比[γ(Ca2+)]为24.7 % ~ 69.5 %。根据γ(Ca2+)将研究区沙二段地层水划分为高钙地层水[γ(Ca2+)≥60 %]、中钙地层水[40 %≤γ(Ca2+)<60 %]和低钙地层水[γ(Ca2+)<40 %]3种类型。3类地层水的化学特征和分布存在明显的差异:高钙地层水主要分布在距角①断裂相对较近且与角①断裂连通的河道砂组,矿化度平均值为34.1 g/L,相对较高,阳离子以Ca2+为主,钠氯系数、脱硫酸系数和碳酸盐平衡系数最小;低钙地层水主要分布在距角①断裂较远或不与角①断裂直接连通的河道砂组,矿化度平均值为3.9 g/L,阳离子以Na+为主,钠氯系数、脱硫酸系数和碳酸盐平衡系数最大;中钙地层水矿化度平均值为17.7 g/L,Na+与Ca2+含量相差不大,钠氯系数、脱硫酸系数和碳酸盐平衡系数介于前两者之间。Ca2+含量较高的须家河组地层水的混入是沙二段地层水富钙的主要原因,后续的水-岩相互作用,尤其是斜长石的钠长石化导致钙进一步富集,而钠减少。川中地区沙二段地层水碳酸盐平衡系数、矿化度以及γ(Ca2+)沿着天然气侧向运移路径逐渐减少,表明富钙地层水化学指标对源-储分离型致密砂岩气藏具有较好的示踪能力。沙二段地层水中的钙越富集,储层的含气性越好,说明富钙地层水对天然气的富集具有指示意义。
中图分类号:
表1
川中地区沙二段地层水离子质量浓度与离子系数"
地层水类型 | 井号 | 离子平均质量浓度/(mg/L) | 苏林地层水分类 | 矿化度/ (g/L) | 钠氯系数 | 脱硫酸 系数 | 碳酸盐平衡 系数 | Schoeller 碱交换系数 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Na+ | Ca2+ | Mg2+ | Ba2+ | Cl- | SO42- | HCO3- | ||||||||
低钙地层水 | J23 | 1 146 | 663 | 4 | 0 | 2 750 | 30 | 247 | CaCl2型 | 4.8 | 0.42 | 2.65 | 0.373 | 5.8 |
QL205-1 | 1 393 | 439 | 9 | 0 | 2 376 | 45 | 223 | CaCl2型 | 4.5 | 0.59 | 3.26 | 0.559 | 3.7 | |
QL205-2 | 1 314 | 384 | 10 | 0 | 2 166 | 38 | 224 | CaCl2型 | 4.2 | 0.60 | 3.10 | 0.521 | 3.2 | |
QL20H | 1 868 | 563 | 30 | 0 | 3 018 | 0 | 289 | CaCl2型 | 5.9 | 0.62 | 0 | 0.513 | 4.0 | |
JQ17 | 1 761 | 973 | 16 | 0 | 4 060 | 46 | 123 | CaCl2型 | 7.0 | 0.43 | 2.61 | 0.126 | 13.6 | |
JH51 | 908 | 372 | 5 | 0 | 1 540 | 82 | 0 | CaCl2型 | 3.3 | 0.59 | 9.03 | 0 | 7.7 | |
JQ830 | 1 084 | 509 | 7 | 0 | 1 810 | 37 | 493 | CaCl2型 | 3.9 | 0.60 | 3.40 | 0.973 | 1.4 | |
JQ826 | 1 138 | 328 | 6 | 0 | 2 035 | 110 | 123 | CaCl2型 | 3.7 | 0.56 | 9.62 | 0.375 | 3.9 | |
JQ508 | 1 615 | 816 | 11 | 0 | 3 660 | 91 | 62 | CaCl2型 | 6.4 | 0.44 | 5.64 | 0.075 | 13.4 | |
JQ509 | 1 133 | 380 | 5 | 0 | 2 370 | 29 | 62 | CaCl2型 | 4.0 | 0.48 | 2.57 | 0.162 | 13.6 | |
JQ518 | 1 049 | 455 | 9 | 0 | 1 975 | 100 | 123 | CaCl2型 | 3.7 | 0.53 | 9.56 | 0.270 | 4.1 | |
中钙地层水 | QL8 | 3 834 | 4 190 | 34 | 43 | 11 765 | 0 | 161 | CaCl2型 | 20.2 | 0.33 | 0 | 0.057 | 72.5 |
QL202-2 | 4 708 | 4 853 | 50 | 70 | 13 632 | 0 | 69 | CaCl2型 | 23.6 | 0.35 | 0 | 0.011 | 128.5 | |
QL203-1 | 3 037 | 2 587 | 32 | 48 | 7 600 | 0 | 238 | CaCl2型 | 13.7 | 0.41 | 0 | 0.131 | 24.2 | |
QL207-5 | 997 | 572 | 11 | 0 | 1 813 | 27 | 207 | CaCl2型 | 3.7 | 0.55 | 2.71 | 0.362 | 3.5 | |
JQ16 | 3 679 | 4 160 | 17 | 0 | 12 000 | 14 | 123 | CaCl2型 | 20.0 | 0.31 | 0.37 | 0.030 | 60.9 | |
JQ3 | 1 719 | 1 480 | 8 | 0 | 4 410 | 47 | 123 | CaCl2型 | 7.8 | 0.39 | 2.75 | 0.083 | 15.8 | |
JQ5H | 1 718 | 1 440 | 7 | 0 | 4 260 | 68 | 937 | CaCl2型 | 8.4 | 0.40 | 3.94 | 0.651 | 2.5 | |
QL207 | 1 867 | 1 620 | 7 | 0 | 5 770 | 30 | 92 | CaCl2型 | 9.4 | 0.32 | 1.61 | 0.057 | 31.9 | |
XQ3-2 | 1 933 | 1 755 | 16 | 0 | 5 035 | 1 | 123 | CaCl2型 | 5.2 | 0.38 | 0.03 | 0.070 | 25.1 | |
XQ3-1 | 1 359 | 1 120 | 13 | 0 | 3 310 | 9 | 123 | CaCl2型 | 3.5 | 0.41 | 0.65 | 0.110 | 14.8 | |
JQ516-2 | 2 516 | 2 405 | 14 | 0 | 6 865 | 33 | 123 | CaCl2型 | 12.0 | 0.37 | 1.32 | 0.051 | 27.9 | |
JQ516-1 | 1 781 | 1 370 | 12 | 0 | 4 610 | 97 | 123 | CaCl2型 | 8.0 | 0.39 | 5.44 | 0.090 | 12.9 | |
JQ510-2 | 1 791 | 1 410 | 12 | 0 | 4 270 | 79 | 123 | CaCl2型 | 7.7 | 0.42 | 4.42 | 0.087 | 12.3 | |
JQ510-1 | 1 811 | 1 530 | 10 | 0 | 4 400 | 66 | 123 | CaCl2型 | 8.0 | 0.41 | 3.64 | 0.080 | 13.7 | |
高钙地层水 | QL18 | 2 864 | 4 084 | 26 | 88 | 9 670 | 0 | 161 | CaCl2型 | 17.1 | 0.34 | 0 | 0.043 | 42.3 |
QL10 | 6 421 | 12 403 | 102 | 191 | 25 729 | 0 | 76 | CaCl2型 | 45.6 | 0.25 | 0 | 0.006 | 253.0 | |
QL10 | 5 400 | 10 526 | 102 | 122 | 23 246 | 0 | 86 | CaCl2型 | 40.0 | 0.23 | 0 | 0.009 | 206.9 | |
QL202-1 | 5 117 | 9 091 | 94 | 135 | 19 192 | 0 | 512 | CaCl2型 | 34.3 | 0.27 | 0 | 0.060 | 27.5 | |
QL213-8 | 4 690 | 8 289 | 84 | 88 | 19 020 | 0 | 20 | CaCl2型 | 32.9 | 0.25 | 0 | 0.002 | 716.5 | |
YT206-8 | 5 795 | 11 194 | 145 | 186 | 24 265 | 0 | 60 | CaCl2型 | 42.1 | 0.24 | 0 | 0.007 | 306.1 | |
QL17 | 5 335 | 10 700 | 36 | 0 | 27 100 | 22 | 123 | CaCl2型 | 43.3 | 0.20 | 0.42 | 0.011 | 149.9 | |
YT207-8 | 4 194 | 5 372 | 62 | 74 | 14 586 | 0 | 31 | CaCl2型 | 24.6 | 0.29 | 0 | 0.005 | 340.7 | |
YT201-7 | 4 812 | 4 925 | 44 | 120 | 16 717 | 0 | 123 | CaCl2型 | 26.9 | 0.29 | 0 | 0.025 | 96.8 |
表2
川中地区须家河组地层水特征(部分数据来自文献[26])"
井号/资料来源 | 离子质量浓度/(mg/L) | 矿化度/(g/L) | 苏林地层水分类 | ||||||
---|---|---|---|---|---|---|---|---|---|
Na+ | Ca2+ | Mg2+ | Ba2+ | Cl- | SO42- | HCO3- | |||
ZT108-1 | 22 735 | 6 063 | 637 | 2 531 | 42 564 | 0 | 673 | 75.4 | CaCl2型 |
ZT108-2 | 23 762 | 12 181 | 1 133 | 770 | 53 963 | 0 | 273 | 93.5 | CaCl2型 |
文献[ | 44 608 | 13 249 | 1 683 | 274 | 102 024 | 0 | 44 | 168.1 | CaCl2型 |
文献[ | 75 253 | 22 420 | 3 013 | 7 548 | 163 145 | 0 | 153 | 272.5 | CaCl2型 |
文献[ | 62 018 | 18 238 | 2 318 | 2 390 | 136 742 | 0 | 89 | 222.0 | CaCl2型 |
1 | 张海祖, 徐同, 谢亚妮, 等. 库车坳陷东部阿合组地层水化学特征及其油气响应[J]. 中国地质, 2024, 51(6): 2017-2027. |
ZHANG Haizu, XU Tong, XIE Yani, et al. Hydrochemical characteristics and hydrocarbon response of stratum water of Ahe Formation in eastern Kuqa Depression[J]. Geology in China, 2024, 51(6): 2017-2027. | |
2 | 朱传庆, 徐同, 邱楠生, 等. 塔里木盆地克拉苏构造带巴什基奇克组地层水化学特征及流体成因[J]. 地质学报, 2023, 97(1): 250-261. |
ZHU Chuanqing, XU Tong, QIU Nansheng, et al. Chemical characteristics and fluid origin of formation water of Bashijiqike Formation in Kelasu structure belt, Tarim Basin[J]. Acta Geologica Sinica, 2023, 97(1): 250-261. | |
3 | 周孝鑫, 楼章华, 朱蓉, 等. 川西坳陷新场气田水文地质地球化学特征及天然气运聚[J]. 地质科学, 2015, 50(1): 330-339. |
ZHOU Xiaoxin, LOU Zhanghua, ZHU Rong, et al. Hydrogeology geochemical characteristics of continental formation water in Xinchang Gas Field, western Sichuan Depression and gas migration and accumulation[J]. Chinese Journal of Geology, 2015, 50(1): 330-339. | |
4 | 吴浩, 郑丽, 慈建发. 新场气田须二段地层水地球化学特征及其石油地质意义[J]. 天然气勘探与开发, 2012, 35(4): 41-44. |
WU Hao, ZHENG Li, Jianfa CI. Geochemical characteristics of formation water in Xujiahe 2 member, Xinchang Gasfield[J]. Natural Gas Exploration and Development, 2012, 35(4): 41-44. | |
5 | 程付启, 金强, 姜桂凤, 等. 地层水在天然气保存中的积极作用[J]. 新疆石油地质, 2006, 27(5): 626-628. |
CHENG Fuqi, JIN Qiang, JIANG Guifeng, et al. Positive effect of formation water on conservation of natural gas[J]. Xinjiang Petroleum Geology, 2006, 27(5): 626-628. | |
6 | 徐波. 东海盆地西湖凹陷天台反转带花港组地层水地球化学特征及其成因[J]. 海洋地质与第四纪地质, 2021, 41(3): 62-71. |
XU Bo. Geochemistry and genesis of the formation water in Huagang Formation of the Tiantai Inversion Zone, the Xihu Depression of the East China Sea Basin[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 62-71. | |
7 | 张汪明, 曾溅辉, 李飞, 等. 柴西地区古近系和新近系地层水化学特征及其成因[J]. 地球科学与环境学报, 2016, 38(4): 558-568. |
ZHANG Wangming, ZENG Jianhui, LI Fei, et al. Hydrochemistry characteristics and origin of formation water of Paleogene and Neogene in the western Qaidam Basin[J]. Journal of Earth Sciences and Environment, 2016, 38(4): 558-568. | |
8 | 刘元晴, 曾溅辉, 周乐, 等. 惠民凹陷沙河街组地层水化学特征及其成因[J]. 现代地质, 2013, 27(5): 1110-1119. |
LIU Yuanqing, ZENG Jianhui, ZHOU Le, et al. Geochemical characteristics and origin of Shahejie Formation water in Huimin Sag[J]. Geoscience, 2013, 27(5): 1110-1119. | |
9 | 唐大海, 谭秀成, 涂罗乐, 等. 川中-川西过渡带沙溪庙组第二段致密砂岩储层物性控制因素及孔隙演化[J]. 成都理工大学学报(自然科学版), 2020, 47(4): 460-471. |
TANG Dahai, TAN Xiucheng, TU Luole, et al. Control factors and pore evolution of tight sandstone reservoir of the second member of Shaximiao Formation in the transition zone between central and western Sichuan Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2020, 47(4): 460-471. | |
10 | 曾溅辉. 沉积盆地流体地质学[M]. 东营: 中国石油大学出版社, 2017: 55. |
ZENG Jianhui. Geofluids in sedimentary basins[M]. Dongying: China University of Petroleum Press, 2017: 55. | |
11 | 王茂云, 曾溅辉, 王小娟, 等. 源-储分离型致密砂岩气藏中气水分布控制因素——以四川盆地中部地区沙溪庙组致密砂岩气为例[J]. 石油学报, 2024, 45(8): 1187-1201, 1218. |
WANG Maoyun, ZENG Jianhui, WANG Xiaojuan, et al. Controlling factors of gas-water distribution in source-reservoir separated tight sandstone gas reservoirs: A case study of Shaximiao Formation tight sandstone gas in central Sichuan Basin[J]. Acta Petrolei Sinica, 2024, 45(8): 1187-1201, 1218. | |
12 | 张本健, 徐唱, 徐亮, 等. 四川盆地东北部三叠系飞三段沉积特征及油气地质意义[J]. 岩性油气藏, 2022, 34(3): 154-163. |
ZHANG Benjian, XU Chang, XU Liang, et al. Sedimentary characteristics and petroleum geological significance of the third member of Triassic Feixianguan Formation in northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(3): 154-163. | |
13 | 柳广弟. 石油地质学[M]. 北京: 石油工业出版社, 2018: 289-290. |
LIU Guangdi. Petroleum geology[M]. Beijing: Petroleum Industry Press, 2018: 289-290. | |
14 | 张葳. 川中东北部早中侏罗世古湖泊演化与致密油储层形成[D]. 成都: 成都理工大学, 2013. |
ZHANG Wei. The evolution of the ancient lake and tight oil reservoirs formation of the early and middle Jurassic in the NE part of Central Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2013. | |
15 | 张本健, 潘珂, 吴长江, 等. 四川盆地金秋气田侏罗系沙溪庙组多期砂组天然气复合成藏机理及模式[J]. 天然气工业, 2022, 42(1): 51-61. |
ZHANG Benjian, PAN Ke, WU Changjiang, et al. Compound gas accumulation mechanism and model of Jurassic Shaximiao Formation multi-stage sandstone formations in Jinqiu Gas Field of the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(1): 51-61. | |
16 | MCCAFFREY M A, LAZAR B, HOLLAND H D. The evaporation path of seawater and the coprecipitation of Br- and K+ with halite[J]. Journal of Sedimentary Petrology, 1987, 57(5): 928-937. |
17 | 孙大鹏, 李秉孝, 马育华, 等. 青海湖湖水的蒸发实验研究[J]. 盐湖研究, 1995, 3(2): 10-19. |
SUN Dapeng, LI Bingxiao, MA Yuhua, et al. An investigation on evaporating experiments for Qinghai-Lake water, China[J]. Journal of Salt Lake Research, 1995, 3(2): 10-19. | |
18 | 朱玉双, 王震亮, 高红, 等. 油气水物化性质与油气运移及保存[J]. 西北大学学报(自然科学版), 2000, 30(5): 415-418. |
ZHU Yushuang, WANG Zhenliang, GAO Hong, et al. The relations between the fluid features in reservoir and the migration and preservation of oil and gas[J]. Journal of Northwest University(Natural Science Edition), 2000, 30(5): 415-418. | |
19 | 李建森, 李廷伟, 马海州, 等. 柴达木盆地西部新近系和古近系油田卤水水化学特征及其地质意义[J]. 水文地质工程地质, 2013, 40(6): 28-36. |
LI Jiansen, LI Tingwei, MA Haizhou, et al. Investigation of the chemical characteristics and its geological significance of the Tertiary oilfield brine in the western Qaidam Basin[J]. Hydrogeology & Engineering Geology, 2013, 40(6): 28-36. | |
20 | 李廷伟, 谭红兵, 樊启顺. 柴达木盆地西部地下卤水水化学特征及成因分析[J]. 盐湖研究, 2006, 14(4): 26-32. |
LI Tingwei, TAN Hongbing, FAN Qishun. Hydrochemical characteristics and origin analysis of the underground brines in west Qaidam Basin[J]. Journal of Salt Lake Research, 2006, 14(4): 26-32. | |
21 | 李伟, 李小地. 应用油田水地球化学及流体势追踪油气运聚途径[J]. 石油勘探与开发, 1996, 23(6): 34-37, 95. |
LI Wei, LI Xiaode. Application of oilfield water geochemistry and fluid potential in tracing the pathway of hydrocarbon migration and accumulation[J]. Petroleum Exploration and Development, 1996, 23(6): 34-37, 95. | |
22 | 于翠玲, 曾溅辉, 林承焰, 等. 断裂带流体活动证据的确定——以东营凹陷胜北断裂带为例[J]. 石油学报, 2005, 26(4): 34-38. |
YU Cuiling, ZENG Jianhui, LIN Chengyan, et al. Evidences of fluid flow along fault zones in Shengbei Fault Zone of Dongying Depression[J]. Acta Petrolei Sinica, 2005, 26(4): 34-38. | |
23 | 刘济民. 油田水文地质勘探中水化学及其特性指标的综合应用[J]. 石油勘探与开发, 1982, 9(6): 49-55. |
LIU Jimin. The characteristics of underground water chemistry and its application in oilfield hydrology exploration[J]. Petroleum Exploration and Development, 1982, 9(6): 49-55. | |
24 | 查明, 陈中红. 山东东营凹陷前古近系水化学场、水动力场与油气成藏[J]. 现代地质, 2008, 22(4): 567-575. |
ZHA Ming, CHEN Zhonghong. Formation water chemical and hydrodynamic fields and their relations to the hydrocarbon accumulation in the pre-Tertiary of Dongying Depression, Shandong[J]. Geoscience, 2008, 22(4): 567-575. | |
25 | 蔡立国, 钱一雄, 刘光祥, 等. 塔河油田及邻区地层水成因探讨[J]. 石油实验地质, 2002, 24(1): 57-60. |
CAI Liguo, QIAN Yixiong, LIU Guangxiang, et al. Origin of formation water in Tahe Oilfield and adjacents[J]. Petroleum Geology & Experiment, 2002, 24(1): 57-60. | |
26 | 苏敏, 吴康军, 李志军, 等. 川中北部磨溪—高石梯地区地层水特征及其油气地质意义[J]. 岩性油气藏, 2021, 33(3): 54-62. |
SU Min, WU Kangjun, LI Zhijun, et al. Characteristics of formation water and its geological significance in Moxi-Gaoshiti area, north-central Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(3): 54-62. | |
27 | BIRKLE P, GARCÍA B M, MILLAND PADRÓN C M. Origin and evolution of formation water at the Jujo-Tecominoacán oil reservoir, Gulf of Mexico. Part 1: Chemical evolution and water-rock interaction[J]. Applied Geochemistry, 2009, 24(4): 543-554. |
28 | LEE DAVISSON M, CRISS R E. Na-Ca-Cl relations in basinal fluids[J]. Geochimica et Cosmochimica Acta, 1996, 60(15): 2743-2752. |
29 | 曹家鑫, 何方方, 朱蓉, 等. 梨树断陷营城组砂岩方解石胶结物碳、氧同位素特征[J]. 地质科技情报, 2018, 37(3): 75-80. |
CAO Jiaxin, HE Fangfang, ZHU Rong, et al. Features of carbon-oxygen isotopes in calcite cement from Yingcheng Formation sandstone in Sujiatun-Pijia area of Lishu fault depression[J]. Bulletin of Geological Science and Technology, 2018, 37(3): 75-80. | |
30 | 曾溅辉, 吴琼, 杨海军, 等. 塔里木盆地塔中地区地层水化学特征及其石油地质意义[J]. 石油与天然气地质, 2008, 29(2): 223-229. |
ZENG Jianhui, WU Qiong, YANG Haijun, et al. Chemical characteristics of formation water in Tazhong area of the Tarim Basin and their petroleum geological significance[J]. Oil &; Gas Geology, 2008, 29(2): 223-229. | |
31 | 杨晓萍, 裘怿楠. 鄂尔多斯盆地上三叠统延长组浊沸石的形成机理、分布规律与油气关系[J]. 沉积学报, 2002, 20(4): 628-632. |
YANG Xiaoping, QIU Yinan. Formation process and distribution of laumontite in Yanchang Formation (Upper Triassic) of Ordos Basin[J]. Acta Sedimentologica Sinica, 2002, 20(4): 628-632. | |
32 | 朱国华. 陕北浊沸石次生孔隙砂体的形成与油气关系[J]. 石油学报, 1985, 6(1): 1-8. |
ZHU Guohua. Formation of lomonitic sand bodies with secondary porosity and their relationship with hydrocarbons[J]. Acta Petrolei Sinica, 1985, 6(1): 1-8. | |
33 | 雷海艳, 樊顺, 鲜本忠, 等. 玛湖凹陷二叠系下乌尔禾组沸石成因及溶蚀机制[J]. 岩性油气藏, 2020, 32(5): 102-112. |
LEI Haiyan, FAN Shun, XIAN Benzhong, et al. Genesis and corrosion mechanism of zeolite of Lower Urhe Formation of Permian in Mahu Depression[J]. Lithologic Reservoirs, 2020, 32(5): 102-112. | |
34 | 陈少云, 杨勇强, 邱隆伟, 等. 川中地区侏罗系沙溪庙组储层特征及控制因素[J]. 天然气地球科学, 2022, 33(10): 1597-1610. |
CHEN Shaoyun, YANG Yongqiang, QIU Longwei, et al. Reservoir characteristics and controlling factors of Jurassic Shaximiao Formation in central Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(10): 1597-1610. | |
35 | 邹辰, 吴永辉, 梁兴, 等.渝西地区走滑断裂活动背景下地层水对页岩气富集的控制作用[J]. 大庆石油地质与开发, 2023, 42(3): 11-19. |
ZOU Chen, WU Yonghui, LIANG Xing, et al. Control effect of formation water on shale gas enrichment in the background of strike-slip fault activity in western Chongqing[J]. 2023, 42(3): 11-19. | |
36 | 熊亮, 衡勇. 中江沙溪庙组致密砂岩气藏气水分布及主控因素[J]. 西南石油大学学报(自然科学版), 2022, 44(3): 47-58. |
XIONG Liang, HENG Yong. Gas and water distribution and main controlling factors of tight sandstone gas reservoir in Shaximiao Formation, Zhongjiang[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2022, 44(3): 47-58. | |
37 | 唐友军, 徐文畅, 王小娟, 等. 川中简阳须家河组地层水化学特征和成因——来自水化学和锶同位素的证据[J]. 断块油气田, 2024, 31(3): 444-452. |
TANG Youjun, XU Wenchang, WANG Xiaojuan, et al. Hydrochemical characteristics and genesis of Xujiahe Formation formation water in Jianyang, central Sichuan: evidence from hydrochemistry and strontium isotope[J]. Fault-Block Oil & Gas Field, 2024, 31(3): 444-452. | |
38 | 赵俊威, 陈恭洋, 赵星, 等. 川西新场地区须二段致密砂岩气藏气水分布特征及主控因素[J]. 断块油气田, 2024, 31(3): 379-386. |
ZHAO Junwei, CHEN Gongyang, ZHAO Xing, et al. Gas-water distribution characteristics and main controlling factors of tight sandstone gas reservoir in the second Member of Xujiahe Formation in Xinchang area, western Sichuan[J]. Fault-Block Oil & Gas Field, 2024, 31(3): 379-386. | |
39 | 李倩文. 渤海湾盆地东营凹陷古近系沙河街组页岩储层润湿性及其主控因素[J]. 石油与天然气地质, 2024, 45(4): 1142-1154. |
LI Qianwen. Wettability and its major determinants of shale reservoirs in the Shahejie Formation, Dongying Sag, Bohai Bay Basin. Oil & Gas Geology[J]. 2024, 45(4): 1142-1154. | |
40 | 黄道军, 周国晓, 杨兆彪, 等. 鄂尔多斯盆地深部煤岩气井产出气-水地球化学特征及其地质响应[J]. 石油与天然气地质, 2024, 45(6): 1617-1627. |
HUANG Daojun, ZHOU Guoxiao, YANG Zhaobiao, et al. Geochemical characterization of gas-water output from deep coalrock methane wells in the Ordos Basin and its geological responses. Oil & Gas Geology[J]. 2024, 45(6): 1617-1627. | |
41 | 曾溅辉, 张亚雄, 张在振, 等. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067-1083. |
ZENG Jianhui, ZHANG Yaxiong, ZHANG Zaizhen, et al. Complex gas-water contacts in tight sandstone gas reservoirs: Distribution pattern and dominant factors controlling their formation and distribution[J]. Oil & Gas Geology, 2023, 44(5): 1067-1083. | |
42 | 赵力彬, 张同辉, 杨学君, 等. 塔里木盆地库车坳陷克深区块深层致密砂岩气藏气水分布特征与成因机理[J]. 天然气地球科学, 2018, 29(4): 500-509. |
ZHAO Libin, ZHANG Tonghui, YANG Xuejun, et al. Gas-water distribution characteristics and formation mechanics in deep tight sandstone gas reservoirs of Keshen block, Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2018, 29(4): 500-509. |
[1] | 刘景东, 任成刚, 王小娟, 潘珂, 王少华, 庞小婷, 关旭. 川中地区中侏罗统沙溪庙组断层输导有效性定量评价[J]. 石油与天然气地质, 2024, 45(6): 1705-1719. |
[2] | 冯潇飞, 赵晓明, 张喜, 葛家旺, 杨长城, 梁岳立, Bouchakour Massine. 川中地区中侏罗世早期天文驱动下的湖平面波动及沉积物分布规律[J]. 石油与天然气地质, 2024, 45(5): 1368-1382. |
[3] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[4] | 史今雄, 赵向原, 潘仁芳, 曾联波, 朱正平. 川中地区震旦系灯影组碳酸盐岩天然裂缝特征及其对气井产能影响[J]. 石油与天然气地质, 2023, 44(2): 393-405. |
[5] | 桂亚倩, 朱光有, 阮壮, 曹颖辉, 沈臻欢, 常秋红, 陈郭平, 于炳松. 塔里木盆地塔北隆起寒武系地层水化学特征、成因及矿物溶解-沉淀模拟[J]. 石油与天然气地质, 2022, 43(1): 196-206. |
[6] | 吕正祥, 杨相, 卿元华, 叶素娟. 川西坳陷中段沙溪庙组砂岩中水-岩-烃作用特征[J]. 石油与天然气地质, 2015, 36(4): 545-554. |
[7] | 陈涛涛, 贾爱林, 何东博, 邵辉, 季丽丹, 闫海军. 川中地区须家河组致密砂岩气藏气水分布形成机理[J]. 石油与天然气地质, 2014, 35(2): 218-223. |
[8] | 殷积峰, 谷志东, 李秋芬. 四川盆地大川中地区深层断裂发育特征及其地质意义[J]. 石油与天然气地质, 2013, 34(3): 376-382. |
[9] | 邓虎成, 周文, 姜浩罡, 姜文利. 川西坳陷盐井沟构造沙溪庙组现今地应力方向[J]. 石油与天然气地质, 2009, 30(6): 720-725,731. |
[10] | 卞从胜, 王红军, 汪泽成, 李永新, 朱如凯, 刘柳红. 四川盆地川中地区须家河组天然气大面积成藏的主控因素[J]. 石油与天然气地质, 2009, 30(5): 548-555,565. |
[11] | 吴志均, 杨宇, 刘应楷. 新场气田上沙溪庙组的应力场特征[J]. 石油与天然气地质, 2003, 24(2): 136-139. |
[12] | 陈传平, 梅博文, 马亭, 蔡春芳. 水溶液中硅质絮状沉淀物的实验研究[J]. 石油与天然气地质, 1994, 15(4): 316-321. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 29
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 34
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||