石油与天然气地质 ›› 2025, Vol. 46 ›› Issue (2): 630-653.doi: 10.11743/ogg20250220
杨晓斌1(
), 陈君青1,2(
), 张潇1,2, 王玉莹1, 火勋港1, 姜福杰3,4, 庞宏3,4, 施砍园3, 冉钧1
收稿日期:2024-12-24
修回日期:2025-03-06
出版日期:2025-04-30
发布日期:2025-04-27
通讯作者:
陈君青
E-mail:yxb1998314@163.com;cjq7745@ 163.com
第一作者简介:杨晓斌(1998—),男,博士,页岩储层可压裂性。E-mail: yxb1998314@163.com。
基金项目:
Xiaobin YANG1(
), Junqing CHEN1,2(
), Xiao ZHANG1,2, Yuying WANG1, Xungang HUO1, Fujie JIANG3,4, Hong PANG3,4, Kanyuan SHI3, Jun RAN1
Received:2024-12-24
Revised:2025-03-06
Online:2025-04-30
Published:2025-04-27
Contact:
Junqing CHEN
E-mail:yxb1998314@163.com;cjq7745@ 163.com
摘要:
页岩油气作为非常规油气资源的一种重要类型,蕴藏着巨大的勘探潜力。可压性对页岩油气勘探开发具有至关重要的影响,弹性参数是衡量页岩可压性的核心参数。综述了国内外页岩弹性参数研究取得的进展,分析了面临的诸多问题和挑战。研究表明:①弹性参数的测量方法多样,有压缩法、超声波测量法、纳米压痕法和声波测井法等实验测量法,及数字岩心计算法、等效介质理论法和分子动力学模拟法等理论计算法。每种方法都有各自的优缺点和使用条件,需要根据实际情况来优选。②实验测量法精度较高,但受采样率和实验条件的影响。声波测井法求取的弹性参数是连续动态的,可以反映瞬时加载下的力学性质,但与真实地层长时间静载荷有一定的差别。物理模型理论计算法虽然模型具有明确的物理意义,但需要输入参数较多,方程复杂,实用性较差,且对非主要因素有过多的忽略或假定。分子动力学模拟虽然能够简单、方便地模拟多种矿物组成复合材料的弹性参数,但与实际的地质模型仍有差别,由于实际地下环境复杂多变、难以模拟,模拟结果与实际值有一定的区别。③页岩弹性参数主要受到矿物组分、天然裂缝、围压、孔隙结构、成岩作用和温度等因素的影响,但有机质特征、赋存流体性质、试样尺寸、层理和地应力差异等也都会产生不同程度的影响。未来研究需要在定量关系、多尺度和复杂地质环境方面开发先进技术。
中图分类号:
表1
各测量方法优、缺点对比"
| 表征方法 | 优点 | 缺点 | |
|---|---|---|---|
实 验 测 量 法 | 压缩法 | 计算方便,较为准确 | 样品要求尺寸较大,较难获取,测试成本较高 |
| 超声波测量法 | 方法操作简单,适用范围广,样品无损 | 测量数据受孔隙及裂缝的影响,增加了数据解释的难度和不确定性,且制样过程极易产生人工裂缝 | |
| 纳米压痕法 | 测试效率高,可以获取微观尺度下的弹性参数信息 | 样品需要进行精细的制备,只能作用于很小的区域,结果可能无法代表整个页岩样本的弹性参数 | |
| 声波测井法 | 直接反映岩石在地下原始应力状态和环境条件下的弹性参数 | 声波信号会受到各种噪声和干扰以及井眼形状、尺寸的影响,声波测井计算弹性参数时,往往难以准确地考虑温度和压力 | |
理 论 计 算 法 | 数字岩心计算法 | 清晰地呈现岩石内部的孔隙、裂缝等微观结构,具有高效性和灵活性 | 算法和模型可能无法完全准确地反映岩石的真实结构 |
| 等效介质理论法 | 理论基础扎实,适用性广泛,便于理解和分析,能够反映宏观特性 | 等效介质理论是基于一系列的简化假设而建立的,难以考虑微观结构的细节,对各向异性的描述不足 | |
| 分子动力学模拟法 | 能够从原子和分子层面揭示页岩的微观结构和相互作用,高度的灵活性和可定制性,高效的计算和分析能力,避免实验误差和干扰 | 模型和参数具有不确定性。不同的势函数可能会导致不同的模拟结果。计算资源需求大,难以完全准确地模拟复杂的地质条件 | |
| 1 | 倪良田, 杜玉山, 蒋龙, 等. 渤海湾盆地济阳坳陷陆相断陷湖盆中-低成熟度页岩 “富烃-成储-富集-高产” 的理论认识与开发实践[J]. 石油与天然气地质, 2024, 45(5): 1417-1430. |
| NI Liangtian, DU Yushan, JIANG Long, et al. Medium-to-low maturity shales in the faulted lacustrine basin in Jiyang Depression, Bohai Bay Basin: Theoretical understanding of their hydrocarbon generation, reservoir formation, and shale oil enrichment and high-yield nature and exploitation practices[J]. Oil & Gas Geology, 2024, 45(5): 1417-1430. | |
| 2 | 蒋前前, 吴娟, 王恒, 等. 川南地区下志留统龙马溪组有机质热演化及其主控因素[J]. 石油与天然气地质, 2024, 45(5): 1321-1336. |
| JIANG Qianqian, WU Juan, WANG Heng, et al. Thermal evolution of organic matter in the Lower Silurian Longmaxi Formation, southern Sichuan Basin and its main controlling factors[J]. Oil & Gas Geology, 2024, 45(5): 1321-1336. | |
| 3 | 杨亚东, 邹龙庆, 王一萱, 等. 川南深层页岩气藏压裂裂缝导流能力影响因素分析[J]. 特种油气藏, 2024, 31(5): 162-167. |
| YANG Yadong, ZOU Longqing, WANG Yixuan, et al. Analysis of factors affecting the fracture conductivity in deep shale gas reservoirs of southern Sichuan[J]. Special Oil & Gas Reservoirs, 2024, 31(5): 162-167. | |
| 4 | 王纪伟, 宋丽阳, 康玉柱, 等. 中美典型常压页岩气开发对比与启示[J]. 特种油气藏, 2024, 31(4): 1-9. |
| WANG Jiwei, SONG Liyang, KANG Yuzhu, et al. Comparison and implications of typical normal pressure shale gas development between China and the United States[J]. Special Oil & Gas Reservoirs, 2024, 31(4): 1-9. | |
| 5 | 张琴, 邱振, 赵群, 等. 海-陆过渡相与海相页岩气 “甜点段” 差异特征与形成机理[J]. 石油与天然气地质, 2024, 45(5): 1400-1416. |
| ZHANG Qin, QIU Zhen, ZHAO Qun, et al. Different characteristics and formation mechanisms of transitional and marine shale gas sweet spots[J]. Oil & Gas Geology, 2024, 45(5): 1400-1416. | |
| 6 | 黎茂稳, 金之钧, 董明哲, 等. 陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(4): 489-505. |
| LI Maowen, JIN Zhijun, DONG Mingzhe, et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. Petroleum Geology and Experiment, 2020, 42(4): 489-505. | |
| 7 | 赵金洲, 王松, 李勇明. 页岩气藏压裂改造难点与技术关键[J]. 天然气工业, 2012, 32(4): 46-49. |
| ZHAO Jinzhou, WANG Song, LI Yongming. Difficulties and key techniques in the fracturing treatment of shale gas reservoirs[J]. Natural Gas Industry, 2012, 32(4): 46-49. | |
| 8 | 高和群, 高玉巧, 何希鹏, 等. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
| GAO Hequn, GAO Yuqiao, HE Xipeng, et al. Rock mechanical properties and controlling factors for shale oil reservoirs in the second member of the Paleogene Funing Formation, Subei Basin[J]. Oil & Gas Geology, 2024, 45(2): 502-515. | |
| 9 | 齐丰妍, 张坚, 宋文炳, 等. 溶蚀水泥浆弹性模量预测的分步解析法[J]. 硅酸盐通报, 2024, 43(8): 2758-2767. |
| QI Fengyan, ZHANG Jian, SONG Wenbing, et al. A step-by-step analytical solution for predicting elastic modulus of leached cement paste[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(8): 2758-2767. | |
| 10 | 殷玉平, 金智荣, 杲春, 等. 苏北盆地阜二段页岩储层力学特征评价[J]. 石油化工应用, 2024, 43(9): 80-84. |
| YIN Yuping, JIN Zhirong, GAO Chun, et al. Mechanical characteristics evaluation of the Fu2 member shale reservoir in the Subei Basin[J]. Petrochemical Industry Application, 2024, 43(9): 80-84. | |
| 11 | 史瑞其, 鲍祥生, 汪轩, 等. 不同干燥岩石体积模量计算方法在S油田的对比分析研究[J]. 复杂油气藏, 2023, 16(4): 405-409, 426. |
| SHI Ruiqi, BAO Xiangsheng, WANG Xuan, et al. Comparative analysis of bulk modulus calculation methods of different dry rocks in S Oilfield[J]. Complex Hydrocarbon Reservoirs, 2023, 16(4): 405-409, 426. | |
| 12 | 刘秀军, 马占国. 拉拔过程中灌浆锚固系统注浆体剪切模量变化规律研究[J]. 建筑科学, 2024, 40(11): 58-63. |
| LIU Xiujun, MA Zhanguo. Study on the variation law of shear modulus of the grout in the grouted anchorage system during the pulling process[J]. Building Science, 2024, 40(11): 58-63. | |
| 13 | 张冲, 叶青, 周伟, 等. 基于力学层划分的火成岩潜山裂缝分形维变识别方法[J]. 地球科学, 2025, 50(2): 521-534. |
| ZHANG Chong, YE Qing, ZHOU Wei, et al. A Method for Identifying the Fractal Dimension Variation of Fractures in Igneous Buried Hills Based on the Division of Mechanical Layers[J]. Earth Science, 2025, 50(2): 521-534. | |
| 14 | 翟文宝, 李军, 周英操, 等. 基于测井资料的页岩储层可压裂性评价新方法[J]. 岩性油气藏, 2018, 30(3): 112-123. |
| ZHAI Wenbao, LI Jun, ZHOU Yingcao, et al. New evaluation method of shale reservoir fracability based on logging data[J]. Lithologic Reservoirs, 2018, 30(3): 112-123. | |
| 15 | 杨秀娟, 张敏, 闫相祯. 基于声波测井信息的岩石弹性力学参数研究[J]. 石油地质与工程, 2008, 22(4): 39-42. |
| YANG Xiujuan, ZHANG Min, YAN Xiangzhen. Study on acoustic logging-based rock elasticity parameters[J]. Petroleum Geology and Engineering, 2008, 22(4): 39-42. | |
| 16 | 赵立新, 刘学锋, 孙建孟, 等. 应用声学岩石物理模型进行储层流体性质识别[J]. 测井技术, 2009, 33(5): 444-448. |
| ZHAO Lixin, LIU Xuefeng, SUN Jianmeng, et al. On reservoir fluid identification based on sonic rock physics model[J]. Well Logging Technology, 2009, 33(5): 444-448. | |
| 17 | GONG Fei, DI Bangran, WEI Jianxia, et al. Experimental investigation of the effects of clay content and compaction stress on the elastic properties and anisotropy of dry and saturated synthetic shale[J]. Geophysics, 2018, 83(5): C195-C208. |
| 18 | SONE H, ZOBACK M D. Mechanical properties of shale-gas reservoir rocks—Part 1: Static and dynamic elastic properties and anisotropy[J]. Geophysics, 2013, 78(5): D381-D392. |
| 19 | 黎丁源. 人工页岩矿物对动静态弹性参数及各向异性的影响[D]. 北京: 中国石油大学(北京), 2019. |
| LI Dingyuan. Influence of artificial shale minerals on dynamic and static elastic parameters and anisotropy[D]. Beijing: China University of Petroleum (Beijing), 2019. | |
| 20 | 刘子, 王树太. 页岩纳米压痕实验力学参数的相关性研究[J]. 科技与创新, 2023(7): 89-91. |
| LIU Zi, WANG Shutai. Correlation study of mechanical parameters in nanoindentation experiment of shale[J]. Science and Technology & Innovation, 2023(7): 89-91. | |
| 21 | 翟鸿宇, 常旭, 朱维, 等. 基于水力压裂实验的龙马溪组页岩各向异性特征研究[J]. 中国科学: 地球科学, 2021, 51(3): 380-397. |
| ZHAI Hongyu, CHANG Xu, ZHU Wei, et al. Study on anisotropy of Longmaxi Shale using hydraulic fracturing experiment[J]. Science China Earth Sciences, 2021, 51(3): 380-397. | |
| 22 | 田坤云, 张瑞林. 高压水及负压加载状态下三轴应力渗流试验装置的研制[J]. 岩土力学, 2014, 35(11): 3338-3344. |
| TIAN Kunyun, ZHANG Ruilin. Research on triaxial stress seepage experiment device loaded by high pressure water and negative pressure[J]. Rock and Soil Mechanics, 2014, 35(11): 3338-3344. | |
| 23 | 刘卫国, 韩登宇, 苗文韬, 等. 利用地球物理测井数据计算新疆托克逊县白嘴山地区岩石力学参数的方法探讨[J]. 铀矿地质, 2013, 29(5): 310-314. |
| LIU Weiguo, HAN Dengyu, MIAO Wentao, et al. Discussion on the calculation of mechanical parameters of rocks with geophysical logging data in Baizuishan region, Tuokexun, Xinjiang[J]. Uranium Geology, 2013, 29(5): 310-314. | |
| 24 | 赵绍智, 蒋添雨, 刘志翔, 等. 基于超声波压缩波测量软组织杨氏模量[J]. 中国医疗设备, 2019, 34(2): 35-37, 53. |
| ZHAO Shaozhi, JIANG Tianyu, LIU Zhixiang, et al. Measurement of Young’s modulus of soft tissues using ultrasonic compression wave[J]. China Medical Devices, 2019, 34(2): 35-37, 53. | |
| 25 | 魏勤, 卫婷, 董师润, 等. 超声波法测量金属材料的杨氏模量和剪切模量[J]. 江苏科技大学学报(自然科学版), 2012, 26(1): 27-30. |
| WEI Qin, WEI Ting, DONG Shirun, et al. Ultrasonic determination of Young’s and shear modulus of metal materials[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2012, 26(1): 27-30. | |
| 26 | ZHANG Zhibo, WANG Enyuan, LIU Xianan, et al. Anisotropic characteristics of ultrasonic transmission velocities and stress inversion during uniaxial compression process[J]. Journal of Applied Geophysics, 2021, 186: 104274. |
| 27 | 江昊焱. X地区致密砂岩储层岩石力学特性及体积压裂甜点研究[D]. 西安: 西安石油大学, 2020. |
| JIANG Haoyan. Study on rock mechanical characteristics and volume fracturing “sweet spot” of tight sandstone reservoir in area X[D]. Xi’an: Xi’an Shiyou University, 2020. | |
| 28 | 张茜. 致密砂岩储层岩石力学性质与可压性研究[D]. 北京: 中国石油大学(北京), 2019. |
| ZHANG Qian. Study on mechanical properties and compressibility of tight sandstone reservoirs[D]. Beijing: China University of Petroleum (Beijing), 2019. | |
| 29 | 戴世立, 王力娟, 辛朝坤. 松辽盆地北部古中央隆起带基底岩石弹性参数测试及特征分析[J]. 石油地球物理勘探, 2023, 58(2): 443-453. |
| DAI Shili, WANG Lijuan, XIN Zhaokun. Testing and characteristic analysis of elastic parameters of basement rock in the paleo-central uplift belt in the northern Songliao Basin[J]. Oil Geophysical Prospecting, 2023, 58(2): 443-453. | |
| 30 | MOULA M, MEILLE S, LE CORRE V, et al. Mechanical characterization of meso-porous alumina by micro- and nano-indentation[J]. Materials Today Communications, 2020, 25: 101315. |
| 31 | 孟筠青, 牛家兴, 夏捃凯, 等. 纳米尺度下煤的力学性质及破坏机制研究[J]. 岩石力学与工程学报, 2020, 39(1): 84-92. |
| MENG Yunqing, NIU Jiaxing, XIA Junkai, et al. Study on mechanical properties and failure mechanisms of coal at the nanometer scale[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 84-92. | |
| 32 | 时贤, 蒋恕, 卢双舫, 等. 利用纳米压痕实验研究层理性页岩岩石力学性质——以渝东南酉阳地区下志留统龙马溪组为例[J]. 石油勘探与开发, 2019, 46(1): 155-164. |
| SHI Xian, JIANG Shu, LU Shuangfang, et al. Investigation of mechanical properties of bedded shale by nanoindentation tests: A case study on Lower Silurian Longmaxi Formation of Youyang area in southeast Chongqing, China[J]. Petroleum Exploration and Development, 2019, 46(1): 155-164. | |
| 33 | 党发宁, 高天晴, 原诗晶, 等. 化学环境对灰岩力学性能影响的纳米压痕试验研究[J]. 岩石力学与工程学报, 2022, 41(): 3260-3270. |
| DANG Faning, GAO Tianqing, YUAN Shijing, et al. Nanoindentation test study on the influence of chemical environment on the mechanical properties of limestone[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S2): 3260-3270. | |
| 34 | 顾士坦, 逯英棋, 李文帅, 等. 基于纳米压痕的煤系泥岩细观力学及断裂性能试验研究[J]. 煤炭工程, 2023, 55(2): 128-133. |
| GU Shitan, LU Yingqi, LI Wenshuai, et al. Experiment on meso-mechanical and fracture characteristics of coal measures mudstone using nanoindentation[J]. Coal Engineering, 2023, 55(2): 128-133. | |
| 35 | OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583. |
| 36 | 罗婷倚, 张清淞, 刘志彬, 等. 广西河池红层泥岩力学特性的纳米压痕试验研究[J]. 水资源与水工程学报, 2022, 33(6): 174-181. |
| LUO Tingyi, ZHANG Qingsong, LIU Zhibin, et al. Nanoindentation experimental study on mechanical properties of red mudstone in Hechi, Guangxi Province[J]. Journal of Water Resources and Water Engineering, 2022, 33(6): 174-181. | |
| 37 | 蔡益栋, 贾丁, 邱峰, 等. 基于纳米压痕的煤岩微观力学特性及其影响因素剖析[J]. 煤炭学报, 2023, 48(2): 879-890. |
| CAI Yidong, JIA Ding, QIU Feng, et al. Micromechanical properties of coal and its influencing factors based on nanoindentation[J]. Journal of China Coal Society, 2023, 48(2): 879-890. | |
| 38 | 徐赣川, 钟光海, 谢冰, 等. 基于岩石物理实验的页岩脆性测井评价方法[J]. 天然气工业, 2014, 34(12): 38-45. |
| XU Ganchuan, ZHONG Guanghai, XIE Bing, et al. Petrophysical experiment-based logging evaluation method of shale brittleness[J]. Natural Gas Industry, 2014, 34(12): 38-45. | |
| 39 | 郭培峰, 邓虎成, 邓勇, 等. 鄂尔多斯盆地南缘长8储层岩石力学特征及影响因素[J]. 科学技术与工程, 2019, 19(18): 189-198. |
| GUO Peifeng, DENG Hucheng, DENG Yong, et al. Rock mechanics characteristics and influence factors analysis of Chang 8 reservoir in the southern margin of ordos basin[J]. Science Technology and Engineering, 2019, 19(18): 189-198. | |
| 40 | 罗发强, 王志战, 张元春, 等. 复杂地层岩石力学参数实时求取方法——以塔里木盆地巴楚隆起为例[J]. 科学技术与工程, 2020, 20(17): 6842-6847. |
| LUO Faqiang, WANG Zhizhan, ZHANG Yuanchun, et al. The real-time calculation methods of rock mechanics parameters in complex strata: A case study of the Bachu uplift in Tarim Basin[J]. Science Technology and Engineering, 2020, 20(17): 6842-6847. | |
| 41 | 印兴耀, 秦秋萍, 宗兆云. 数字岩石物理中弹性参数的有限差分计算方法[J]. 地球物理学报, 2016, 59(10): 3883-3890. |
| YIN Xingyao, QIN Qiuping, ZONG Zhaoyun. Simulation of elastic parameters based on the finite difference method in digital rock physics[J]. Chinese Journal of Geophysics, 2016, 59(10): 3883-3890. | |
| 42 | 刘向君, 朱洪林, 梁利喜. 基于微CT技术的砂岩数字岩石物理实验[J]. 地球物理学报, 2014, 57(4): 1133-1140. |
| LIU Xiangjun, ZHU Honglin, LIANG Lixi. Digital rock physics of sandstone based on micro-CT technology[J]. Chinese Journal of Geophysics, 2014, 57(4): 1133-1140. | |
| 43 | 宗兆云, 印兴耀, 吴国忱. 基于叠前地震纵横波模量直接反演的流体检测方法[J]. 地球物理学报, 2012, 55(1): 284-292. |
| ZONG Zhaoyun, YIN Xingyao, WU Guochen. Fluid identification method based on compressional and shear modulus direct inversion[J]. Chinese Journal of Geophysics, 2012, 55(1): 284-292. | |
| 44 | 印兴耀, 李龙. 基于岩石物理模型的纵、横波速度反演方法[J]. 石油物探, 2015, 54(3): 249-253, 281. |
| YIN Xingyao, LI Long. P-wave and S-wave velocities inversion based on rock physics model[J]. Geophysical Prospecting for Petroleum, 2015, 54(3): 249-253, 281. | |
| 45 | 孙建孟, 姜黎明, 刘学锋, 等. 数字岩心技术测井应用与展望[J]. 测井技术, 2012, 36(1): 1-7. |
| SUN Jianmeng, JIANG Liming, LIU Xuefeng, et al. Log application and prospect of digital core technology[J]. Well Logging Technology, 2012, 36(1): 1-7. | |
| 46 | 孙超, 张怀, 唐跟阳, 等. 基于三维数字岩心的介观尺度流弹性响应数值模拟[J]. 地球物理学报, 2023, 66(8): 3444-3462. |
| SUN Chao, ZHANG Huai, TANG Genyang, et al. 3D digital core applied to numerically predict elastic response caused by mesoscopic flow[J]. Chinese Journal of Geophysics, 2023, 66(8): 3444-3462. | |
| 47 | WANG Zidong, CAO Gongqi, LIU Jianlin, et al. Prediction of the anisotropic effective moduli of shales based on the Mori-Tanaka model and the digital core technique[J]. Pure and Applied Geophysics, 2023, 180(8): 2981-2998. |
| 48 | 赵建鹏, 陈惠, 李宁, 等. 三维数字岩心技术岩石物理应用研究进展[J]. 地球物理学进展, 2020, 35(3): 1099-1108. |
| ZHAO Jianpeng, CHEN Hui, LI Ning, et al. Research advance of petrophysical application based on digital core technology[J]. Progress in Geophysics, 2020, 35(3): 1099-1108. | |
| 49 | 张乃毓. 基于数字岩心的页岩孔隙结构分析及导电性建模[D]. 长春: 吉林大学, 2023. |
| ZHANG Naiyu. Pore structure analysis and conductivity modeling of shale based on digital core[D]. Changchun: Jilin University, 2023. | |
| 50 | 卫凯莉. 松辽盆地青山口组典型井页岩多尺度数字岩心建模研究[D]. 大庆: 东北石油大学, 2023. |
| WEI Kaili. Multi-scale digital core modeling of typical well shale in Qingshankou Formation in Songliao Basin[D]. Daqing: Northeast Petroleum University, 2023. | |
| 51 | 赖富强, 刘粤蛟, 张海杰, 等. 基于数字岩心模拟的深层页岩气储层可压性评价模型[J]. 中国石油大学学报(自然科学版), 2022, 46(5): 1-11. |
| LAI Fuqiang, LIU Yuejiao, ZHANG Haijie, et al. Fracturing properties model of deep shale gas reservoir based on digital core simulation[J]. Journal of China University of Petroleum(Edition of Natural Science), 2022, 46(5): 1-11. | |
| 52 | 李宏伟. 几类偏微分方程的自适应最小二乘混合有限元方法[D]. 青岛: 青岛科技大学, 2009. |
| LI Hongwei. An adaptive least squares mixed finite element method for several partial differential equations[D]. Qingdao: Qingdao University of Science and Technology, 2009. | |
| 53 | 齐爽. 求解偏微分方程的二元样条有限元方法[D]. 大连: 大连理工大学, 2010. |
| QI Shuang. Numerical solution of partial differential equations by bivariate spline finite method[D]. Dalian: Dalian University of Technology, 2010. | |
| 54 | 李小彬. 基于三维数字岩心的岩石孔隙结构表征及弹渗属性模拟研究[D]. 武汉: 中国地质大学, 2021. |
| LI Xiaobin. Characterization of pore structure and simulation of elasticity and permeability based on 3D digital cores[D]. Wuhan: China University of Geosciences, 2021. | |
| 55 | HAN Dehua, NUR A, MORGAN D. Effects of porosity and clay content on wave velocities in sandstones[J]. Geophysics, 1986, 51(11): 2093-2107. |
| 56 | ARNS J Y, ARNS C H, SHEPPARD A P, et al. Relative permeability from tomographic images; effect of correlated heterogeneity[J]. Journal of Petroleum Science and Engineering, 2003, 39(3/4): 247-259. |
| 57 | 闫伟林, 章华兵, 郑建东, 等. 基于数字岩心的古龙页岩油储层含油饱和度建模方法及其应用[J]. 大庆石油地质与开发, 2022, 41(3): 91-102. |
| YAN Weilin, ZHANG Huabing, ZHENG Jiandong, et al. Digital core-based modeling method and application of oil saturation in Gulong shale oil reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(3): 91-102. | |
| 58 | 秦秋萍. 数字岩石物理中弹性参数的有限差分计算方法及应用[D]. 青岛: 中国石油大学(华东), 2017. |
| QIN Qiuping. Simulation of elastic parameters based on finite difference method and application in digital rock physics[D]. Qingdao: China University of Petroleum (East China), 2017. | |
| 59 | 郑颖. 基于数字岩心有限元模拟的弹性参数计算方法及应用研究[D]. 青岛: 中国石油大学(华东), 2018. |
| ZHENG Ying. Research on the elastic parameter simulation and application based on the finite element method of digital core[D]. Qingdao: China University of Petroleum (East China), 2018. | |
| 60 | 崔颖姣. 基于数字岩心的含流体岩石弹性参数模拟[D]. 北京: 中国石油大学(北京), 2019. |
| CUI Yingjiao. Simulation of elastic parameters of fluid containing rock based on digital core[D]. Beijing: China University of Petroleum(Beijing), 2019. | |
| 61 | 赵岩龙, 李星宇, 方正魁, 等. 裂缝性页岩油储层三维数字岩心电阻率模拟[J]. 西安石油大学学报(自然科学版), 2022, 37(1): 51-57. |
| ZHAO Yanlong, LI Xingyu, FANG Zhengkui, et al. Numerical simulation of resistivity of 3D digital core of fractured shale oil reservoir[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2022, 37(1): 51-57. | |
| 62 | 周琦, 印兴耀, 李坤. 煤系地层地震岩石物理建模及横波预测方法[J]. 石油地球物理勘探, 2022, 57(2): 357-366. |
| ZHOU Qi, YIN Xingyao, LI Kun. Seismic rock physics modeling and shear wave velocity prediction method of coal measure strata[J]. Oil Geophysical Prospecting, 2022, 57(2): 357-366. | |
| 63 | 陈超, 印兴耀, 陈祖庆, 等. 基于页岩岩石物理等效模型的地层压力系数预测方法[J]. 石油地球物理勘探, 2022, 57(2): 367-376, 394. |
| CHEN Chao, YIN Xingyao, CHEN Zuqing, et al. Prediction for formation pressure coefficients based on an equivalent petrophysical model of shale[J]. Oil Geophysical Prospecting, 2022, 57(2): 367-376, 394. | |
| 64 | 武陈月, 印兴耀, 印林杰, 等. 考虑压力的深部页岩储层地震岩石物理建模方法及应用[J]. 石油地球物理勘探, 2023, 58(4): 893-901. |
| WU Chenyue, YIN Xingyao, YIN Linjie, et al. Rock physical modelling for deep shale reservoirs involving the influence of pressure[J]. Oil Geophysical Prospecting, 2023, 58(4): 893-901. | |
| 65 | 梁雨薇. 基于岩石物理建模的深洼带碎屑岩储层地震响应特征分析[D]. 青岛: 中国石油大学(华东), 2019. |
| LIANG Yuwei. Seismic response analysis of deep sag- clastic reservoirs based on petrophysical modeling[D]. Qingdao: China University of Petroleum (East China), 2019. | |
| 66 | 陈颙, 黄庭芳, 刘恩儒. 岩石物理学[M]. 合肥: 中国科学技术大学出版社, 2009. |
| CHEN Yong, HUANG Tingfang, LIU Enru. Rock physics[M]. Hefei: University of Science and Technology of China Press, 2009. | |
| 67 | 马淑芳, 韩大匡, 甘利灯, 等. 地震岩石物理模型综述[J]. 地球物理学进展, 2010, 25(2): 460-471. |
| MA Shufen, HAN Dakuang, GAN Lideng, et al. A review of seismic rock physics models[J]. Progress in Geophysics, 2010, 25(2): 460-471. | |
| 68 | 石学文, 王畅, 张洞君, 等. 基于岩石物理建模的页岩气地层压力地震预测方法[J]. 海相油气地质, 2025, 30(1): 89-96.. |
| SHI Xuewen, WANG Chang, ZHANG Dongjun, et al. Seismic Prediction Method of Shale Gas Formation Pressure Based on Rock Physics Modeling[J]. Marine Origin Petroleum Geology, 2025, 30(1): 89-96. | |
| 69 | 纪莉莉. 致密砂岩岩石物理模型探讨及其在反演中的应用[D]. 北京: 中国石油大学(北京), 2019. |
| JI Lili. Discussion on physical model of tight sandstone rock and its application in inversion[D]. Beijing: China University of Petroleum (Beijing), 2019. | |
| 70 | YANG Wenqiang, ZONG Zhaoyun. Rock-physics model of hydrate reservoirs considering fluid inhomogeneous mixing, the temperature dependence of hydrate elastic modulus, and simplified pore structure parameters[J]. Journal of Applied Geophysics, 2023, 216: 105157. |
| 71 | 周琦杰. 基于岩石物理理论的致密砂岩等效模型构建及应用[D]. 青岛: 中国石油大学(华东), 2017. |
| ZHOU Qijie. Construction and application of effective model of tight sandstone based on rock physics theory[D]. Qingdao: China University of Petroleum (East China), 2017. | |
| 72 | 王璞. 页岩气储层地震岩石物理模型研究[D]. 青岛: 中国石油大学(华东), 2015. |
| WANG Pu. Research on seismic rock physics modeling for shale gas reservoir[D]. Qingdao: China University of Petroleum (East China), 2015. | |
| 73 | 崔云江, 陆云龙, 汪瑞宏, 等. 一种基于等效介质理论的储层流体识别技术[J]. 中国海上油气, 2018, 30(2): 71-77. |
| CUI Yunjiang, LU Yunlong, WANG Ruihong, et al. A reservoir fluid identification technology based on equivalent medium theories[J]. China Offshore Oil and Gas, 2018, 30(2): 71-77. | |
| 74 | VOIGT W. Lehrbuch der kristallphysik: Teubner-Leipzig[D]. New York: Macmillan, 1928: 1-20. |
| 75 | REUSS A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle[J]. Journal of Applied Mathematics and Mechanics, 1929, 9(1): 49-58. |
| 76 | HASHIN Z, SHTRIKMAN S. A variational approach to the theory of the elastic behaviour of multiphase materials[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(2): 127-140. |
| 77 | 乔汉青, 刘财, 方慧, 等. 基于统计学岩石物理模型的火山岩横波速度预测方法[J]. 地球科学, 2023, 48(8): 2993-3006. |
| QIAO Hanqing, LIU Cai, FANG Hui, et al. S-wave velocity prediction method of volcanic rock based on statistical rock-physics model[J]. Earth Science, 2023, 48(8): 2993-3006. | |
| 78 | 郭静怡, 李敏, 庄明伟, 等. 速度-压力岩石物理模型及其在页岩孔隙压力预测中的应用[J]. 石油勘探与开发, 2023, 50(2): 360-372. |
| GUO Jingyi, LI Min, ZHUANG Mingwei, et al. Rock physics model for velocity-pressure relations and its application to shale pore pressure estimation[J]. Petroleum Exploration and Development, 2023, 50(2): 360-372. | |
| 79 | 秦小英. 基于岩石物理模型的致密砂岩气储层参数地震反演与定量解释研究[D]. 长春: 吉林大学, 2023. |
| QIN Xiaoying. The research of seismic inversion and quantitative interpretation of tight gas sandstone reservoir parameters based on rock physics model[D]. Changchun: Jilin University, 2023. | |
| 80 | KUSTER G T, TOKSOZ M N. Velocity and attenuation of seismic waves in two-phase media; Part I, Theoretical formulations[J]. Geophysics, 1974, 39(5): 587-606. |
| 81 | 张金强, 刘振峰, 刘喜武, 等. 致密砂岩储层自适应岩石物理建模方法[J]. 石油地球物理勘探, 2021, 56(4): 792-800, 808. |
| ZHANG Jinqiang, LIU Zhenfeng, LIU Xiwu, et al. Self-adaptive rock physics modeling method for tight sandstone reservoirs[J]. Oil Geophysical Prospecting, 2021, 56(4): 792-800, 808. | |
| 82 | CLEARY M P, LEE S M, CHEN I W. Self-consistent techniques for heterogeneous media[J]. Journal of the Engineering Mechanics Division, 1980, 106(5): 861-887. |
| 83 | NORRIS A N. A differential scheme for the effective moduli of composites[J]. Mechanics of Materials, 1985, 4(1): 1-16. |
| 84 | ZIMMERMAN R W. Compressibility of sandstones[M]. New York: Elsevier, 1991: 173. |
| 85 | BERRYMAN J. Mixture theories for rock properties in rock physics and phase relations-a handbook of physical constants[M]. Washington, D.C.: American Geophysical Union, 1995. |
| 86 | BERRYMAN J G. Bounds and estimates for transport coefficients of random and porous media with high contrasts[J]. Journal of Applied Physics, 2005, 97(6): 063504. |
| 87 | WOOD A B. A text book of sound[M]. New York: The Macmillan Company, 1955: 360. |
| 88 | GASSMANN F. Elastic waves through a packing of spheres[J]. Geophysics, 1951, 16(4): 673-685. |
| 89 | DREW M G B. The art of molecular dynamics simulation: D. C. Rapaport. Cambridge University Press, Cambridge (1995)[J]. Computers & Chemistry, 1996, 20(4): 489. |
| 90 | 陈正隆, 徐为人, 汤立达. 分子模拟的理论与实践[M]. 北京: 化学工业出版社, 2007. |
| CHEN Zhenglong, XU Weiren, TANG Lida. Theory and practice of molecular simulation[M]. Beijing: Chemical Industry Press, 2007. | |
| 91 | SCOTT R. Computer simulation of liquids. By M. P. Allen, D. J. Tildesley[J]. Mathematics of Computation, 1991, 57(195): 442-444. |
| 92 | 卢百平, 钟仁显. 分子动力学在材料科学中的应用[J]. 铸造技术, 2007, 28(1): 146-148. |
| LU Baiping, ZHONG Renxian. Application of molecular dynamics on material science[J]. Foundry Technology, 2007, 28(1): 146-148. | |
| 93 | 施砍园, 陈君青, 庞雄奇, 等. 储层矿物润湿性的测量方法综述[J]. 特种油气藏, 2024, 31(2): 1-9. |
| SHI Kanyuan, CHEN Junqing, PANG Xiongqi, et al. A review of methods for measuring the wettability of reservoir minerals[J]. Special Oil & Gas Reservoirs, 2024, 31(2): 1-9. | |
| 94 | 丛奇, 陈君青, 卢贵武, 等. 利用分子动力学模拟研究页岩吸附能力的影响因素及微观机理的综述[J]. 中南大学学报(自然科学版), 2022, 53(9): 3474-3489. |
| CONG Qi, CHEN Junqing, LU Guiwu, et al. Review on influencing factors and microscopic mechanism of shale adsorption capacity by molecular dynamics simulation[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3474-3489. | |
| 95 | PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. |
| 96 | 陈陶, 徐金明. 温度和压强对花岗岩中矿物微观物理力学特性的影响[J]. 工程地质学报, 2017, 25(6): 1474-1481. |
| CHEN Tao, XU Jinming. Effects of temperature and pressure on microscopic physical and mechanical features of minerals in granite[J]. Journal of Engineering Geology, 2017, 25(6): 1474-1481. | |
| 97 | 杨宇, 徐国元. 水化蒙脱石拉伸力学特性的分子动力学模拟研究[J]. 土木与环境工程学报(中英文), 2024, 46(6): 156-166. |
| YANG Yu, XU Guoyuan. Study on tensile mechanical properties of hydrated montmorillonite based on molecular dynamics simulation[J]. Journal of Civil and Environmental Engineering, 2024, 46(6): 156-166. | |
| 98 | 赵金洲, 许文俊, 李勇明, 等. 页岩气储层可压性评价新方法[J]. 天然气地球科学, 2015, 26(6): 1165-1172. |
| ZHAO Jinzhou, XU Wenjun, LI Yongming, et al. A new method for fracability evaluation of shale-gas reservoirs[J]. Natural Gas Geoscience, 2015, 26(6): 1165-1172. | |
| 99 | 胡永全, 贾锁刚, 赵金洲, 等. 缝网压裂控制条件研究[J]. 西南石油大学学报(自然科学版), 2013, 35(4): 126-132. |
| HU Yongquan, JIA Suogang, ZHAO Jinzhou, et al. Study on controlling conditions in network hydraulic fracturing[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(4): 126-132. | |
| 100 | 沈骋, 谢军, 赵金洲, 等. 泸州—渝西区块海相页岩可压性演化差异[J]. 中国矿业大学学报, 2020, 49(4): 742-754. |
| SHEN Cheng, XIE Jun, ZHAO Jinzhou, et al. Evolution difference of fracability of marine shale gas reservoir in Luzhou and west Chongqing block, Sichuan Basin[J]. Journal of China University of Mining & Technology, 2020, 49(4): 742-754. | |
| 101 | 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. |
| ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. | |
| 102 | NELSON R A. Geologic analysis of naturally fractured reservoirs: contributions in petroleum geology and engineering[M]. Houston: Gulf Publishing Company, 1985: 320. |
| 103 | JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. |
| 104 | 郝运轻, 宋国奇, 周广清, 等. 济阳坳陷古近系泥页岩岩石学特征对可压性的影响[J]. 石油实验地质, 2016, 38(4): 489-495. |
| HAO Yunqing, SONG Guoqi, ZHOU Guangqing, et al. Influence of petrological characteristics on fracability of the Paleogene shale, Jiyang Depression[J]. Petroleum Geology and Experiment, 2016, 38(4): 489-495. | |
| 105 | 曹峰, 何建华, 曹红秀, 等. 碱湖相页岩储层多尺度岩石力学参数及脆性定量评价[J/OL]. 成都理工大学学报(自然科学版): 1-23[2025-03-06]. . |
| CAO Feng, HE Jianhua, CAO Hongxiu, et al. Multi scale rock mechanics parameters and quantitative evaluation of brittleness in alkaline lacustrine shale reservoirs[J/OL]. Journal of Chengdu University of Technology (Science & Technology Edition): 1-23[2025-03-06]. . | |
| 106 | 陈威, 常小龙, 李哲, 等. 基于多影响因素的页岩脆性评价方法[J]. 测井技术, 2024, 48(5): 631-638. |
| CHEN Wei, CHANG Xiaolong, LI Zhe, et al. Evaluation method of shale brittleness based on multiple influencing factors[J]. Well Logging Technology, 2024, 48(5): 631-638. | |
| 107 | MATTAR L, GUALT B, MORAD K, et al. Production analysis and forecasting of shale gas reservoirs: Case history-based approach[C]//SPE Shale Gas Production Conference, Fort Worth, 2008. Richardson: Society of Petroleum Engineers, 2008: SPE-119897-MS. |
| 108 | 闫建平, 言语, 司马立强, 等. 泥页岩储层裂缝特征及其与“五性”之间的关系[J]. 岩性油气藏, 2015, 27(3): 87-93, 132. |
| YAN Jianping, YAN Yu, SIMA Liqiang, et al. Relationship between fracture characteristics and “five-property” of shale reservoir[J]. Lithologic Reservoirs, 2015, 27(3): 87-93, 132. | |
| 109 | 胡德高, 刘超. 四川盆地涪陵页岩气田单井可压性地质因素研究[J]. 石油实验地质, 2018, 40(1): 20-24. |
| HU Degao, LIU Chao. Geological factors of well fracability in Fuling shale gas field, Sichuan Basin[J]. Petroleum Geology and Experiment, 2018, 40(1): 20-24. | |
| 110 | 盛秋红, 李文成. 泥页岩可压性评价方法及其在焦石坝地区的应用[J]. 地球物理学进展, 2016, 31(4): 1473-1479. |
| SHENG Qiuhong, LI Wencheng. Evaluation method of shale fracability and its application in Jiaoshiba area[J]. Progress in Geophysics, 2016, 31(4): 1473-1479. | |
| 111 | 张洁, 曹函, 杜宗霖, 等. 基于天然裂缝网络的页岩力学性质数值模拟研究[J]. 科技通报, 2023, 39(11): 57-67. |
| ZHANG Jie, CAO Han, DU Zonglin, et al. Numerical simulation of shale mechanical properties based on natural fracture network[J]. Bulletin of Science and Technology, 2023, 39(11): 57-67. | |
| 112 | 陈建军. 页岩油储层岩石力学特性及可压裂性评价[D]. 青岛: 中国石油大学(华东), 2017. |
| CHEN Jianjun. Rock mechanical characteristics and fracabillity evaluation of shale oil reservoir[D]. Qingdao: China University of Petroleum (East China), 2017. | |
| 113 | 齐晓刚. 蜀南页岩气储层可压裂性研究[D]. 北京: 中国石油大学(北京), 2016. |
| QI Xiaogang. Research of gas shale reservoir’s fracability in south Sichuan Basin[D]. Beijing: China University of Petroleum(Beijing), 2016. | |
| 114 | 张瑶珈, 陈志鹏, 于春勇, 等. 富有机质页岩的岩石力学性质及其影响因素研究进展[J]. 录井工程, 2023, 34(4): 104-111. |
| ZHANG Yaojia, CHEN Zhipeng, YU Chunyong, et al. Geomechanical properties and influencing factors of organic-rich shale[J]. Mud Logging Engineering, 2023, 34(4): 104-111. | |
| 115 | 肖佳林, 李保林, 游园, 等. 复兴区块陆相页岩压裂成缝特征与增产改造策略分析[J]. 断块油气田, 2024, 31(6): 1066-1075. |
| XIAO Jialin, LI Baolin, YOU Yuan, et al. Analysis of fracturing fracture characteristics and production increase and stimulation strategy of continental shale in Fuxing Block[J]. Fault-Block Oil and Gas Field, 2024, 31(6): 1066-1075. | |
| 116 | 刘鹏林, 李军, 连威, 等. 浸泡条件下页岩力学及摩擦特征实验[J]. 断块油气田, 2024, 31(4): 734-739. |
| LIU Penglin, LI Jun, LIAN Wei, et al. Experiments on mechanics and friction characteristics of shale under soaking conditions[J]. Fault-Block Oil and Gas Field, 2024, 31(4): 734-739. | |
| 117 | 王团, 赵海波, 李奎周, 等. 一种考虑复杂孔隙结构的泥页岩地震岩石物理模型[J]. 中国石油大学学报(自然科学版), 2019, 43(3): 45-55. |
| WANG Tuan, ZHAO Haibo, LI Kuizhou, et al. A mud shale seismic rock physics model considering complex pore structure[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(3): 45-55. | |
| 118 | 叶端南, 印兴耀, 王璞, 等. 砂泥岩储层岩石物理交会模板构建[J]. 地球物理学进展, 2015, 30(2): 758-768. |
| YE Duannan, YIN Xingyao, WANG Pu, et al. The build of rock physics cross plot template for sand shale reservoir[J]. Progress in Geophysics, 2015, 30(2): 758-768. | |
| 119 | 周欣, 巴晶, 符力耘, 等. 页岩脆性评价岩石物理模型及地震预测[J]. 地球物理学进展, 2020, 35(5): 1736-1744. |
| ZHOU Xin, BA Jing, FU Liyun, et al. Rock physics model for shale brittleness evaluation and seismic prediction[J]. Progress in Geophysics, 2020, 35(5): 1736-1744. | |
| 120 | 张琦斌, 郭智奇, 刘财, 等. 针对有机质微观特性的页岩储层岩石物理建模及应用[J]. 地球物理学进展, 2018, 33(5): 2083-2091. |
| ZHANG Qibin, GUO Zhiqi, LIU Cai, et al. Rock physics model and its applications in the Longmaxi shale based on the quantification of microstructural properties of organic matter[J]. Progress in Geophysics, 2018, 33(5): 2083-2091. | |
| 121 | BERRYMAN J G. Long-wavelength propagation in composite elastic media I. Spherical inclusions[J]. The Journal of the Acoustical Society of America, 1980, 68(6): 1809-1819. |
| 122 | 周巍. 孔隙形状对岩石弹性参数的影响研究[C]//中国地球物理学会. 中国地球物理学会第二十届年会论文集, 西安, 2004. 南京: 中国石化石油勘探开发研究院南京石油物探研究所, 2004: 642-643. |
| ZHOU Wei. Study on the influence of pore shape on rock elastic parameters[C]//Chinese Geophysical Society. Proceedings of the 20th Annual Meeting of the Chinese Geophysical Society, Xi’an, 2004. Nanjing: Sinopec Petroleum Exploration and Development Research Institute Nanjing Petroleum Geophysical Research Institute, 2004: 642-643. | |
| 123 | 唐颖, 邢云, 李乐忠, 等. 页岩储层可压裂性影响因素及评价方法[J]. 地学前缘, 2012, 19(5): 356-363. |
| TANG Ying, XING Yun, LI Lezhong, et al. Factors affecting the fracturability of shale reservoirs and evaluation methods[J]. Earth Science Frontiers, 2012, 19(5): 356-363. | |
| 124 | 赵迪斐, 焦伟伟, 魏源, 等. 页岩储层成岩作用及其对储层脆性的影响——以渝西地区五峰组—龙马溪组深层页岩为例[J]. 沉积学报, 2021, 39(4): 811-825. |
| ZHAO Difei, JIAO Weiwei, WEI Yuan, et al. Diagenesis of Shale Reservoirs and Its Influence on Reservoir Brittleness: A Case Study of the Deep Shale in the Wufeng Formation-Longmaxi Formation in the Western Chongqing Region[J]. Acta Sedimentologica Sinica, 2021, 39(4): 811-825. | |
| 125 | 朱筱敏. 沉积岩石学[M]. 4版. 北京: 石油工业出版社, 2008: 208-213. |
| ZHU Xiaomin. Sedimentary petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008: 208-213. | |
| 126 | 陈琳, 徐小丽, 徐银花. 温度与加载速率对岩石力学性质的影响[J]. 广西大学学报(自然科学版), 2016, 41(1): 170-177. |
| CHEN Lin, XU Xiaoli, XU Yinhua. Effect of temperature and loading rate on mechanical properties of rock[J]. Journal of Guangxi University (Natural Science Edition), 2016, 41(1): 170-177. | |
| 127 | ESPINOZA W F, ZHANG Fengshou, DAI Sheng. Impacts of temperature on the mechanical properties of Longmaxi shale outcrops using instrumented nanoindentation[J]. Geomechanics for Energy and the Environment, 2022, 30: 100348. |
| 128 | 关东帅. 温度作用下泥页岩力学性能及微观孔隙结构的演化规律[D]. 北京: 中国地质大学(北京), 2020. |
| GUAN Dongshuai. Evolution law of mechanical properties and microstructure characteristics of shale under temperature[D]. Beijing: China University of Geosciences (Beijing), 2020. | |
| 129 | 曹峰. 温度对深部岩石力学性质的影响[J]. 重庆科技学院学报(自然科学版), 2012, 14(5): 83-85. |
| CAO Feng. Review of temperature impact of mechanical properties of deep rock[J]. Journal of Chongqing University of Science and Technology (Natural Science Edition), 2012, 14(5): 83-85. | |
| 130 | 程世忠, 盛茂, 任乐佳, 等. 储层温度对页岩微观力学性质的影响[J]. 钻采工艺, 2024, 47(1): 73-79. |
| CHENG Shizhong, SHENG Mao, REN Lejia, et al. The influence of reservoir temperature on the micromechanical properties of shale[J]. Drilling & Production Technology, 2024, 47(1): 73-79. | |
| 131 | ELIYAHU M, EMMANUEL S, DAY-STIRRAT R J, et al. Mechanical properties of organic matter in shales mapped at the nanometer scale[J]. Marine and Petroleum Geology, 2015, 59: 294-304. |
| 132 | VALÈS F, NGUYEN MINH D, GHARBI H, et al. Experimental study of the influence of the degree of saturation on physical and mechanical properties in Tournemire shale (France)[J]. Applied Clay Science, 2004, 26(1/4): 197-207. |
| 133 | AL-BAZALI T, ZHANG Jianguo, CHENEVERT M E, et al. Factors controlling the compressive strength and acoustic properties of shales when interacting with water-based fluids[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 729-738. |
| 134 | 杨圣齐. 裂隙岩石力学特性研究及时间效应分析[M]. 北京: 科学出版社, 2011. |
| YANG Shengqi. Research on the mechanical properties of fractured rocks and analysis of time effects[M]. Beijing: Science Press, 2011. | |
| 135 | CHEN Jianjun, LU Shuangfang, LI Junqian, et al. Experimental investigation of the effect of size on the mechanical behavior of shale[J]. Acta Geologica Sinica (English Edition), 2015, 89(S1): 312-313. |
| 136 | 王冠民, 熊周海, 张婕. 岩性差异对泥页岩可压裂性的影响分析[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1080-1089. |
| WANG Guanmin, XIONG Zhouhai, ZHANG Jie. The impact of lithology differences to shale fracturing[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1080-1089. | |
| 137 | 龚训, 金之钧, 马新华, 等. 川南地区志留系龙马溪组页岩力学性质及微观破裂机理[J]. 石油与天然气地质, 2024, 45(5): 1447-1455. |
| GONG Xun, JIN Zhijun, MA Xinhua, et al. Mechanical properties of the Silurian Longmaxi Formation shale, southern Sichuan Basin and its microfracturing mechanisms[J]. Oil & Gas Geology, 2024, 45(5): 1447-1455. | |
| 138 | 边会媛, 臧鑫, 张迪, 等. 应力效应下页岩动静态弹性各向异性特征[J]. 物探与化探, 2024, 48(6): 1664-1673. |
| BIAN Huiyuan, ZANG Xin, ZHANG Di, et al. Impacts of anisotropy on the dynamic and static elastic characteristics of shales under stress effects[J]. Geophysical and Geochemical Exploration, 2024, 48(6): 1664-1673. | |
| 139 | 闫博鸿, 赵建国, 肖增佳, 等. 潜江组页岩弹性性质分析及各向异性岩石物理建模[J]. 地球物理学报, 2024, 67(7): 2802-2819. |
| YAN Bohong, ZHAO Jianguo, XIAO Zengjia, et al. Analysis of elastic properties and anisotropic rock physics modeling of Qianjiang Formation shale[J]. Chinese Journal of Geophysics, 2024, 67(7): 2802-2819. | |
| 140 | BI Zhenhui, WANG Lei, YANG Chunhe, et al. Multiscale characterization of carbonate-rich shale: From micro structure to macro mechanical properties, a case study in Hongxing Block, China[J]. Fuel, 2024, 362: 130765. |
| 141 | 周浪, 马振乾, 黄青荣, 等. 红页岩纳米压痕细观力学特性研究[J]. 煤田地质与勘探, 2024, 52(11): 96-107. |
| ZHOU Lang, MA Zhenqian, HUANG Qingrong, et al. A nanoindentation-based study on the micromechanical properties of red shales[J]. Coal Geology & Exploration, 2024, 52(11): 96-107. | |
| 142 | LIU Yiwei, LIU Quansheng, FENG Gan, et al. Upscaling mechanical properties of shale obtained by nanoindentation to macroscale using accurate grain-based modeling (AGBM)[J]. Energy, 2025, 314: 134126. |
| 143 | 邹才能, 穆英, 潘松圻, 等. 流固耦合作用对地下储氢库储盖层岩石微观力学性质的影响[J]. 天然气与石油, 2024, 42(5): 106-113. |
| ZOU Caineng, MU Ying, PAN Songqi, et al. Effect of fluid-solid coupling interaction on micromechanical properties of reservoir and cap rock in underground hydrogen storage[J]. Natural Gas and Oil, 2024, 42(5): 106-113. | |
| 144 | LIANG Shuang, GAO Mingyu, SUN Shuo, et al. Investigation of mechanical properties of quartz and illite in shale using molecular dynamics simulation[J]. Natural Resources Research, 2023, 32(6): 2945-2963. |
| [1] | 胡宗全, 刘忠宝, 李倩文, 吴舟凡. 基于变尺度岩相组合的陆相页岩源-储耦合机理探讨[J]. 石油与天然气地质, 2024, 45(4): 893-909. |
| [2] | 王濡岳, 胡宗全, 赖富强, 刘粤蛟, 邬忠虎, 何建华, 邹冠贵, 王鹏威, 李治昊. 川东北地区下侏罗统自流井组大安寨段陆相页岩脆性特征及其控制因素[J]. 石油与天然气地质, 2023, 44(2): 366-378. |
| [3] | 郑国伟, 高之业, 黄立良, 姜振学, 何文军, 常佳琦, 段龙飞, 魏维航, 王志伟. 准噶尔盆地玛湖凹陷二叠系风城组页岩储层润湿性及其主控因素[J]. 石油与天然气地质, 2022, 43(5): 1206-1220. |
| [4] | 葛勋, 郭彤楼, 马永生, 王国力, 黎茂稳, 余小群, 赵培荣, 温真桃, 王鹏. 四川盆地东南缘林滩场地区上奥陶统五峰组-龙马溪组页岩气储层甜点预测[J]. 石油与天然气地质, 2022, 43(3): 633-647. |
| [5] | 郭超, 赵谦平, 刘刚, 郝世彦, 高潮, 孙建博, 刘超, 陈奕奕. 陆相页岩储层薄片超分辨率增强方法[J]. 石油与天然气地质, 2021, 42(5): 1202-1209. |
| [6] | 姜涛, 金之钧, 刘光祥, 胡宗全, 刘全有, 刘忠宝, 王鹏威, 王濡岳, 杨滔, 王冠平. 四川盆地元坝地区自流井组页岩储层孔隙结构特征[J]. 石油与天然气地质, 2021, 42(4): 909-918. |
| [7] | 刘忠宝, 胡宗全, 刘光祥, 刘珠江, 刘晧天, 郝景宇, 王鹏威, 李鹏. 四川盆地东北部下侏罗统自流井组陆相页岩储层孔隙特征及形成控制因素[J]. 石油与天然气地质, 2021, 42(1): 136-145. |
| [8] | 姜振学, 李鑫, 王幸蒙, 王国臻, 仇恒远, 朱德宇, 姜鸿阳. 中国南方典型页岩孔隙特征差异及其控制因素[J]. 石油与天然气地质, 2021, 42(1): 41-53. |
| [9] | 张金才, 亓原昌. 地应力对页岩储层开发的影响与对策[J]. 石油与天然气地质, 2020, 41(4): 776-783, 799. |
| [10] | 高波, 刘忠宝, 舒志国, 刘皓天, 王濡岳, 金治光, 王冠平. 中上扬子地区下寒武统页岩气储层特征及勘探方向[J]. 石油与天然气地质, 2020, 41(2): 284-294. |
| [11] | 苏建政, 李凤霞, 周彤. 页岩储层超临界二氧化碳压裂裂缝形态研究[J]. 石油与天然气地质, 2019, 40(3): 616-625. |
| [12] | 陈方文, 赵红琴, 王淑萍, 卢双舫, 王民, 丁雪. 渤海湾盆地冀中坳陷饶阳凹陷沙一下亚段页岩油可动量评价[J]. 石油与天然气地质, 2019, 40(3): 593-601. |
| [13] | 徐天吉, 程冰洁, 胡斌, 江莹莹, 唐建明. 基于VTI介质弹性参数的页岩脆性预测方法及其应用[J]. 石油与天然气地质, 2016, 37(6): 971-978. |
| [14] | 陈冬,陈力群,魏修成,汪中浩. 火成岩裂缝性储层测井评价 ——以准噶尔盆地石炭系火成岩油藏为例[J]. 石油与天然气地质, 2011, 32(1): 83-90. |
| [15] | 管路平. 塔河油田南部缝孔型碳酸盐岩储层叠前地震预测[J]. 石油与天然气地质, 2008, 29(5): 654-667,675. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||