石油与天然气地质 ›› 2020, Vol. 41 ›› Issue (1): 223-234.doi: 10.11743/ogg20200120
• • 上一篇
丁茜1,2,3(), 何治亮1,3,4,*(), 王静彬2,3,5, 朱东亚1,2,3
收稿日期:
2019-07-30
出版日期:
2020-02-01
发布日期:
2020-01-19
通讯作者:
何治亮
E-mail:dingqian.syky@sinopec.com;hezhiliang@sinopec.com
第一作者简介:
丁茜(1987-),女,博士、高级工程师,碳酸盐岩储层。E-mail:基金项目:
Qian Ding1,2,3(), Zhiliang He1,3,4,*(), Jingbin Wang2,3,5, Dongya Zhu1,2,3
Received:
2019-07-30
Online:
2020-02-01
Published:
2020-01-19
Contact:
Zhiliang He
E-mail:dingqian.syky@sinopec.com;hezhiliang@sinopec.com
Supported by:
摘要:
深层-超深层碳酸盐岩是目前油气勘探聚焦的重点领域,其储层的形成和保持机制是制约深层储层预测的关键科学问题。为了明确埋藏溶蚀作用下酸性流体对碳酸盐岩储层物性的影响,有必要开展烃源岩地层孔隙生烃模拟和溶蚀模拟实验(简称生烃及溶蚀模拟实验),定性定量厘清中、深层埋藏环境下烃源岩与碳酸盐岩储层演化过程。采用自主研发设计的生烃模拟实验装置和溶蚀模拟实验装置,以塔里木盆地奥陶系鹰山组灰岩和云南禄劝低成熟烃源岩为实验对象,利用岩相学和地球化学相结合的分析手段,查明中、深埋藏环境下生烃热演化过程中伴生的复杂酸性流体改造碳酸盐岩储层的过程及其控制因素,探索烃源岩生烃过程对碳酸盐岩围岩的改造规律。实验表明:中、深层埋藏环境下烃源岩热演化过程中伴生的有机酸和CO2等酸性流体对碳酸盐岩储层产生明显溶蚀作用,扩大原有储集空间并提高孔隙度,并且随着埋藏深度增加,溶蚀作用明显减弱;流体在运移过程中是否能够改善储层物性,由流体中的碳酸钙饱和度、流体流速、水岩比以及原始孔隙结构等因素共同决定。此研究能够为深层-超深层碳酸盐岩优质储层的预测提供一定的理论基础。
中图分类号:
表3
塔里木盆地鹰山组柱塞样溶蚀实验前、后质量、CO2百分含量、阳离子含量及其变化率"
生烃温度/℃ | 溶蚀温度/℃ | 溶蚀实验前 | 溶蚀实验后 | 溶蚀实验前、后变化率/% | ||||||||||||||
溶蚀前质量m1 | CO2/% | 阳离子含量/(mg·L-1) | 溶蚀后质量m2 | CO2/% | 阳离子含量/(mg·L-1) | 质量 | CO2相对含量 | Mg2+ | Ca2+ | Ca2++Mg2+ | ||||||||
Mg2+ | Ca2+ | Ca2++Mg2+ | Mg2+ | Ca2+ | Ca2++Mg2+ | |||||||||||||
330 | 89 | 34.734 38 | 58.68 | 2.46 | 87.7 | 90.16 | 34.562 87 | 43.44 | 9.09 | 203.0 | 212.09 | 0.497 | 25.97 | 2.70 | 1.31 | 1.35 | ||
350 | 131 | 37.173 29 | 43.05 | 2.28 | 55.4 | 57.68 | 37.085 78 | 36.42 | 6.12 | 106.0 | 112.12 | 0.240 | 15.39 | 1.68 | 0.91 | 0.94 | ||
375 | 153 | 40.961 26 | 37.57 | 4.22 | 93.9 | 98.12 | 40.940 60 | 34.16 | 9.63 | 175.0 | 184.63 | 0.050 | 9.07 | 1.28 | 0.86 | 0.88 | ||
420 | 169 | 46.957 84 | 38.01 | 2.87 | 16.2 | 19.07 | 46.943 57 | 34.74 | 6.05 | 31.1 | 37.15 | 0.030 | 8.61 | 1.11 | 0.92 | 0.95 |
表4
塔里木盆地鹰山组柱塞样生烃模拟实验中不同时间段阳离子(Ca2++Mg2+)含量"
离子含量/(mg·L-1) | 生烃温度/℃ | 溶蚀温度/℃ | 时间/h | ||||||||||||
0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | |||
Ca2++Mg2+ | 330 | 89 | 240.42 | - | 237.55 | - | 211.12 | - | 214.96 | - | 242.81 | - | 266.37 | - | - |
350 | 131 | 153.14 | - | 172.64 | - | 259.08 | - | 231.73 | - | 211.76 | - | 245.42 | - | 246.01 | |
375 | 153 | 153.69 | - | - | 137.71 | - | - | 193.30 | - | 200.90 | - | - | 291.40 | - | |
420 | 169 | - | - | 145.42 | - | - | 169.85 | - | - | 201.54 | - | - | 226.93 | - |
1 | 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39 (2): 5- 14. |
Jiao Fangzheng . Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil&Gas Geology, 2018, 39 (2): 5- 14. | |
2 | 何治亮, 张军涛, 丁茜, 等. 深层-超深层优质碳酸盐岩储层形成控制因素[J]. 石油与天然气地质, 2017, 38 (4): 633- 644, 763. |
He Zhiliang , Zhang Juntao , Ding Qian , et al. Factors controlling the formation of high-quality deep to ultra-deep carbonate reservoirs[J]. Oil&Gas Geology, 2017, 38 (4): 633- 644, 763. | |
3 | Schmoker J W , Halley R B . Carbonate porosity versus depth:A predictable relation for South Florida[J]. AAPG Bulletin, 1982, 66 (12): 2561- 2570. |
4 | Ehrenberg S N , Nadeau P H . Sandstone versus carbonate petroleum reservoirs:A global perspective on porosity depth and porosity-permeability relationships[J]. AAPG Bulletin, 2005, 89 (4): 435- 445. |
5 | Ehrenberg S N , Walderhaug O , Bjorlykke . Carbonate porosity cretation by mesogenetic dissolution:Reality or illusion?[J]. AAPG Bulletin, 2012, 97 (2): 345- 345. |
6 | Zhu D Y , Meng Q Q , Jin Z J , et al. Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim basin, northwestern China[J]. Marine&Petroleum Geology, 2015, 59 (59): 232- 244. |
7 | Hao F , Zhang X , Wang C , et al. The fate of CO2 derived from thermochemical sulfate reduction (TSR) and effect of TSR on carbonate porosity and permeability, Sichuan Basin, China[J]. Earth-Science Reviews, 2015, 141, 154- 177. |
8 | 朱光有, 张水昌, 梁英波, 等. TSR对深部碳酸盐岩储层的溶蚀改造——四川盆地深部碳酸盐岩优质储层形成的重要方式[J]. 岩石学报, 2006, 22 (8): 2182- 2194. |
Zhu Guangyou , Zhang Shuichang , Liang Yingbo , et al. Dissolution and alteration of the deep carbonate reservoir by TSR:An important type of deep-burial high-quality carbonate reservoirs in Sichuan Basin[J]. Acta Petrologica Sinica, 2006, 22 (8): 2182- 2194. | |
9 | 朱东亚, 金之钧, 胡文瑄, 等. 塔里木盆地深部流体对碳酸盐岩储层影响[J]. 地质论评, 2008, 54 (3): 348- 354. |
Zhu Dongya , Jin Zhijin , Hu Wenxuan , et al. Effects of deep fluid on carbonate reservoir in Tarim Basin[J]. Geological Review, 2008, 54 (3): 348- 354. | |
10 | 朱东亚, 张殿伟, 张荣强, 等. 中国南方地区灯影组白云岩储层流体溶蚀改造机制[J]. 石油学报, 2015, 36 (10): 1188- 1198. |
Zhu Dongya , Zhang Dianwei , Zhang Rongqiang , et al. Fluid alteration mechanism of dolomite reservoirs in Dengying Formation, South China[J]. Acta Petrolei Sinica, 2015, 36 (10): 1188- 1198. | |
11 | Zhu D , Meng Q , Jin Z , et al. Fluid environment for preservation of pore spaces in a deep dolomite reservoir[J]. Geofluids, 2014, 15 (4): 527- 545. |
12 | Jia L , Cai C , Yang H , et al. Thermochemical and bacterial sulfate reduction in the Cambrian and Lower Ordovician carbonates in the Tazhong Area, Tarim Basin, NW China:Evidence from fluid inclusions, C, S and Sr isotopic data[J]. Geofluids, 2015, 15 (3): 421- 437. |
13 | Jiang L , Worden R H , Yang C . Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality[J]. Geochimica et Cosmochimica Acta, 2018, 223, 127- 140. |
14 | 尤东华, 王亮, 胡文瑄, 等. 从成岩-蚀变特征探讨塔深1井白云岩储层成因[J]. 岩石矿物学杂志, 2018, 37 (1): 34- 46. |
You Donghua , Wang Liang , Hu Wenxuan , et al. Formation of deep dolomite reservoir of Well TS1:Insights from diagenesis and alteration investigations[J]. Acta Petrologica et Mineralogica, 2018, 37 (1): 34- 46. | |
15 | Lu Z , Chen H , Qing H , et al. Petrography, fluid inclusion and isotope studies in Ordovician carbonate reservoirs in the Shunnan area, Tarim basin, NW China:Implications for the nature and timing of silicification[J]. Sedimentary Geology, 2017, 359, 29- 43. |
16 | 李映涛, 叶宁, 袁晓宇, 等. 塔里木盆地顺南4井中硅化热液的地质与地球化学特征[J]. 石油与天然气地质, 2015, 36 (6): 934- 944. |
Li Yingtao , Ye Ning , Yuan Xiaoyu , et al. Geological and geochemical characteristics of silicified hydrothermal fluids in Well Shunnan 4, Tarim Basin[J]. Oil&Gas Geology, 2015, 36 (6): 934- 944. | |
17 | 范明, 胡凯, 蒋小琼, 等. 酸性流体对碳酸盐岩储层的改造作用[J]. 地球化学, 2009, 38 (1): 20- 26. |
Fan Ming , Hu Kai , Jiang Xiaoqiong , et al. Effect of acid fluid on carbonate reservoir reconstruction[J]. Geochimica, 2009, 38 (1): 20- 26. | |
18 | 鲜强, 冯许魁, 刘永雷, 等. 塔中地区碳酸盐岩缝洞型储层叠前流体识别[J]. 石油与天然气, 2019, 40 (1): 196- 204. |
Xian Qiang , Feng Xukui , Liu Yonglei , et al. Pre-stack fluid identification for fractured-vuggy carbonate reservoir in Tazhong area[J]. Oil&Gas Geology, 2019, 40 (1): 196- 204. | |
19 | 贾晓静, 柯光明, 徐守成, 等. 超深层复杂碳酸盐岩滩相储层发育特征[J]. 石油地质与工程, 2019, 33 (5): 5- 10. |
Jia Xiaojing , Ke Guangming , Xu Shoucheng , et al. Development characteristics of ultra-deep complex carbonste shoal facies reservoirs[J]. Petroleum Geology and Engineering, 2019, 33 (5): 5- 10. | |
20 | 寿建峰, 佘敏, 沈安江. 深层条件下碳酸盐岩溶蚀改造效应的模拟实验研究[J]. 矿物岩石地球化学通报, 2016, 35 (5): 860- 867. |
Shou Jianfeng , She Min , Shen Anjiang . Experimental simulation of dissolution effect of carbonate rock under deep burial condition[J]. Bulletion of Mineralogy, Petrology and Geochemistry, 2016, 35 (5): 860- 867. | |
21 | 丁茜, 何治亮, 沃玉进, 等. 高温高压条件下碳酸盐岩溶蚀过程控制因素[J]. 石油与天然气地质, 2017, 38 (4): 784- 791. |
Ding Qian , He Zhiliang , Wo Yujin , et al. Factors controlling carbonate rock dissolution under high temperature and pressure[J]. Oil&Gas Geology, 2017, 38 (4): 784- 791. | |
22 | He Z L , Ding Q , Wo Y J , et al. Experiment of carbonate dissolution:Implication for high quality carbonate reservoir formation in deep and ultradeep basins[J]. Geofluids, 2017, 8439259, 1- 8. |
23 | 彭军, 王雪龙, 韩浩东, 等. 塔里木盆地寒武系碳酸盐岩溶蚀作用机理模拟实验[J]. 石油勘探与开发, 2018, 45 (3): 415- 425. |
Peng Jun , Wang Xuelong , Han Haodong , et al. Simulation for the dissolution mechanism of Cambrian carbonate rocks in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45 (3): 415- 425. | |
24 | 范明, 蒋小琼, 刘伟新, 等. 不同温度条件下CO2水溶液对碳酸盐岩的溶蚀作用[J]. 沉积学报, 2007, 25 (6): 825- 830. |
Fan Ming , Jiang Xiaoqiong , Liu Weixin , et al. Dissolution of carbonate rocks in CO2 solution under the different temperature[J]. Acta Sedimentologica Sinica, 2007, 25 (6): 825- 830. | |
25 | Pokrovsky O S , Golubev S V , Schott J , et al. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150℃ and 1 to 55atm pCO2:New constraints on CO2, sequestration in sedimentary basins[J]. Chemical Geology, 2009, 265 (1-2): 20- 32. |
26 | Elkhoury J E , Ameli P , Detwiler R L . Dissolution and deformation in fractured carbonates caused by flow of CO2-rich brine under reservoir conditions[J]. International Journal of Greenhouse Gas Control, 2013, 16 (Si): 203- 215. |
27 | 杨云坤, 刘波, 秦善, 等. 基于模拟实验的原位观察对碳酸盐岩深部溶蚀的再认识[J]. 北京大学学报(自然科学版), 2014, 50 (2): 316- 322. |
Yang Yunkun , Liu Bo , Qin Shan , et al. Re-recognition of deep carbonate dissolution based on the observation of in-situ simulation experiment[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50 (2): 316- 322. | |
28 | Garcia-Rios M , Luquot L , Soler J M , et al. Influence of the flow rate on dissolution and precipitation features during percolation of CO2-rich sulfate solutions through fractured limestone samples[J]. Chemical Geology, 2015, 414, 95- 108. |
29 | 赫俊民,王小圭,孙建芳,等.塔里木盆地塔河地区中-下奥陶统碳酸盐岩储层天然裂缝发育特征及主控因素[J].石油与天然气地质, 2019, 40(5): 1022-1030. |
Hao Junmin, Wang Xiao Jianfang, et al.Characteristics and maincontrolling factors of natural frcatures in the Lower-to-Middle Ordovician carbonate ressrvoirs in Tahearea, northern Tarim Basin[J]. Oil&Geology, 2019, 40(5): 1022-1030. | |
30 | 胡明毅, 蔡习尧, 胡忠贵, 等. 塔中地区奥陶系碳酸盐岩深部埋藏溶蚀作用研究[J]. 石油天然气学报, 2009, 31 (6): 49- 54. |
Hu Mingyi , Cai Xirao , Hu Zhonggui , et al. Deep buried dissolution of Ordovician carbonates in Tazhong area of Tarim Basin[J]. Journal of Oil and Gas Technology, 2009, 31 (6): 49- 54. | |
31 | 佘敏, 寿建峰, 贺训云, 等. 碳酸盐岩溶蚀机制的实验探讨:表面溶蚀与内部溶蚀对比[J]. 海相油气地质, 2013, 18 (3): 55- 61. |
She Min , Shou Jianfeng , He Xunyun , et al. Experiment of dissolution mechanism of carbonate rocks:Surface dissolution and internal dissolution[J]. Marine Origin Petroleum Geology, 2013, 18 (3): 55- 61. | |
32 | 倪斌, 汤良杰, 郭颖, 等. 塔里木盆地玉北地区埋藏史及热史分析[J]. 现代地质, 2017, 31 (2): 151- 160. |
Ni Bin , Tang Liangjie , Guo Ying , et al. Analysis of burial history and thermal history in Yubei area, Tarim Basin[J]. Geoscience, 2017, 31 (2): 151- 160. | |
33 | 郑剑锋, 沈安江, 黄理力, 等. 基于埋藏溶蚀模拟实验的白云岩储层孔隙效应研究——以塔里木盆地下寒武统肖尔布拉克组为例[J]. 石油实验地质, 2017, 39 (5): 716- 723. |
Zheng Jianfeng , Shen Anjiang , Huang Lili , et al. Pore effect of dolomite reservoirs based on burial dissolution simulation:A case study of the Lower Cambrian Xiaoerbulake Formation in the Tarim Basin[J]. Petroleum Geology and Experiment, 2017, 39 (5): 716- 723. | |
34 | 何治亮, 魏修成, 钱一雄, 等. 海相碳酸盐岩优质储层形成机理与分布预测[J]. 石油与天然气地质, 2011, 32 (4): 489- 498. |
He Zhiliang , Wei Xiucheng , Qian Yixiong , et al. Forming mechanism and distribution prediction of quality marine carbonate reservoirs[J]. Oil&Gas Geology, 2011, 32 (4): 489- 498. | |
35 | 马永生, 蔡勋育, 赵培荣, 等. 深层超深层碳酸盐岩优质储层发育机理和"三元控储"模式——以四川普光气田为例[J]. 地质学报, 2010, 84 (8): 1087- 1094. |
Ma Yongsheng , Cai Xunyu , Zhao Peirong , et al. Formation mechanism of deep buried carbonate reservoir and its model of three element controlling reservoir:A case study from the Puguang oil field in Sichuan[J]. Acta Geologica Sinica, 2010, 84 (8): 1087- 1094. | |
36 | Choquette P W , James N P . Diagenesis in limestones-(3).The deep burial environment[J]. Geoscience, 1987, 14 (3): 30- 35. |
37 | Zeebe R E , Wolf-G D . CO2 in seawater:Equilibrium, kinetics, isotopes[M]. Amsterdam: Elsevier, 2001. |
38 | 佘敏, 寿建峰, 沈安江, 等. 碳酸盐岩溶蚀规律与孔隙演化实验研究[J]. 石油勘探与开发, 2016, 43 (4): 564- 572. |
She Min , Shou Jianfeng , Shen Anjiang , et al. Experimental simulation of dissolution law and porosity evolution of carbonate rock[J]. Petroleum Exploration and Development, 2016, 43 (4): 564- 572. |
[1] | 韩鹏远, 丁文龙, 杨德彬, 张娟, 马海陇, 王生晖. 塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J]. 石油与天然气地质, 2024, 45(3): 770-786. |
[2] | 张艳秋, 陈红汉, 王燮培, 王彭, 苏丹梅, 谢舟. 塔里木盆地富满油田走滑断裂带通源性评价[J]. 石油与天然气地质, 2024, 45(3): 787-800. |
[3] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[4] | 曹自成, 云露, 漆立新, 李海英, 韩俊, 耿锋, 林波, 陈菁萍, 黄诚, 毛庆言. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356. |
[5] | 杨德彬, 鲁新便, 鲍典, 曹飞, 汪彦, 王明, 谢润成. 塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J]. 石油与天然气地质, 2024, 45(2): 357-366. |
[6] | 张长建, 杨德彬, 蒋林, 姜应兵, 昌琪, 马雪健. 塔里木盆地塔河北部“过溶蚀残留型”断溶体发育特征及其成因[J]. 石油与天然气地质, 2024, 45(2): 367-383. |
[7] | 万俊雨, 朱建辉, 姚素平, 张毅, 李春堂, 张威, 姜海健, 王杰. 鄂尔多斯盆地中、东部奥陶系马家沟组成烃生物及烃源岩地球生物学评价[J]. 石油与天然气地质, 2024, 45(2): 393-405. |
[8] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[9] | 江同文, 邓兴梁, 曹鹏, 常少英. 塔里木盆地富满断控破碎体油藏储集类型特征与注水替油效果[J]. 石油与天然气地质, 2024, 45(2): 542-552. |
[10] | 曾联波, 巩磊, 宿晓岑, 毛哲. 深层-超深层致密储层天然裂缝分布特征及发育规律[J]. 石油与天然气地质, 2024, 45(1): 1-14. |
[11] | 牛月萌, 韩俊, 余一欣, 黄诚, 林波, 杨帆, 余浪, 陈俊宇. 塔里木盆地顺北西部地区火成岩侵入体发育特征及其与断裂耦合关系[J]. 石油与天然气地质, 2024, 45(1): 231-242. |
[12] | 张三, 金强, 史今雄, 胡明毅, 段梦悦, 李永强, 张旭栋, 程付启. 塔北地区奥陶系地下河溶洞充填规律与储集性能[J]. 石油与天然气地质, 2023, 44(6): 1582-1594. |
[13] | 屈海洲, 郭新宇, 徐伟, 李文皓, 唐松, 邓雅霓, 何仕鹏, 张云峰, 张兴宇. 碳酸盐岩微孔隙的分类、成因及对岩石物理性质的影响[J]. 石油与天然气地质, 2023, 44(5): 1102-1117. |
[14] | 刘惠民, 张关龙, 范婕, 曾治平, 郭瑞超, 宫亚军. 准噶尔盆地腹部征沙村地区征10井的勘探发现与启示[J]. 石油与天然气地质, 2023, 44(5): 1118-1128. |
[15] | 康志江, 张冬梅, 张振坤, 王睿奇, 姜文斌, 刘坤岩. 深层缝洞型油藏井间连通路径智能预测技术[J]. 石油与天然气地质, 2023, 44(5): 1290-1299. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||