石油与天然气地质 ›› 2020, Vol. 41 ›› Issue (6): 1222-1232.doi: 10.11743/ogg20200610
李剑1,2,3(), 曾联波1,2,*(), 林煜2,4, 刘国平1,2, 曹东升2, 王兆生2
收稿日期:
2019-02-15
出版日期:
2020-12-28
发布日期:
2020-12-09
通讯作者:
曾联波
E-mail:phoenix.lijian@gmail.com;lbzeng@cup.edu.cn
第一作者简介:
李剑(1987-),男,博士,油气田开发地质。E-mail:基金项目:
Jian Li1,2,3(), Lianbo Zeng1,2,*(), Yu Lin2,4, Guoping Liu1,2, Dongsheng Cao2, Zhaosheng Wang2
Received:
2019-02-15
Online:
2020-12-28
Published:
2020-12-09
Contact:
Lianbo Zeng
E-mail:phoenix.lijian@gmail.com;lbzeng@cup.edu.cn
摘要:
裂缝可以为地壳的构造演化提供重要信息。根据野外观测数据、岩心资料以及薄片观察,柴达木盆地西部新生界中发育大量的水平裂缝。这些水平裂缝主要在泥质岩中发育,具有粗糙的裂缝面,为张开缝且均被石膏充填。裂缝的形态以弧形为主,少量表现为直线形。相邻的弧形裂缝具有强烈的相互作用,并且在端部形成T形交叉。裂缝开度主要分布于1~10 mm,最大可达30 mm,裂缝的规模与密度均随地层剥蚀厚度减小和埋深增加而减小,水平裂缝在平面上仅分布于地层剥蚀严重的背斜核部区域。以上证据表明这些裂缝与地层快速抬升剥蚀过程中由于残余应力形成的垂向拉伸有关。这些水平裂缝均切割早期垂直构造裂缝说明其形成于构造挤压之后。根据裂缝充填物电子自旋共振(ESR)测年结果,水平裂缝主要分两期形成,第一期在1.8 Ma左右,第二期在0.3 Ma左右。晚期水平裂缝的规模和密度远大于早期裂缝。根据裂缝参数理论计算得到的裂缝形成时的驱动应力大小,可以推断晚期地层抬升剥蚀量大约是早期地层抬升剥蚀量的2~3倍。水平裂缝的证据表明,柴达木盆地西部地区第四纪以来经历了脉冲式的构造挤压抬升与剥蚀,且构造活动具有增强的趋势,反映了整个青藏高原第四纪以来逐渐增强的幕式构造活动。
中图分类号:
1 |
Sibson R H . Fault rocks and fault mechanisms[J]. Journal of the Geological Society, 1977, 133 (3): 191- 213.
doi: 10.1144/gsjgs.133.3.0191 |
2 | Hindle A D . Petroleum migration pathways and charge concentration:A three-dimensional model[J]. AAPG Bulletin, 1997, 81 (9): 1451- 1481. |
3 | Hao F , Li S , Gong Z , et al. Thermal regime, interreservoir compositional heterogeneities, and reservoir-filling history of the Dongfang Gas Field, Yinggehai Basin, South China Sea:evidence for episodic fluid injections in overpressured basins?[J]. AAPG Bulletin, 2000, 84 (5): 607- 626. |
4 | 李明诚. 石油与天然气运移[M]. 北京: 石油工业出版社, 2004: 54- 58. |
Li Mingcheng . Migration of oil and gas[M]. Beijing: China Petroleum Industry Press, 2004: 54- 58. | |
5 | 高帅, 巩磊, 刘小波, 等. 松辽盆地北部深层致密火山岩气藏天然裂缝分布特征及控制因素[J]. 石油与天然气地质, 2020, 41 (3): 503- 512. |
Gao Shuai , Gong Lei , Liu Xiaobo , et al. Distribution and controlling factors of natural fractures in deep tight volcanic gas reservoirs in Xujiaweizi area, Northern Songliao Basin[J]. Oil & Gas Geology, 2020, 41 (3): 503- 512. | |
6 | 冯建伟, 孙建芳, 张亚军, 等. 塔里木盆地库车坳陷断层相关褶皱对裂缝发育的控制[J]. 石油与天然气地质, 2020, 41 (3): 543- 557. |
Feng Jianwei , Sun Jianfang , Zhang Yajun , et al. Control of fault-related folds on fracture development in Kuqa Depression, Tarim Basin[J]. Oil & Gas Geology, 2020, 41 (3): 543- 557. | |
7 |
Zeng L , Tang X , Qi J , et al. Insight into the Cenozoic tectonic evolution of the Qaidam Basin, Northwest China from fracture information[J]. International Journal of Earth Sciences, 2012a, 101 (8): 2183- 2191.
doi: 10.1007/s00531-012-0779-y |
8 |
Zeng L , Tang X , Wang T , et al. The influence of fracture cements in tight Paleogene saline lacustrine carbonate reservoirs, western Qaidam Basin, northwest China[J]. AAPG Bulletin, 2012b, 96 (11): 2003- 2017.
doi: 10.1306/04181211090 |
9 |
Yin A , Harrison T M . Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28 (1): 211- 280.
doi: 10.1146/annurev.earth.28.1.211 |
10 |
Johnson M R W . Shortening budgets and the role of continental subduction during the India-Asia collision[J]. Earth-Science Reviews, 2002, 59 (1-4): 101- 123.
doi: 10.1016/S0012-8252(02)00071-5 |
11 |
Harrison T M , Copeland P , Kidd W S F , et al. Raising tibet[J]. Science, 1992, 255 (5052): 1663- 1670.
doi: 10.1126/science.255.5052.1663 |
12 |
Fielding E J . Tibet uplift and erosion[J]. Tectonophysics, 1996, 260 (1-3): 55- 84.
doi: 10.1016/0040-1951(96)00076-5 |
13 |
Zhou J , Xu F , Wang T , Wang T , et al. Cenozoic deformation history of the Qaidam Basin, NW China:Results from cross-section restoration and implications for Qinghai-Tibet Plateau tectonics[J]. Earth and Planetary Science Letters, 2006, 243 (1-2): 195- 210.
doi: 10.1016/j.epsl.2005.11.033 |
14 |
Yin A , Dang Y Q , Wang L C , et al. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions(Part 1):The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin[J]. Geological Society of America Bulletin, 2008, 120 (7-8): 813- 846.
doi: 10.1130/B26180.1 |
15 | Song T , Wang X . Structural styles and stratigraphic patterns of syndepositional faults in a contractional setting:Examples from Quaidam Basin, Northwestern China[J]. AAPG Bulletin, 1993, 77 (1): 102- 117. |
16 | 焦小芹, 牛花朋, 谢庆宾, 等. 柴达木盆地尖北斜坡基岩储层特征及天然气成藏条件[J]. 石油与天然气地质, 2020, 41 (2): 305- 315. |
Jiao Xiaoqin , Niu Huapeng , Xie Qingbin , et al. Characteristics of basement reservoirs and setting for natural gas accumulation in Jianbei slope, Qaidam Basin[J]. Oil & Gas Geology, 2020, 41 (2): 305- 315. | |
17 |
Yin A , Dang Y Q , Zhang M , et al. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions(Part 3):Structural geology, sedimentation, and regional tectonic reconstruction[J]. Geological Society of America Bulletin, 2008, 120 (7-8): 847- 876.
doi: 10.1130/B26232.1 |
18 |
Qinmin W , Coward M P . The Chaidam basin(NW China):formation and hydrocarbon potential[J]. Journal of Petroleum Geology, 1990, 13 (1): 93- 112.
doi: 10.1111/j.1747-5457.1990.tb00255.x |
19 | Arnaud N O , Brunel M , Cantagrel J M , et al. High cooling and denudation rates at Kongur Shan, eastern Pamir(Xinjiang, China) revealed by 40Ar/39Ar alkali feldspar thermochronology[J]. Tecto-nics, 1993, 12 (6): 1335- 1346. |
20 | 王军. 西昆仑卡日巴生岩体和苦子干岩体的隆升[J]. 地质论评, 1998, 44 (4): 435- 442. |
Wang Jun . Uplift of the Karibasheng and Kuzugan granite in the west Kunlun Mountains[J]. Geological Review, 1998, 44 (4): 435- 442. | |
21 | Wang E , Wan J , Liu J . Late Cenozoic geological evolution of the foreland basin bordering the West Kunlun range in Pulu area:Constraints on timing of uplift of northern margin of the Tibetan Plateau[J]. Journal of Geophysical Research:Solid Earth, 2003, 108 (B8): 148- 227. |
22 |
Cowgill E . Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China[J]. GSA Bulletin, 2010, 122 (1-2): 145- 161.
doi: 10.1130/B26520.1 |
23 |
Sobel E R , Chen J , Schoenbohm L M , et al. Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen[J]. Earth and Planetary Science Letters, 2013, 363, 204- 218.
doi: 10.1016/j.epsl.2012.12.009 |
24 |
Cao K , Bernet M , Wang G C , et al. Focused Pliocene-Quaternary exhumation of the Eastern Pamir domes, western China[J]. Earth and Planetary Science Letters, 2013, 363, 16- 26.
doi: 10.1016/j.epsl.2012.12.023 |
25 | 潘家伟, 李海兵, 孙知明, 等. 青藏高原西北部晚第四纪以来的隆升作用——来自西昆仑阿什库勒多级河流阶地的证据[J]. 岩石学报, 2013, 29 (6): 2199- 2210. |
Pan Jiawei , Li Haibing , Sun Zhiming , et al. Late Quaternary uplift of the northwestern Tibetan Plateau:Evidences from river terraces in the Ashikule area, West Kunlun Mountain[J]. Acta Petrologica Sinica, 2013, 29 (6): 2199- 2210. | |
26 | 于祥江, 郭召杰, 张道伟, 等. 第四纪悸动:来自柴达木盆地构造增强的证据及其对多圈层的响应[J]. 第四纪研究, 2018, 38 (1): 39- 53. |
27 | Yu Xiangjiang , Guo Zhaojie , Zhang Daowei , et al. Quaternary shaking:evidences of tectonic intensification from the Qaidam Basin and its influence on multi-spherical interaction[J]. Quaternary Sciences, 2018, 38 (1): 39- 53. |
28 | 金之钧, 张明利, 汤良杰, 等. 柴达木中新生代盆地演化及其控油气作用[J]. 石油与天然气地质, 2004, 25 (6): 603- 608. |
Jin Zhijun , Zhang Mingli , Tang Liangjie , et al. Evolution of Meso-Cenozoic Qaidam basin and its control on oil and gas[J]. Oil and Gas Geology, 2004, 25 (6): 603- 608. | |
29 |
Wang Y , Zheng J , Zhang W , et al. Cenozoic uplift of the Tibetan Plateau:Evidence from the tectonic-sedimentary evolution of the western Qaidam Basin[J]. Geoscience Frontiers, 2012, 3 (2): 175- 187.
doi: 10.1016/j.gsf.2011.11.005 |
30 | 叶得泉, 钟筱春, 姚益民, 等. 中国油气区第三系I总论[M]. 北京: 石油工业出版社, 1993: 104- 108. |
Ye Dequan , Zhong Xiaochun , Yao Yimin , et al. Tertiary in petroliferous regions of China[M]. Beijignjing: China Petroleum Industry Press, 1993: 104- 108. | |
31 |
Olson J , Pollard D D . Inferring paleostresses from natural fracture patterns:A new method[J]. Geology, 1989, 17 (4): 345- 348.
doi: 10.1130/0091-7613(1989)017<0345:IPFNFP>2.3.CO;2 |
32 |
Thomas A L , Pollard D D . The geometry of echelon fractures in rock:implications from laboratory and numerical experiments[J]. Journal of Structural Geology, 1993, 15 (3-5): 323- 334.
doi: 10.1016/0191-8141(93)90129-X |
33 |
Olson J E . Joint pattern development:Effects of subcritical crack growth and mechanical crack interaction[J]. Journal of Geophysical Research:Solid Earth, 1993, 98 (B7): 12251- 12265.
doi: 10.1029/93JB00779 |
34 |
Bahat D . Single-layer burial joints vs single-layer uplift joints in Eocene chalk from the Beer Sheva syncline in Israel[J]. Journal of Structural Geology, 1999, 21 (3): 293- 303.
doi: 10.1016/S0191-8141(98)00118-7 |
35 | Warburton P M.A stereological interpretation of joint trace data[C].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.Pergamon, 1980, 17(4): 181-190. |
36 | 陈正乐, 高荐, 张岳桥, 等. 阿尔金断裂中段晚新生代构造变形的ESR测年证据[J]. 地质论评, 2002, (S1): 140- 145. |
Chen Zhengle , Gao Jian , Zhang Yueqiao , et al. Electron Spin Resonance Dating of the Late Cenozoic deformation along the Central Altun Fault[J]. Geological Review, 2002, (S1): 140- 145. | |
37 |
Lajtai E Z . A mechanistic view of some aspects of jointing in rocks[J]. Tectonophysics, 1977, 38 (3-4): 327- 338.
doi: 10.1016/0040-1951(77)90218-9 |
38 |
Scholz C H . A note on the scaling relations for opening mode fractures in rock[J]. Journal of Structural Geology, 2010, 32 (10): 1485- 1487.
doi: 10.1016/j.jsg.2010.09.007 |
39 | 张倬元, 王士天, 王兰生, 等. 工程地质分析原理[M]. 北京: 地质出版社, 2009: 54- 59. |
Zhang Zhuoyuan , Wang Shitian , Wang Lansheng , et al. Principle of engineering geological analysis[M]. Beijing: Geological Publishing House, 2009: 54- 59. | |
40 |
Walsh J B . The effect of cracks on the uniaxial elastic compression of rocks[J]. Journal of Geophysical Research, 1965, 70 (2): 399- 411.
doi: 10.1029/JZ070i002p00399 |
41 |
Segall P , Pollard D D . Joint formation in granitic rock of the Sierra Nevada[J]. Geological Society of America Bulletin, 1983, 94 (5): 563- 575.
doi: 10.1130/0016-7606(1983)94<563:JFIGRO>2.0.CO;2 |
[1] | 李志强, 杨波, 王军, 韩自军, 吴庆勋. 南黄海盆地中-新生界湖相烃源岩地球化学特征及生烃史[J]. 石油与天然气地质, 2022, 43(2): 419-431. |
[2] | 张亚雄. 鄂尔多斯盆地中部地区三叠系延长组7段暗色泥岩烃源岩特征[J]. 石油与天然气地质, 2021, 42(5): 1089-1097. |
[3] | 金晓辉, 张军涛, 孙冬胜, 丁茜, 杨佳奇. 鄂尔多斯盆地南缘上奥陶统平凉组浅钻中古岩溶洞穴的发现及其意义[J]. 石油与天然气地质, 2021, 42(3): 595-603. |
[4] | 范柏江, 梅启亮, 王小军, 孟越, 黄启江. 泥岩与页岩地化特征对比——以鄂尔多斯盆地安塞地区延长组7段为例[J]. 石油与天然气地质, 2020, 41(6): 1119-1128. |
[5] | 焦小芹, 牛花朋, 谢庆宾, 张永庶, 李俊巍, 吴志雄, 王波, 李欣. 柴达木盆地尖北斜坡基岩储层特征及天然气成藏条件[J]. 石油与天然气地质, 2020, 41(2): 305-315. |
[6] | 高岗, 徐新德, 刘诗局, 甘军, 胡晨晖, 赵建宇. 涠西南凹陷流沙港组二段优质烃源岩判别及其控油作用[J]. 石油与天然气地质, 2020, 41(2): 339-347. |
[7] | 徐陈杰, 叶加仁, 刘金水, 曹强, 盛溢勇, 余汉文. 东海西湖凹陷平湖组Ⅲ型干酪根暗色泥岩生排烃模拟[J]. 石油与天然气地质, 2020, 41(2): 359-366. |
[8] | 田继先, 李剑, 曾旭, 孔骅, 王鹏, 沙威, 王牧, 石正灏, 宋德康. 柴北缘深层天然气成藏条件及有利勘探方向[J]. 石油与天然气地质, 2019, 40(5): 1095-1105. |
[9] | 刘群, 袁选俊, 林森虎, 郭浩, 成大伟. 湖相泥岩、页岩的沉积环境和特征对比——以鄂尔多斯盆地延长组7段为例[J]. 石油与天然气地质, 2018, 39(3): 531-540. |
[10] | 杨金秀, 张克鑫, 陈和平, 卢双舫, 万学鹏, 唐明明, 肖佃师, 张超前. Oriente盆地D-F油田泥岩墙成因及其对油藏分布的影响[J]. 石油与天然气地质, 2017, 38(6): 1156-1164. |
[11] | 贾京坤, 尹伟, 邱楠生, 徐士林, 陈纯芳, 马立元. 鄂尔多斯盆地红河油田延长组输导体系定量表征[J]. 石油与天然气地质, 2017, 38(5): 878-886. |
[12] | 明晓冉, 刘立, 宋土顺, 刘娜, 杨会东, 于雷, 白杭改. 还原性流体-泥岩盖层相互作用的岩石学和地球化学记录——以松辽盆地南部王府凹陷青山口组泥岩为例[J]. 石油与天然气地质, 2017, 38(5): 952-962. |
[13] | 林森虎, 袁选俊, 杨智. 陆相页岩与泥岩特征对比及其意义——以鄂尔多斯盆地延长组7段为例[J]. 石油与天然气地质, 2017, 38(3): 517-523. |
[14] | 田孝茹, 卓勤功, 张健, 胡瀚文, 郭召杰. 准噶尔盆地南缘吐谷鲁群盖层评价及对下组合油气成藏的意义[J]. 石油与天然气地质, 2017, 38(2): 334-344. |
[15] | 田继先, 李剑, 曾旭, 郭泽清, 周飞, 王波, 王科. 柴达木盆地北缘天然气地球化学特征及其石油地质意义[J]. 石油与天然气地质, 2017, 38(2): 355-362. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||