石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (1): 41-53.doi: 10.11743/ogg20210104
姜振学1,2(), 李鑫1,2, 王幸蒙1,2, 王国臻1,2, 仇恒远1,2, 朱德宇1,2, 姜鸿阳1,2
收稿日期:
2020-04-23
出版日期:
2021-02-28
发布日期:
2021-02-07
第一作者简介:
姜振学(1963-), 男, 博士、教授, 常规和非常规油气形成与分布、资源评价。E-mail: 基金项目:
Zhenxue Jiang1,2(), Xin Li1,2, Xingmeng Wang1,2, Guozhen Wang1,2, Hengyuan Qiu1,2, Deyu Zhu1,2, Hongyang Jiang1,2
Received:
2020-04-23
Online:
2021-02-28
Published:
2021-02-07
摘要:
深入分析不同沉积背景页岩储层物质基础、探究不同层系页岩储层发育主控因素是预测页岩气藏地质甜点的核心工作。中国南方海相页岩气已实现大规模商业开发,而海-陆过渡相和陆相页岩气勘探鲜有突破。选取川西南海相页岩、湘中海-陆过渡相页岩和川东北陆相页岩为研究对象,在沉积背景、地化特征、岩石学特征以及孔隙结构特征研究的基础上,通过对比多层系页岩储层特征,明确了不同层系页岩储集能力主控因素。研究表明:海相页岩发育Ⅰ型有机质具迁移和产孔能力,以有机质孔隙为主,优势岩相为富有机质硅质页岩,具有高孔体积(平均值0.026 cm3/g)和高比表面积(平均值28.99 m2/g)特征,有机质丰度是储集能力好坏的决定性因素;海-陆过渡相发育Ⅲ型有机质呈惰性,以粘土矿物孔隙为主,优势岩相为富含有机质泥质页岩,具有高孔体积(平均值0.023 cm3/g)和低比表面积(平均值6.33 m2/g)特征,合理的矿物组构匹配(硅泥比2/3)是储集能力好坏的决定性因素;陆相有机质显微组分混杂,以粘土矿物孔隙和有机质孔隙为主,优势岩相为富有机质泥质页岩和富有机质混合质页岩,孔体积(平均值0.017 cm3/g)和比表面积(平均值11.90 m2/g)适中,高腐泥质含量(大于60%)和合理的矿物组构匹配是储集能力优越的有利条件。不同沉积背景页岩物质基础在差异成岩改造作用下呈现出迥异的储集性能,勘探目标应依据特定页岩层系差别对待。
中图分类号:
图7
中国南方典型页岩基质组构特征 a.Z201井, 龙马溪组, 埋深4 364 m,TOC=3.81%,Ro=2.54%;b.Z201井, 龙马溪组, 埋深4 364 m,TOC=3.81%,Ro=2.54%;c.Y202井, 龙马溪组, 埋深3 492m, TOC=2.79%,Ro=3.1%;d.H201井, 龙马溪组, 埋深4 070 m,TOC=2.6%,Ro=2.78%;e.H201井, 龙马溪组, 埋深4 070 m,TOC=2.6%,Ro=2.78%;f.W205井, 龙马溪组, 埋深3 680 m TOC=1.66%,Ro=2.7%;g.HD-3井, 龙潭组, 埋深319m,TOC=1.93%,Ro=2.41%;h.HD-3井, 龙潭组, 埋深500 m,TOC=3.01%,Ro=2.44%;i.HD-3井, 龙潭组, 埋深598 m,TOC=1.51%,Ro=2.46%;j.HD-3井, 龙潭组, 埋深622 m,TOC=1.45%,Ro=2.58%;k.YL4井, 自流井组, 埋深3 937 m,TOC=2.23%,Ro=1.46%;l.XL101井, 自流井组, 埋深2 155 m,TOC=1.76%,Ro=1.63%;m.YL4井,自流井组, 埋深3 754 m,TOC=2.44%,Ro=1.65%;n.FY1井,自流井组, 埋深2 623 m,TOC=1.23%,Ro= 1.67%;o.YB6井,自流井组, 埋深3 969 m,TOC=1.15%,Ro=1.75%;p.YB21井, 自流井组, 埋深4 025 m,TOC=0.85%,Ro=1.86%"
图8
中国南方典型页岩孔隙类型及发育特征 a.Z201井, 龙马溪组, 埋深4 364 m TOC=3.81%,Ro=2.54%;b.Z201井, 龙马溪组, 埋深4 364 m,TOC=3.81%,Ro=2.54%;c.N213井, 龙马溪组, 埋深2 568 m,TOC=3.56%,Ro=3.23%;d.N213井, 龙马溪组, 埋深2 560 m,TOC=3.36%,Ro=2.71%;e.N213井, 龙马溪组, 埋深2 568 m,TOC=3.56%,Ro=3.23%;f.W204井, 龙马溪组, 埋深3 338 m,TOC=4.47%,Ro=2.94%;g.L204井, 龙马溪组, 埋深3 795 m,TOC=2.37%,Ro=2.81%;h.HD-3井, 龙潭组, 埋深418 m,TOC=1.66%,Ro=2.35%;i.HD-3井, 龙潭组, 埋深544 m,TOC=1.70% Ro=2.58%;j.HD-3井, 龙潭组, 埋深319 m,TOC=1.93%,Ro=2.41%;k.HD-3井, 龙潭组, 埋深622 m,TOC=2.79%,Ro=2.61%;l.HD-3井3, 龙潭组, 埋深418 m,TOC=1.66%,Ro=2.35%;m.HD-3井, 龙潭组, 埋深544 m,TOC=1.70% Ro=2.58%;n.FY1井, 自流井组, 埋深2 736 m,TOC=2.2%,Ro=1.5%;o.YL176井, 自流井组, 埋深4 140 m,TOC=1.2% Ro=1.75%;p.XL101井, 自流井组, 埋深2 274 m,TOC=1.67% Ro=1.6%;q.XL101井, 自流井组, 埋深2 274 m,TOC=1.67%,Ro=1.6%;r.XL101井, 自流井组, 埋深2 144 m,TOC=1.5%,Ro=1.5%;s.XL101井, 自流井组, 埋深2 274 m,TOC=1.67%,Ro=1.6%;t.YL176井, 自流井组, 埋深4 140 m,TOC=1.2%,Ro=1.75%"
1 |
程克明, 王世谦, 董大忠, 等. 上扬子区下寒武统筇竹寺组页岩气成藏条件[J]. 天然气工业, 2009, 29 (5): 40- 44.
doi: 10.3787/j.issn.1000-0976.2009.05.008 |
Cheng Keming , Wang Shiqian , Dong Dazhong , et al. Accumulation conditions of shale gas reservoirs in the Lower Cambrian Qiongzhusi formation, the Upper Yangtze region[J]. Natural Gas Industry, 2009, 29 (5): 40- 44.
doi: 10.3787/j.issn.1000-0976.2009.05.008 |
|
2 |
陈波, 兰正凯. 上扬子地区下寒武统页岩气资源潜力[J]. 中国石油勘探, 2009, 14 (3): 10- 14, 1.
doi: 10.3969/j.issn.1672-7703.2009.03.003 |
Chen Bo , Lan Zhengkai . Lower Cambrian shale gas resource potential in Upper Yangtze Region[J]. China Petroleum Exploration, 2009, 14 (3): 10- 14, 1.
doi: 10.3969/j.issn.1672-7703.2009.03.003 |
|
3 | 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49 (1): 13- 35. |
Nie Haikuan , He Zhiliang , Liu Guangxiang , et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020, 49 (1): 13- 35. | |
4 | 陆永潮, 解习农, 周瑶琪. 精确的定量和定年技术在高频层序地层研究中的重要性[J]. 地学前缘, 1999, 6 (增刊): 28- 28. |
Lu Yongchao , Xie Xinong , Zhu Yaoqi . The importance of precise quantification and dating in the study of high frequency sequence stratigraphy[J]. Earth Science Frontiers, 1999, 6 (s): 28- 28. | |
5 | 卢双舫, 黄文彪, 陈方文, 等. 页岩油气资源分级评价标准探讨[J]. 石油勘探与开发, 2012, 39 (2): 249- 256. |
Lu Shuangfang , Huang Wenbiao , Chen Fangwen , et al. Classification and evaluation criteria of shale oil and gas resources: Discussion and application[J]. Petroleum Exploration and Development, 2012, 39 (2): 249- 256. | |
6 |
康玉柱. 中国非常规泥页岩油气藏特征及勘探前景展望[J]. 天然气工业, 2012, 32 (4): 1- 5.
doi: 10.3787/j.issn.1000-0976.2012.04.001 |
Kang Yuzhu . Characteristics and exploration prospect of unconventional shale gas reservoirs in China[J]. Natural Gas Industry, 2012, 32 (4): 1- 5.
doi: 10.3787/j.issn.1000-0976.2012.04.001 |
|
7 |
董大忠, 高世葵, 黄金亮, 等. 论四川盆地页岩气资源勘探开发前景[J]. 天然气工业, 2014, 34 (12): 1- 15.
doi: 10.3787/j.issn.1000-0976.2014.12.001 |
Dong Dazhong , Gao Shikui , Huang Jinliang , et al. A discussion on the shale gas exploration &development prospect in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34 (12): 1- 15.
doi: 10.3787/j.issn.1000-0976.2014.12.001 |
|
8 | 陈尚斌, 朱炎铭, 王红岩, 等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报, 2012, 37 (3): 438- 444. |
Chen Shangbin , Zhu Yanming , Wang Hongyan , et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society, 2012, 37 (3): 438- 444. | |
9 |
郭旭升, 李宇平, 刘若冰, 等. 四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J]. 天然气工业, 2014, 34 (6): 9- 16.
doi: 10.3787/j.issn.1000-0976.2014.06.002 |
Guo Xusheng , Li Yuping , Liu Ruobing , et al. Characteristics and controlling factors of micro-pore structures of Longmaxi Shale Play in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34 (6): 9- 16.
doi: 10.3787/j.issn.1000-0976.2014.06.002 |
|
10 | 于炳松. 页岩气储层的特殊性及其评价思路和内容[J]. 地学前缘, 2012, 19 (3): 252- 258. |
Yu Bingsong . Particularity of shale gas reservoir and its evaluation[J]. Earth Science Frontiers, 2012, 19 (3): 252- 258. | |
11 |
Wang P , Jiang Z , Chen L , et al. Pore structure characterization for the Longmaxi and Niutitang shales in the Upper Yangtze Platform, South China: Evidence from focused ion beam-He ion microscopy, nano-computerized tomography and gas adsorption analysis[J]. Marine and Petroleum Geology, 2016, 77, 1323- 1337.
doi: 10.1016/j.marpetgeo.2016.09.001 |
12 |
Tang X , Jiang Z , Jiang S , et al. Heterogeneous nanoporosity of the Silurian Longmaxi Formation shale gas reservoir in the Sichuan Basin using the QEMSCAN, FIB-SEM, and nano-CT methods[J]. Marine and Petroleum Geology, 2016, 78, 99- 109.
doi: 10.1016/j.marpetgeo.2016.09.010 |
13 | 姜振学, 唐相路, 李卓, 等. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J]. 地学前缘, 2016, 23 (2): 126- 134. |
Jiang Zhenxue , Tang Xianglu , Li Zhuo , et al. The whole-aperture pore structure characteristics and its effect on gas content of the Longmaxi Formation shale in the southeastern Sichuan basin[J]. Earth Science Frontiers, 2016, 23 (2): 126- 134. | |
14 | 郭少斌, 黄磊. 页岩气储层含气性影响因素及储层评价——以上扬子古生界页岩气储层为例[J]. 石油实验地质, 2013, 35 (6): 601- 606. |
Guo Shaobin , Huang Lei . Gas-bearing influential factors and evaluation of shale gas reservoir: A case study of Paleozoic shale gas reservoir in Upper Yangtze region[J]. Petroleum Geology & Experiment, 2013, 35 (6): 601- 606. | |
15 | 蒲泊伶, 董大忠, 牛嘉玉, 等. 页岩气储层研究新进展[J]. 地质科技情报, 2014, 33 (2): 98- 104. |
Pu Boling , Dong Dazhong , Niu Jiayu , et al. Principal progresses in shale gas reservoir research[J]. Geological Science and Technology Information, 2014, 33 (2): 98- 104. | |
16 | 王香增, 范柏江, 张丽霞, 等. 陆相页岩气的储集空间特征及赋存过程-鄂尔多斯盆地陕北斜坡构造带延长探区延长组长7段为例[J]. 石油与天然气地质, 2015, 36 (4): 131- 138. |
Wang Xiangzeng , Fan Bojiang , Zhang Lixia , et al. Reservoir space characteristics and charging process of Lacustrine shale gas-a case study of the Chang 7 member in Yanchang Block in Shanbei slope of Erdos Basin[J]. Oil & Gas Geology, 2015, 36 (4): 131- 138. | |
17 | 曹涛涛, 刘光祥, 曹清古, 等. 有机显微组成对泥页岩有机孔发育的影响——以川东地区海-陆过渡相龙潭组泥页岩为例[J]. 石油与天然气地质, 2018, 39 (1): 40- 53. |
Cao Taotao , Liu Guangxiang , Cao Qinggu , et al. Influence of maceral composition on organic pore development in shale: A case study of transitional Longtan Formation shale in eastern Sichuan Basin[J]. Oil & Gas Geology, 2018, 39 (1): 40- 53. | |
18 | 郗兆栋, 唐书恒, 李俊, 等. 沁水盆地中东部海-陆过渡相页岩孔隙结构及分形特征[J]. 天然气地球科学, 2017, 28 (3): 366- 376. |
Zhao Xidong , Tang Shuheng , Li Jun , et al. Investigation of pore structure and fractal characteristics of marine-continental transitional shale in the east-central of Qinshui Basin[J]. Natural Gas Geoscience, 2017, 28 (3): 366- 376. | |
19 | Zhang J , Li X , Wei Q , et al. Characterization of full-sized pore structure and fractal characteristics of marine-continental transitionalLongtan formation shale of Sichuan Basin, South China[J]. Energy & Fuels, 2017, 31 (10): 10490- 10504. |
20 | Dongxia C , Ying Z , Yuchen L , et al. Characteristics and controlling factors of micro- and nano-scale reservoirs in continental shale sequence of Western Sichuan Depression, China[J]. Journal of Nanoence and Nanotechnology, 2017, 17 (9): 6159- 6168. |
21 | 苏文博, 李志明, EttensohnF R, 等. 华南五峰组-龙马溪组黑色岩系时空展布的主控因素及其启示[J]. 地球科学(中国地质大学学报), 2007, 32 (6): 819- 827. |
Su Wenbo , Li Zhiming , Ettensohn F R , et al. Distribution of black shale in the Wufeng-Longmaxi Formations(Ordovician-Silurian), South China: Major controlling factors and implications[J]. Earth Science(Journal of China University of Geosciences), 2007, 32 (6): 819- 827. | |
22 | 李双建, 肖开华, 沃玉进, 等. 南方海相上奥陶统-下志留统优质烃源岩发育的控制因素[J]. 沉积学报, 2008, 26 (5): 872- 880. |
Li Shuangjian , Xiao Kaihua , Wo Yujin , et al. Developmental controlling factors of Upper Ordovician-Lower Silurian high quality source rocks in marine sequence, South China[J]. Acta Sedimentologica Sinica, 2008, 26 (5): 872- 880. | |
23 | 龙胜祥, 冯动军, 李凤霞, 等. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29 (4): 443- 451. |
Long Shengxiang , Feng Dongjun , Li Fengxia , et al. Prospect of the deep marine shale gas exploration and development in the Sichuan Basin[J]. Natural Gas Geoscience, 2018, 29 (4): 443- 451. | |
24 |
陈旭, 戎嘉余, 周志毅, 等. 上扬子区奥陶-志留纪之交的黔中隆起和宜昌上升[J]. 科学通报, 2001, 46 (12): 1052- 1056.
doi: 10.3321/j.issn:0023-074X.2001.12.021 |
Chen Xu , Rong Jiayu , Zhou Zhiyi , et al. The uplift of central guizhou and the rise of yichang at the ordovician-silurian junction in the upper Yangtze region[J]. Chinese Science Bulletin, 2001, 46 (12): 1052- 1056.
doi: 10.3321/j.issn:0023-074X.2001.12.021 |
|
25 |
王玉满, 董大忠, 李新景, 等. 四川盆地及其周缘下志留统龙马溪组层序与沉积特征[J]. 天然气工业, 2015, 35 (3): 12- 21.
doi: 10.3787/j.issn.1000-0976.2015.03.002 |
Wang Yuman , Dong Dazhong , Li Xinjing , et al. Stratigraphic sequence and sedimentary characteristice of Lower Silurian Longmaxi Formation in the Sichuan Basin and its peripheral areas[J]. Natural Gas Industry, 2015, 35 (3): 12- 21.
doi: 10.3787/j.issn.1000-0976.2015.03.002 |
|
26 | 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组-龙马溪组页岩岩相类型与沉积环境[J]. 石油学报, 2016, 37 (5): 572- 586. |
Zhao Jianhua , Jin Zhijun , Jin Zhenkui , et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37 (5): 572- 586. | |
27 | 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组-龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44 (1): 69- 78. |
Teng Geer , Shen Baojian , Yu Lingzhi , et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44 (1): 69- 78. | |
28 |
郭旭升, 胡东风, 刘若冰, 等. 四川盆地二叠系海-陆过渡相页岩气地质条件及勘探潜力[J]. 天然气工业, 2018, 38 (10): 11- 18.
doi: 10.3787/j.issn.1000-0976.2018.10.002 |
Guo Xusheng , Hu Dongfeng , Liu Ruobing , et al. Geological conditions and exploration potential of Permian marine-continent transitional facies shale gas in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38 (10): 11- 18.
doi: 10.3787/j.issn.1000-0976.2018.10.002 |
|
29 | 张吉振, 李贤庆, 王元, 等. 海-陆过渡相煤系页岩气成藏条件及储层特征——以四川盆地南部龙潭组为例[J]. 煤炭学报, 2015, 40 (8): 1871- 1878. |
Zhang Jizhen , Li Xianqing , Wang Yuan , et al. Accumulation conditions and reservoir characteristics of marine-terrigenous facies coal measures shale gas from Longtan Formation in South Sichuan Basin[J]. Journal of China Coal Society, 2015, 40 (8): 1871- 1878. | |
30 |
何发岐, 朱彤. 陆相页岩气突破和建产的有利目标——以四川盆地下侏罗统为例[J]. 石油实验地质, 2012, 34 (3): 246- 251.
doi: 10.3969/j.issn.1001-6112.2012.03.003 |
He Faqi , Zhu Tong . Favorable targets of breakthrough and built-up of shale gas in continental facies in Lower Jurassic, Sichuan Basin[J]. Petroleum Geology & Experiment, 2012, 34 (3): 246- 251.
doi: 10.3969/j.issn.1001-6112.2012.03.003 |
|
31 | 王良军, 王庆波. 四川盆地涪陵自流井组页岩气形成条件与勘探方向[J]. 西北大学学报(自然科学版), 2013, 43 (5): 757- 764. |
Wang Liangjun , Wang Qingbo . Formation conditions and explorative directions of jurassic shale gas in Fuling Sichuan Basin[J]. Journal of Northwest University(Natural Science Edition), 2013, 43 (5): 757- 764. | |
32 | 朱彤, 龙胜祥, 王烽, 等. 四川盆地湖相泥页岩沉积模式及岩石相类型[J]. 天然气工业, 2016, 36 (8): 22- 28. |
Zhu Tong , Long Shengxiang , Wang Feng , et al. Sedimentary models and lithofacies types of lacustrine mud shale in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36 (8): 22- 28. | |
33 |
Ko L T , Ruppel S C , Loucks R G , et al. Pore-types and pore-network evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett mudstones: Insights from laboratory thermal maturation and organic petrology[J]. International Journal of Coal Geology, 2018, 190, 3- 28.
doi: 10.1016/j.coal.2017.10.001 |
34 |
Mastalerz M , Schimmelmann A , Drobniak A , et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97 (10): 1621- 1643.
doi: 10.1306/04011312194 |
35 | Wang X , Jiang Z , Jiang S , et al. Pore evolution and formation mechanism of organic-rich shales in the whole process of hydrocarbon generation: A study of artificial and natural shale samples[J]. Energy & Fuels, 2020, 34 (1): 332- 347. |
36 |
Li X , Jiang Z , Jiang S , et al. Various controlling factors of matrix-related pores from differing depositional shales of the Yangtze Block in south China: Insight from organic matter isolation and fractal analysis[J]. Marine and Petroleum Geology, 2020, 111, 720- 734.
doi: 10.1016/j.marpetgeo.2019.08.019 |
37 | 聂海宽, 马鑫, 余川, 等. 川东下侏罗统自流井组页岩储层特征及勘探潜力评价[J]. 石油与天然气地质, 2017, 38 (3): 438- 447. |
Nie Haikuan , Ma Xin , Yu Chuan , et al. Shale gas reservoir characte-ristics and its exploration potential-analysis on the Lower Jurassic shale in the eastern Sichuan Basin[J]. Oil & Gas Geology, 2017, 38 (3): 438- 447. | |
38 |
Chen L , Jiang Z , Liu Q , et al. Mechanism of shale gas occurrence: Insights from comparative study on pore structures of marine and lacustrine shales[J]. Marine and Petroleum Geology, 2019, 104, 200- 216.
doi: 10.1016/j.marpetgeo.2019.03.027 |
39 | 刘国恒, 于抒放, 翟刚毅, 等. 鄂尔多斯盆地延长组泥页岩硅质来源与油气富集[J]. 石油实验地质, 2019, 41 (1): 45- 55, 67. |
Liu Guoheng , Yu Shufang , Zhia Gangyi , et al. Silicon sources and hydrocarbon accumulation in shale, Triassic Yanchang Formation, Ordos Basin[J]. Petroleum Geology & Experiment, 2019, 41 (1): 45- 55, 67. | |
40 | 杨豫川. 川西北上江沟地区大隆组硅质岩地化特征及其成因研究[D]. 成都: 成都理工大学, 2015. |
Yang Yuchuan.Research on geochemical characteristics and formative factors of cherts in the Dalong Formation of the Shangjianggou area, northwestern Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2015. | |
41 |
Jiang Z , Tang X , Cheng L , et al. Characterization and origin of the Silurian Wufeng-Longmaxi Formation shale multiscale heterogeneity in southeastern Sichuan Basin, China[J]. Interpretation, 2015, 3 (2): SJ61- SJ74.
doi: 10.1190/INT-2014-0151.1 |
42 |
赵文智, 李建忠, 杨涛, 等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发, 2016, 43 (4): 499- 510.
doi: 10.11698/PED.2016.04.01 |
Zhao Wenzhi , Li Jianzhong , Yang Tao , et al. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43 (4): 499- 510.
doi: 10.11698/PED.2016.04.01 |
|
43 | Ungerer P , Collell J , Yiannourakou M . Molecular modeling of the volumetric and thermodynamic properties of kerogen: Influence of organic type and maturity[J]. Energy & Fuels, 2015, 29 (1): 91- 105. |
44 |
Nie H , Sun C , Liu G , et al. Dissolution pore types of the Wufeng Formation and the Longmaxi Formation in the Sichuan Basin, south China: Implications for shale gas enrichment[J]. Marine and Petroleum Geology, 2019, 101, 243- 251.
doi: 10.1016/j.marpetgeo.2018.11.042 |
45 |
Li X , Jiang Z , Song Y , et al. Porosity evolution mechanisms of marine shales at over-maturity stage: Insight from comparable analysis between Lower Cambrian and Lower Silurian inside and at the margin of the Sichuan Basin, South China[J]. Interpretation, 2018, 6 (3): T739- T757.
doi: 10.1190/INT-2017-0221.1 |
[1] | 侯读杰, 吴克强, 尤丽, 张自鸣, 李雅君, 熊小峰, 徐敏, 严夏泽, 陈威合, 程熊. 琼东南盆地陆源海相烃源岩有机质富集机理[J]. 石油与天然气地质, 2024, 45(1): 31-43. |
[2] | 赵俊威, 孙海航, 张东伟, 王恒. 典型海相砂质临滨坝沉积演化过程及成因机制[J]. 石油与天然气地质, 2024, 45(1): 65-80. |
[3] | 罗情勇, 钟宁宁, 李美俊, 吴进, Khan Imran, 张烨, 陈清, 叶祥忠, 李文浩, 纪文明, 刘安吉, 郝婧玥, 姚立朋, 吴嘉. 前寒武纪—早古生代沉积岩显微组分分类、成因及演化[J]. 石油与天然气地质, 2023, 44(5): 1084-1101. |
[4] | 李军亮, 王鑫, 王伟庆, 李博, 曾溅辉, 贾昆昆, 乔俊程, 王康亭. 致密砂岩砂-泥结构发育特征及其对储集空间的控制作用[J]. 石油与天然气地质, 2023, 44(5): 1173-1187. |
[5] | 吴进, 罗情勇, 钟宁宁, 方子龙, 段金材, 张无忌, 崔雅鑫. 华北北部中元古界下马岭组页岩有机岩石学研究[J]. 石油与天然气地质, 2023, 44(5): 1218-1230. |
[6] | 裴健翔, 郭潇潇, 薛海涛, 吴杨瑜, 李珊珊, 李文浩. 莺歌海盆地中新统海相烃源岩形成环境及控制因素[J]. 石油与天然气地质, 2023, 44(4): 937-945. |
[7] | 王宏博, 马存飞, 曹铮, 李志鹏, 韩长城, 纪文明, 杨艺. 基于岩相的致密砂岩差异成岩作用及其储层物性响应[J]. 石油与天然气地质, 2023, 44(4): 976-992. |
[8] | 许璟, 葛云锦, 贺永红, 蒲仁海, 刘林玉, 段亮, 杜克锋. 鄂尔多斯盆地延长探区长7油层组泥页岩孔隙结构定量表征与动态演化过程[J]. 石油与天然气地质, 2023, 44(2): 292-307. |
[9] | 王鹏威, 刘忠宝, 张殿伟, 李雄, 杜伟, 刘皓天, 李鹏, 王濡岳. 川东地区二叠系海相页岩有机质富集对有机质孔发育的控制作用[J]. 石油与天然气地质, 2023, 44(2): 379-392. |
[10] | 李晓霞, 谷渊涛, 万泉, 杨曙光. 泥页岩中有机质-黏土复合体的微观结构、变形作用及源-储意义[J]. 石油与天然气地质, 2023, 44(2): 452-467. |
[11] | 宋泽章, 阿比德·阿不拉, 吕明阳, 张月巧, 姜福杰, 刘哲宇, 郑伟, 王夏阳. 氮气吸附滞后回环定量分析及其在孔隙结构表征中的指示意义[J]. 石油与天然气地质, 2023, 44(2): 495-509. |
[12] | 李增学, 刘莹, 李晓静, 张功成, 孙瑞, 王东东, 尹露生, 刘佳敏. 琼东南盆地古近纪泥炭沼泽破坏与重建作用对煤型源岩物质形成的控制[J]. 石油与天然气地质, 2022, 43(6): 1309-1320. |
[13] | 范建平, 宋金民, 江青春, 刘树根, 叶玥豪, 黄士鹏, 王佳蕊, 苏旺, 李立基, 金鑫, 冯宇翔. 川东地区中二叠统茅口组一段储层特征与形成模式[J]. 石油与天然气地质, 2022, 43(6): 1413-1430. |
[14] | 张砚, 惠栋, 张鉴, 张德良, 蒋睿. 四川盆地海相页岩水蒸气吸附特征及其主控因素[J]. 石油与天然气地质, 2022, 43(6): 1431-1444. |
[15] | 孟江辉, 吕沛熙, 吴伟, 潘仁芳, 朱逸青. 基于笔石表皮体反射率和拉曼光谱评价海相页岩热成熟度的方法[J]. 石油与天然气地质, 2022, 43(6): 1515-1528. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||