石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (2): 292-307.doi: 10.11743/ogg20230204
许璟1,2(), 葛云锦2, 贺永红2, 蒲仁海1(), 刘林玉1, 段亮1, 杜克锋2
收稿日期:
2022-08-17
修回日期:
2022-12-20
出版日期:
2023-03-17
发布日期:
2023-03-17
通讯作者:
蒲仁海
E-mail:lily_jing_2003@163.com;purenhai@nwu.edu.cn
第一作者简介:
许璟(1984—),女,高级工程师、博士研究生,非常规油气地质与勘探。E-mail:基金项目:
Jing XU1,2(), Yunjin GE2, Yonghong HE2, Renhai PU1(), Linyu LIU1, Liang DUAN1, Kefeng DU2
Received:
2022-08-17
Revised:
2022-12-20
Online:
2023-03-17
Published:
2023-03-17
Contact:
Renhai PU
E-mail:lily_jing_2003@163.com;purenhai@nwu.edu.cn
摘要:
全孔径孔隙结构的定量表征与动态演化研究是认识泥页岩储层成储机理和明确孔隙与烃-岩相互作用关系的重要基础。通过场发射扫描电镜、高压压汞、N2和CO2吸附实验等技术,对鄂尔多斯盆地延长探区长7油层组不同成熟度的典型岩心,以及开展过生、排烃模拟实验的泥页岩样品进行了孔隙结构的定量表征。在此基础上,结合生、排烃模拟和X射线衍射全岩/黏土矿物含量的测试结果,研究有机质生排烃、矿物成岩与孔隙结构演化的相互作用,定量分析储层孔隙结构和分形特征的动态演化特征。结果表明:长7油层组泥页岩储层的微孔、小孔和中孔对孔体积贡献较大,而孔比表面积主要由微孔和小孔提供。随着有机质生排烃、无机矿物溶蚀和矿物间转化的发生,总孔体积具有先减小后增大的趋势,其中中-大孔占比先降低后增加,且微-小孔的非均质性总体增强,而中-大孔的非均质性具有先增加后降低的趋势。相关性分析表明:孔隙大小、矿物组成耦合于储层的非均质性,其中微-小孔的分形维数D1与微孔占微-小孔的孔体积比例和黏土矿物含量均呈正相关,而中-大孔的分形维数D2与大孔占中-大孔的孔体积比例呈负相关,与脆性矿物含量呈正相关。研究结果对以长7油层组泥页岩为典型代表的中国陆相页岩油甜点区优选具有重要的指导意义。
中图分类号:
表1
实际泥页岩样品TOC,Ro和矿物组成"
样品号 | 采集 深度/m | TOC/% | Ro/% | 主要矿物组分含量/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
石英 | 黏土矿物 | 钾长石 | 斜长石 | 云母 | 方解石 | (铁) 白云石 | 黄铁矿 | 菱铁矿 | ||||
L237 | 1 176.9 | 3.96 | 0.55 | 24.4 | 32.7 | 7.9 | 14.8 | 1.3 | 8.6 | 5.0 | 3.8 | 1.5 |
L217 | 1 379.7 | 5.33 | 0.74 | 39.0 | 26.2 | 5.6 | 24.2 | 0.9 | 0.0 | 1.6 | 1.1 | 1.4 |
X6009 | 1 410.0 | 3.48 | 0.82 | 21.8 | 18.2 | 14.4 | 40.5 | 0.6 | 1.8 | 1.7 | 0.0 | 1.0 |
Y1011 | 1 747.0 | 5.78 | 0.56 | 24.2 | 36.1 | 9.7 | 11.5 | 0.0 | 3.1 | 2.5 | 9.7 | 3.2 |
ZC10-6 | 2 078.0 | 5.15 | 0.89 | 34.7 | 35.0 | 4.2 | 15.3 | 2.1 | 2.4 | 2.1 | 2.5 | 1.7 |
D6498 | 2 230.5 | 1.75 | 0.99 | 51.4 | 18.9 | 4.1 | 22.7 | 1.7 | 1.2 | 0.0 | 0.0 | 0.0 |
D48031 | 2 496.0 | 6.54 | 1.05 | 24.7 | 31.0 | 3.6 | 10.1 | 0.0 | 1.6 | 1.5 | 25.8 | 1.7 |
图2
鄂尔多斯盆地长7油层组泥页岩场发射扫描电镜和扫描电镜照片a.样品C117(加热至370 ℃后),埋深863.0 m,粒间孔,石英颗粒内见少量溶蚀孔,场发射扫描电镜照片; b.样品L217,埋深1 379.7 m,钾长石颗粒内见较多溶蚀孔,场发射扫描电镜照片; c.样品X6009,埋深1 410.0 m,叶片状绿泥石,不规则黏土层间孔发育,扫描电镜照片; d.样品D6498, 埋深2 230.5 m,蜂窝状伊/蒙混层,不规则黏土层间孔发育,扫描电镜照片; e.样品D48031, 埋深2 496.0 m,书页状高岭石,高岭石颗粒间充填有机质,场发射扫描电镜照片; f.样品D48031, 埋深2 496.0 m,钾长石黏土化,可见部分钾长石蚀变为高岭石,高岭石颗粒间充填有机质,场发射扫描电镜照片; g.样品D48031, 埋深2 496.0 m,草莓状黄铁矿晶间孔隙间充填有机质,场发射扫描电镜照片; h.样品C117(加热至340 ℃后),埋深863.0 m,有机质内部发育少量有机质孔隙,场发射扫描电镜照片; i.样品C117(加热至420 ℃后), 埋深863.0 m,较大孔径的有机质孔隙发育,场发射扫描电镜照片"
表3
鄂尔多斯盆地长7油层组泥页岩微-小孔分形锥数D1 和中-大孔分形锥数D2 计算结果"
样品号 (原样) | 微-小孔 | 中-大孔 | 实验 温度/℃ | 微-小孔 | 中-大孔 | ||||
---|---|---|---|---|---|---|---|---|---|
D1 | 相关系数R2 | D2 | 相关系数R2 | D1 | 相关系数R2 | D2 | 相关系数R2 | ||
L237 | 2.452 | 0.998 5 | 2.984 | 0.994 4 | C171原样 | 2.529 | 0.991 3 | 2.982 | 0.985 0 |
Y1011 | 2.404 | 0.982 5 | 2.969 | 0.921 6 | 300 | 2.522 | 0.996 5 | 2.952 | 0.971 3 |
L217 | 2.415 | 0.994 8 | 2.985 | 0.975 3 | 320 | 2.530 | 0.996 3 | 2.962 | 0.947 2 |
X6009 | 2.483 | 0.981 2 | 2.969 | 0.957 7 | 340 | 2.543 | 0.992 0 | 2.894 | 0.994 1 |
ZC10-6 | 2.349 | 0.990 4 | 2.984 | 0.993 6 | 370 | 2.564 | 0.993 5 | 2.899 | 0.964 3 |
D6498 | 2.482 | 0.996 5 | 2.982 | 0.994 6 | 420 | 2.597 | 0.992 1 | 2.818 | 0.892 2 |
D48031 | 2.480 | 0.997 2 | 2.985 | 0.972 2 | — | — | — | — | — |
平均值 | 2.438 | 0.991 6 | 2.980 | 0.972 8 | 平均值 | 2.547 | 0.993 6 | 2.918 | 0.959 0 |
1 | BREYER J A. Shale reservoirs—giant resources for the 21st century[M]. Tulsa: American Association of Petroleum Geologists, 2012: 519. |
2 | AGUILERA R, RADETZKI M. Shale gas and oil: Fundamentally changing global energy markets[J]. Oil and Gas Journal, 2013, 111(12): 54-61. |
3 | 胡素云, 赵文智, 侯连华, 等. 中国陆相页岩油发展潜力与技术对策[J]. 石油勘探与开发, 2020, 47(4): 819-828. |
HU Suyun, ZHAO Wenzhi, HOU Lianhua, et al. Development potential and technical strategy of continental shale oil in China[J]. Petroleum Exploration and Development, 2020, 47(4): 819-828. | |
4 | 赵文智, 胡素云, 侯连华, 等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发, 2020, 47(1): 1-10. |
ZHAO Wenzhi, HU Suyun, HOU Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10. | |
5 | 金之钧, 白振瑞, 高波, 等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质, 2019, 40(3): 451-458. |
JIN Zhijun, BAI Zhenrui, GAO Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3): 451-458. | |
6 | 金之钧, 朱如凯, 梁新平, 等. 当前陆相页岩油勘探开发值得关注的几个问题[J]. 石油勘探与开发, 2021, 48(6): 1276-1287. |
JIN Zhijun, ZHU Rukai, LIANG Xinping, et al. Several issues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development, 2021, 48(6): 1276-1287. | |
7 | 王晓雯, 关平, 梁晓伟, 等. 鄂尔多斯盆地长7段页岩油优质储层特征分析[J]. 北京大学学报(自然科学版), 2021, 57(3): 459-469. |
WANG Xiaowen, GUAN Ping, LIANG Xiaowei, et al. Analysis of pore properties of favorable shale oil reservoir of Chang-7 in Ordos Basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(3): 459-469. | |
8 | BUSTIN R M, BUSTIN A M M, CUI X, et al. Impact of shale properties on pore structure and storage characteristics[C]//SPE Shale Gas Production Conference, Fort Worth, 2008. Houston: SPE, 2008: SPE-119892-MS. |
9 | LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. |
10 | 肖佃师, 赵仁文, 杨潇, 等. 海相页岩气储层孔隙表征、分类及贡献[J]. 石油与天然气地质, 2019, 40(6): 1215-1225. |
XIAO Dianshi, ZHAO Renwen, YANG Xiao, et al. Characterization, classification and contribution of marine shale gas reservoirs[J]. Oil & Gas Geology, 2019, 40(6): 1215-1225. | |
11 | 姜振学, 唐相路, 李卓, 等. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J]. 地学前缘, 2016, 23(2): 126-134. |
JIANG Zhenxue, TANG Xianglu, LI Zhuo, et al. The whole-aperture pore structure characteristics and its effect on gas content of the Longmaxi Formation shale in the southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(2): 126-134. | |
12 | 朱如凯, 吴松涛, 苏玲, 等. 中国致密储层孔隙结构表征需注意的问题及未来发展方向[J]. 石油学报, 2016, 37(11): 1323-1336. |
ZHU Rukai, WU Songtao, SU Ling, et al. Problems and future works of porous texture characterization of tight reservoirs in China[J]. Acta Petrolei Sinica, 2016, 37(11): 1323-1336. | |
13 | 曾宏斌, 王芙蓉, 罗京, 等. 基于低温氮气吸附和高压压汞表征潜江凹陷盐间页岩油储层孔隙结构特征[J]. 地质科技通报, 2021, 40(5): 242-252. |
ZENG Hongbin, WANG Furong, LUO Jing, et al. Characteristics of pore structure of intersalt shale oil reservoir by low temperature nitrogen adsorption and high pressure mercury pressure methods in Qianjiang Sag[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 242-252. | |
14 | 王民, 关莹, 李传明, 等. 济阳坳陷沙河街组湖相页岩储层孔隙定性描述及全孔径定量评价[J]. 石油与天然气地质, 2018, 39(6): 1107-1119. |
WANG Min, GUAN Ying, LI Chuanming, et al. Qualitative description and full-pore-size quantitative evaluation of pores in lacustrine shale reservoir of Shahejie Formation, Jiyang Depression[J]. Oil & Gas Geology, 2018, 39(6): 1107-1119. | |
15 | CHALMERS G R L, BUSTIN R M. Lower Cretaceous gas shales in northeastern British Columbia, Part I: Geological controls on methane sorption capacity[J]. Bulletin of Canadian Petroleum Geology, 2008, 56(1): 1-21. |
16 | ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927. |
17 | 曹尚, 李树同, 党海龙, 等. 鄂尔多斯盆地东南部长7段页岩孔隙特征及其控制因素[J]. 新疆石油地质, 2022, 43(1): 11-17. |
CAO Shang, LI Shutong, DANG Hailong, et al. Pore characteristics and controlling factors of Chang 7 shale in southeastern Ordos Basin[J]. Xinjiang Petroleum Geology, 2022, 43(1): 11-17. | |
18 | 冯小龙, 敖卫华, 唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析: 以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 678-692. |
FENG Xiaolong, AO Weihua, TANG Xuan. Characteristics of pore development and its main controlling factors of continental shale gas reservoirs: A case study of Chang 7 member in Ordos Basin[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 678-692. | |
19 | 杨桂林, 任战利, 张圆圆, 等. ZD地区长7段泥页岩储层特征研究[J]. 非常规油气, 2018, 5(4): 27-33. |
YANG Guilin, REN Zhanli, ZHANG Yuanyuan, et al. Study on shale reservoir characteristics of Chang-7 Formation in ZD area[J]. Unconventional Oil & Gas, 2018, 5(4): 27-33. | |
20 | 俞雨溪, 罗晓容, 雷裕红, 等. 陆相页岩孔隙结构特征研究——以鄂尔多斯盆地延长组页岩为例[J]. 天然气地球科学, 2016, 27(4): 716-726. |
YU Yuxi, LUO Xiaorong, LEI Yuhong, et al. Characterization of lacustrine shale pore structure: An example from the Upper-Triassic Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(4): 716-726. | |
21 | XU Hao, TANG Dazhen, ZHAO Junlong, et al. A precise measurement method for shale porosity with low-field nuclear magnetic resonance: A case study of the Carboniferous-Permian strata in the Linxing area, eastern Ordos Basin, China[J]. Fuel, 2015, 143: 47-54. |
22 | 耳闯, 赵靖舟, 白玉彬, 等. 鄂尔多斯盆地三叠系延长组富有机质泥页岩储层特征[J]. 石油与天然气地质, 2013, 34(5): 708-716. |
Chuang ER, ZHAO Jingzhou, BAI Yubin, et al. Reservoir characteristics of the organic-rich shales of the Triassic Yanchang Formation in Ordos Basin[J]. Oil & Gas Geology, 2013, 34(5): 708-716. | |
23 | 葛云锦, 任来义, 贺永红, 等. 鄂尔多斯盆地富县—甘泉地区三叠系延长组7油层组致密油富集主控因素[J]. 石油与天然气地质, 2018, 39(6): 1190-1200. |
GE Yunjin, REN Laiyi, HE Yonghong, et al. Main factors controlling the tight oil enrichment in the 7th oil layer group of the Triassic Yanchang Formation in Fuxian-Ganquan area, Ordos Basin[J]. Oil & Gas Geology, 2018, 39(6): 1190-1200. | |
24 | 王香增. 鄂尔多斯盆地延长探区低渗致密油气成藏理论进展及勘探实践[J]. 地学前缘, 2023, 30(1): 143-155. |
WANG Xiangzeng. Low permeability tight oil and gas in Yanchang area, Ordos Basin: Advances in accumulation theory and exploration practice[J]. Earth Science Frontiers, 2023, 30(1): 143-155. | |
25 | WASHBURN E W. The dynamics of capillary flow[J]. Physical Review, 1921, 17(3): 273-283. |
26 | DRUMMOND C, ISRAELACHVILI J. Surface forces and wettability[J]. Journal of Petroleum Science and Engineering, 2002, 33(1/3): 123-133. |
27 | VAFAIE A, KIVI I R, MOALLEMI S A, et al. Permeability prediction in tight gas reservoirs based on pore structure characteristics: A case study from South Western Iran[J]. Unconventional Resources, 2021, 1: 9-17. |
28 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 压汞法和气体吸附法测定固体材料孔径分布和孔隙度 第3部分: 气体吸附法分析微孔: [S]. 北京: 中国标准出版社, 2012. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption—Part 3: Analysis of micropores by gas adsorption: [S]. Beijing: Standards Press of China, 2012. | |
29 | BARRETT E P, JOYNER L G, HALENDA P P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms[J]. Journal of the American Chemical Society, 1951, 73(1): 373-380. |
30 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 压汞法和气体吸附法测定固体材料孔径分布和孔隙度 第2部分: 气体吸附法分析介孔和大孔: [S]. 北京: 中国标准出版社, 2008. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption—Part 2: Analysis of mesopores and macropores by gas adsorption: [S]. Beijing: Standards Press of China, 2008. | |
31 | 霍多特. 煤与瓦斯突出[M]. 宋士钊, 王佑安, 译. 北京: 中国工业出版社, 1966. |
ХОДOТ В В. Outburst of coal and coalbed gas[M]. SONG Shizhao, WANG Youan, translated. Beijing: China Industry Press, 1966. | |
32 | EVERETT D H. Manual of symbols and terminology for physicochemical quantities and units, appendix II: Definitions, terminology and symbols in colloid and surface chemistry[J]. Pure and Applied Chemistry, 1972, 31(4): 577-638. |
33 | 李俊乾, 姚艳斌, 蔡益栋, 等. 华北地区不同变质程度煤的物性特征及成因探讨[J]. 煤炭科学技术, 2012, 40(4): 111-115. |
LI Junqian, YAO Yanbin, CAI Yidong, et al. Discussion on coal physical properties and formation with different metamorphic degree in North China[J]. Coal Science and Technology, 2012, 40(4): 111-115. | |
34 | XIONG Jian, LIU Xiangjun, LIANG Lixi. Experimental study on the pore structure characteristics of the Upper Ordovician Wufeng Formation shale in the southwest portion of the Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 530-539. |
35 | 卢双舫, 李俊乾, 张鹏飞, 等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发, 2018, 45(3): 436-444. |
LU Shuangfang, LI Junqian, ZHANG Pengfei, et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development, 2018, 45(3): 436-444. | |
36 | ZHANG Pengfei, LU Shuangfang, LI Junqian, et al. Characterization of shale pore system: A case study of Paleogene Xin’gouzui Formation in the Jianghan Basin, China[J]. Marine and Petroleum Geology, 2017, 79: 321-334. |
37 | 薛冰, 张金川, 唐玄, 等. 黔西北龙马溪组页岩微观孔隙结构及储气特征[J]. 石油学报, 2015, 36(2): 138-149, 173. |
XUE Bing, ZHANG Jinchuan, TANG Xuan, et al. Characteristics of microscopic pore and gas accumulation on shale in Longmaxi Formation, northwest Guizhou[J]. Acta Petrolei Sinica, 2015, 36(2): 138-149, 173. | |
38 | SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. |
39 | KUILA U, PRASAD M. Specific surface area and pore-size distribution in clays and shales[J]. Geophysical Prospecting, 2013, 61(2): 341-362. |
40 | YANG Xiyan, FAN Jiaxing, ZHANG Yu, et al. Microscopic pore structure characteristics of tight limestone reservoirs: New insights from Section 1 of the Permian Maokou Formation, Southeastern Sichuan Basin, China[J]. Unconventional Resources, 2022, 2: 31-40. |
41 | GROEN J C, PEFFER L A A, PÉREZ-RAMÍREZ J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis[J]. Microporous and Mesoporous Materials, 2003, 60(1/3): 1-17. |
42 | STAINFORTH J G. Practical kinetic modeling of petroleum generation and expulsion[J]. Marine and Petroleum Geology, 2009, 26(4): 552-572. |
43 | MANDELBROT B B. The fractal geometry of nature[M]. San Francisco: W.H. Freeman, 1982. |
44 | AHMAD A L, MUSTAFA N N N. Pore surface fractal analysis of palladium-alumina ceramic membrane using Frenkel-Halsey-Hill (FHH) model[J]. Journal of Colloid and Interface Science, 2006, 301(2): 575-584. |
45 | 岳亮, 孟庆强, 刘自亮, 等. 致密砂岩储层物性及非均质性特征——以四川盆地中部广安地区上三叠统须家河组六段为例[J]. 石油与天然气地质, 2022, 43(3): 597-609. |
YUE Liang, MENG Qingqiang, LIU Ziliang, et al. Physical property and heterogeneity of tight sandstone reservoirs: A case of the Upper Triassic 6th member of Xujiahe Formation, Guang’an, central Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(3): 597-609. | |
46 | 李向军. 鄂尔多斯盆地中南部长7段泥页岩系的埋藏成岩-孔隙演化过程[D]. 西安: 西北大学, 2017. |
LI Xiangjun. Research on buried diagenesis and pore evolution process of Chang 7 mud shale in the southern-central Ordos Basin[D]. Xi’an: Northwest University, 2017. | |
47 | KE Zunsong, FENG Bo, LIU Yanguang, et al. Dissolution and sedimentation patterns of typical minerals in artificial reservoirs under different environments[J]. Unconventional Resources, 2022, 2: 60-71. |
48 | 黄思静, 黄可可, 冯文立, 等. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成: 来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J]. 地球化学, 2009, 38(5): 498-506. |
HUANG Sijing, HUANG Keke, FENG Wenli, et al. Mass exchanges among feldspar, kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis——A case study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, Western Sichuan Depression[J]. Geochimica, 2009, 38(5): 498-506. | |
49 | WORDEN R H, MORAD S. Clay mineral cements in sandstones[M]. Malden: Blackwell Publishing, 2003. |
50 | BOLES J R, FRANKS S G. Clay diagenesis in Wilcox sandstones of southwest Texas; Implications of smectite diagenesis on sandstone cementation[J]. Journal of Sedimentary Research, 1979, 49(1): 55-70. |
51 | BERGER G, LACHARPAGNE J C, VELDE B, et al. Kinetic constraints on illitization reactions and the effects of organic diagenesis in sandstone/shale sequences[J]. Applied Geochemistry, 1997, 12(1): 23-35. |
52 | 刘惟庆. 鄂西地区上二叠统大隆组富有机质页岩岩相与储层特征研究[D]. 武汉: 中国地质大学, 2019. |
LIU Weiqing. Study of the organic matter shales lithofacies and reservoir characteristics of the Upper Permian Dalong Formation in western Hubei[D]. Wuhan: China University of Geosciences, 2019. | |
53 | CHANG H K, MACKENZIE F T, SCHOONMAKER J. Comparisons between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian offshore basins[J]. Clays and Clay Minerals, 1986, 34(4): 407-423. |
54 | 王恩泽, 吴忠宝, 宋彦辰, 等. 鄂尔多斯盆地庆城地区长7段致密砂岩成岩演化与孔隙结构特征[J]. 北京大学学报(自然科学版), 2022, 58(2): 249-260. |
WANG Enze, WU Zhongbao, SONG Yanchen, et al. Pore structure and diagenetic evolution features of member-7 of Yanchang Formation in Qingcheng area, Ordos Basin, NW China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(2): 249-260. | |
55 | ZHANG Kun, PANG Xiongqi, ZHAO Zhengfu, et al. Pore structure and fractal analysis of Lower Carboniferous carbonate reservoirs in the Marsel area, Chu-Sarysu Basin[J]. Marine and Petroleum Geology, 2018, 93: 451-467. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 吴伟涛, 冯炎松, 费世祥, 王一妃, 吴和源, 杨旭东. 鄂尔多斯盆地神木气田二叠系石千峰组5段致密气富集因素及有利区预测[J]. 石油与天然气地质, 2024, 45(3): 739-751. |
[4] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[5] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[6] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[7] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[8] | 刘成林, 丁振刚, 范立勇, 康锐, 洪思婕, 朱玉新, 陈践发, 王海东, 许诺. 鄂尔多斯盆地含氦天然气地球化学特征与富集影响因素[J]. 石油与天然气地质, 2024, 45(2): 384-392. |
[9] | 万俊雨, 朱建辉, 姚素平, 张毅, 李春堂, 张威, 姜海健, 王杰. 鄂尔多斯盆地中、东部奥陶系马家沟组成烃生物及烃源岩地球生物学评价[J]. 石油与天然气地质, 2024, 45(2): 393-405. |
[10] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[11] | 杨丽华, 刘池洋, 黄雷, 周义军, 刘永涛, 秦阳. 鄂尔多斯盆地古峰庄地区疑似侵入岩体的发现及其地质意义[J]. 石油与天然气地质, 2024, 45(1): 142-156. |
[12] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[13] | 曹江骏, 王继平, 张道锋, 王龙, 李笑天, 李娅, 张园园, 夏辉, 于占海. 深层致密砂岩储层成岩演化对含气性的影响[J]. 石油与天然气地质, 2024, 45(1): 169-184. |
[14] | 张宏国, 杨海风, 宿雯, 徐春强, 黄志, 程燕君. 源外层系油气运聚关键环节研究与评价方法[J]. 石油与天然气地质, 2024, 45(1): 281-292. |
[15] | 郭旭升, 马晓潇, 黎茂稳, 钱门辉, 胡宗全. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||