石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (2): 452-467.doi: 10.11743/ogg20230216
收稿日期:
2022-08-02
修回日期:
2022-12-20
出版日期:
2023-03-17
发布日期:
2023-03-17
第一作者简介:
李晓霞(1988—),女,博士、讲师,细粒沉积学。E?mail: 基金项目:
Xiaoxia LI1(), Yuantao GU1,2, Quan WAN3, Shuguang YANG3
Received:
2022-08-02
Revised:
2022-12-20
Online:
2023-03-17
Published:
2023-03-17
摘要:
泥页岩中的有机质和黏土矿物在沉积演化过程中能够相互结合形成有机质-黏土复合体,成为重要的生烃母质。基于大量的场发射扫描电镜和透射电镜观察分析,以中国鄂尔多斯盆地三叠系延长组、黔北奥陶系-志留系五峰组-龙马溪组、黔中寒武系牛蹄塘组及南华北盆地二叠系山西组4套泥页岩储层为研究对象,详细查明了泥页岩中有机质-黏土复合体的微观结构及变形作用,并深入探讨了其源-储意义。泥页岩中有机质-黏土复合体成分复杂,形态多样,且易发生变形;驱动复合体发生变形的主要机制有构造应力作用、矿物颗粒作用、有机质赋存及黏土矿物转化。其中,由外部构造应力和复合体内部矿物颗粒对黏土层、有机质层挤压引起的变形能够改变复合体局部应力环境,所形成的拉张环境可使复合体发育大量纳米孔隙,且这些孔隙因黏土层的保护而不易发生烃类散失,可有效提升泥页岩的储集能力。相关结论有助于完善泥页岩的成岩理论,增进对页岩油气生成、运移和储集过程的认识,进而指导页岩油气的勘探开发。
中图分类号:
图10
鄂尔多斯盆地延长组、黔北龙马溪组、黔中牛蹄塘组及南华北盆地山西组泥页岩有机质-黏土复合体中有机质的赋存a—c.长7段,941#采油井,埋深716.0 m,其中a图显示了黏土多层层间有机质,b图显示黏土单层厚度的变化,c图为a图中“十字”标记处的能谱图,显示有明显的“碳”峰;d—f.龙一段第②层浅钻,深度0.5 m,显示了明显的伊/蒙混层和不规则的伊利石层;g,h.牛蹄塘组,ZK105钻孔,埋深701 .0 m,显示了有机质与绿泥石、伊利石的互层;i.山西组,ZK02109钻孔,埋深222.7 m,显示了有机质与伊利石的互层(黄色虚线指示黏土层的延伸方向,白色直线指示黏土层的单层厚度;除c图外均为TEM图像。)"
1 | CAI Jingong, DU Jiazong, CHAO Qian, et al. Evolution of surface acidity during smectite illitization: Implication for organic carbon cycle[J]. Marine and Petroleum Geology, 2022, 138: 105537. |
2 | KENNEDY M J, LÖHR S C, FRASER S A, et al. Direct evidence for organic carbon preservation as clay-organic nanocomposites in a Devonian black shale; from deposition to diagenesis[J]. Earth and Planetary Science Letters, 2014, 388: 59-70. |
3 | KENNEDY M J, PEVEAR D R, HILL R J. Mineral surface control of organic carbon in black shale[J]. Science, 2002, 295(5555): 657-660. |
4 | 蔡进功. 泥质沉积物和泥岩中的有机粘土复合体[D]. 上海: 同济大学, 2003. |
CAI Jingong. Organo-clay complexes in muddy sediments and mudstones[D]. Shanghai: Tongji University, 2003. | |
5 | 王行信, 万玉兰. 有机粘土复合体在石油生成中的意义[J]. 中国海上油气, 1993, 7(2): 27-33. |
WANG Xingxin, WAN Yulan. Significance of the organic clay polymer on oil and gas generation[J]. China Offshore Oil & Gas, 1993, 7(2): 27-33. | |
6 | THENG B K G. Formation and properties of clay-polymer complexes[M]. Amsterdam: Soil Elsevier Scientific Publishing Company, 1979: 1-76. |
7 | THENG B K G, CHURCHMAN G J, NEWMAN R H. The occurrence of interlayer clay-organic complexes in two New Zealand soils[J]. Soil Science, 1986, 142(5): 262-266. |
8 | YARIV S, CROSS H. Organo-clay complexes and interactions[M]. New York: Marcel Dekker, 2002: 39-112. |
9 | GU Yuantao, LI Xiaoxia, YANG Shuguang, et al. Microstructure evolution of organic matter and clay minerals in shales with increasing thermal maturity[J]. Acta Geologica Sinica(English Edition), 2020, 94(2): 280-289. |
10 | 卢龙飞, 蔡进功, 刘文汇, 等. 泥岩与沉积物中粘土矿物吸附有机质的三种赋存状态及其热稳定性[J]. 石油与天然气地质, 2013, 34(1): 16-26. |
LU Longfei, CAI Jingong, LIU Wenhui, et al. Occurrence and thermostability of absorbed organic matter on clay minerals in mudstones and muddy sediments[J]. Oil & Gas Geology, 2013, 34(1): 16-26. | |
11 | CAI Jingong, BAO Yujin, YANG Shouye, et al. Research on preservation and enrichment mechanisms of organic matter in muddy sediment and mudstone[J]. Science in China Series D: Earth Sciences, 2007, 50(5): 765-775. |
12 | KENNEDY M J, WAGNER T. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(24): 9776-9781. |
13 | LÖHR S C, KENNEDY M J. Organomineral nanocomposite carbon burial during Oceanic Anoxic Event 2[J]. Biogeosciences, 2014, 11(18): 4971-4983. |
14 | BERGAMASCHI B A, TSAMAKIS E, KEIL R G, et al. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(6): 1247-1260. |
15 | BERTHONNEAU J, GRAUBY O, ABUHAIKAL M, et al. Evolution of organo-clay composites with respect to thermal maturity in type Ⅱ organic-rich source rocks[J]. Geochimica et Cosmochimica Acta, 2016, 195: 68-83. |
16 | KEIL R G, HEDGES J I. Sorption of organic matter to mineral surfaces and the preservation of organic matter in coastal marine sediments[J]. Chemical Geology, 1993, 107(3/4): 385-388. |
17 | ZHU Xiaojun, CAI Jingong, WANG Guoli, et al. Role of organo-clay composites in hydrocarbon generation of shale[J]. International Journal of Coal Geology, 2018, 192: 83-90. |
18 | 刘洪林, 郭伟, 刘德勋, 等. 海相页岩成岩过程中的自生脆化作用[J]. 天然气工业, 2018, 38(5): 17-25. |
LIU Honglin, GUO Wei, LIU Dexun, et al. Authigenic embrittlement of marine shale in the process of diagenesis[J]. Natural Gas Industry, 2018, 38(5): 17-25. | |
19 | 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49(1): 13-35. |
NIE Haikuan, HE Zhiliang, LIU Guangxiang, et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020, 49(1): 13-35. | |
20 | 张鹏辉, 陈志勇, 薛路, 等. 塔里木盆地西北缘下寒武统黑色岩系差异性成岩演化及其影响因素[J]. 岩石学报, 2020, 36(11): 3463-3476. |
ZHANG Penghui, CHEN Zhiyong, XUE Lu, et al. The differential diagenetic evolution and its influencing factors of Lower Cambrian black rock series in the northwestern margin of Tarim Basin[J]. Acta Petrologica Sinica, 2020, 36(11): 3463-3476. | |
21 | MASTALERZ M, SCHIMMELMANN A, DROBNIAK A, et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643. |
22 | MILLIKEN K L, ESCH W L, REED R M, et al. Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(8): 1553-1578. |
23 | WANG Guochang. Deformation of organic matter and its effect on pores in mud rocks[J]. AAPG Bulletin, 2020, 104(1): 21-36. |
24 | 李颖莉, 蔡进功. 泥质烃源岩中蒙脱石伊利石化对页岩气赋存的影响[J]. 石油实验地质, 2014, 36(3): 352-358. |
LI Yingli, CAI Jingong. Effect of smectite illitization on shale gas occurrence in argillaceous source rocks[J]. Petroleum Geology and Experiment, 2014, 36(3): 352-358. | |
25 | 王行信, 蔡进功, 包于进. 粘土矿物对有机质生烃的催化作用[J]. 海相油气地质, 2006, 11(3): 27-38. |
WANG Xingxin, CAI Jingong, BAO Yujin. Catalysis of clay mineral to organic matter in hydrocarbon genesis[J]. Marine Origin Petroleum Geology, 2006, 11(3): 27-38. | |
26 | GU Yuantao, LI Xiaoxia, WAN Quan, et al. The differential evolution of nanopores in discrete OM and organic-clay composites for shale: Insights from stress manipulation[J]. Arabian Journal of Geosciences, 2021, 14(7): 554. |
27 | RAHMAN H M, KENNEDY M, LÖHR S, et al. The influence of shale depositional fabric on the kinetics of hydrocarbon generation through control of mineral surface contact area on clay catalysis[J]. Geochimica et Cosmochimica Acta, 2018, 220: 429-448. |
28 | 王香增, 张金川, 曹金舟, 等. 陆相页岩气资源评价初探: 以延长直罗—下寺湾区中生界长7段为例[J]. 地学前缘, 2012, 19(2): 192-197. |
WANG Xiangzeng, ZHANG Jinchuan, CAO Jinzhou, et al. A preliminary discussion on evaluation of continental shale gas resources: A case study of Chang 7 of Mesozoic Yanchang Formation in Zhiluo-Xiasiwan area of Yanchang[J]. Earth Science Frontiers, 2012, 19(2): 192-197. | |
29 | 张亚雄. 鄂尔多斯盆地中部地区三叠系延长组7段暗色泥岩烃源岩特征[J]. 石油与天然气地质, 2021, 42(5): 1089-1097. |
ZHANG Yaxiong. Source rock characterization: The dark mudstone in Chang 7 Member of Triassic, central Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1089-1097. | |
30 | LIU Quanyou, LI Peng, JIN Zhijun, et al. Organic-rich formation and hydrocarbon enrichment of lacustrine shale strata: A case study of Chang 7 Member[J]. Science China Earth Sciences, 2022, 65(1): 118-138. |
31 | 付金华, 李士祥, 徐黎明, 等. 鄂尔多斯盆地三叠系延长组长7段古沉积环境恢复及意义[J]. 石油勘探与开发, 2018, 45(6): 936-946. |
FU Jinhua, LI Shixiang, XU Liming, et al. Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(6): 936-946. | |
32 | 范柏江, 晋月, 师良, 等. 鄂尔多斯盆地中部三叠系延长组7段湖相页岩油勘探潜力[J]. 石油与天然气地质, 2021, 42(5): 1078-1088. |
FAN Bojiang, JIN Yue, SHI Liang, et al. Shale oil exploration potential in central Ordos Basin: A case study of Chang 7 lacustrine shale[J]. Oil & Gas Geology, 2021, 42(5): 1078-1088. | |
33 | 杨华, 牛小兵, 徐黎明, 等. 鄂尔多斯盆地三叠系长7段页岩油勘探潜力[J]. 石油勘探与开发, 2016, 43(4): 511-520. |
YANG Hua, NIU Xiaobing, XU Liming, et al. Exploration potential of shale oil in Chang7 Member, Upper Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(4): 511-520. | |
34 | 曹尚, 李树同, 党海龙, 等. 鄂尔多斯盆地东南部长7段页岩孔隙特征及其控制因素[J]. 新疆石油地质, 2022, 43(1): 11-17. |
CAO Shang, LI Shutong, DANG Hailong, et al. Pore characteristics and controlling factors of Chang 7 shale in southeastern Ordos basin[J]. Xinjiang Petroleum Geology, 2022, 43(1): 11-17. | |
35 | 刘树根, 邓宾, 钟勇, 等. 四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用[J]. 地学前缘, 2016, 23(1): 11-28. |
LIU Shugen, DENG Bin, ZHONG Yong, et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2016, 23(1): 11-28. | |
36 | 熊亮. 四川盆地及周缘下寒武统富有机质页岩孔隙发育特征[J]. 天然气地球科学, 2019, 30(9): 1319-1331. |
XIONG Liang. The characteristics of pore development of the Lower Cambrian organic-rich shale in Sichuan Basin and its periphery[J]. Natural Gas Geoscience, 2019, 30(9): 1319-1331. | |
37 | 张春明, 张维生, 郭英海. 川东南—黔北地区龙马溪组沉积环境及对烃源岩的影响[J]. 地学前缘, 2012, 19(1): 136-145. |
ZHANG Chunming, ZHANG Weisheng, GUO Yinghai. Sedimentary environment and its effect on hydrocarbon source rocks of Longmaxi Formation in southeast Sichuan and northern Guizhou[J]. Earth Science Frontiers, 2012, 19(1): 136-145. | |
38 | 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组—龙马溪组页岩岩相类型与沉积环境[J]. 石油学报, 2016, 37(5): 572-586. |
ZHAO Jianhua, JIN Zhijun, JIN Zhenkui, et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(5): 572-586. | |
39 | 王濡岳, 胡宗全, 龙胜祥, 等. 四川盆地上奥陶统五峰组-下志留统龙马溪组页岩储层特征与演化机制[J]. 石油与天然气地质, 2022, 43(2): 353-364. |
WANG Ruyue, HU Zongquan, LONG Shengxiang, et al. Reservoir characteristics and evolution mechanisms of the Upper Ordovician Wufeng-Lower Silurian Longmaxi shale, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 353-364. | |
40 | 谷阳, 徐晟, 徐佳佳, 等. 黔北地区下志留统龙马溪组页岩储层特征[J]. 断块油气田, 2021, 28(1): 33-39. |
GU Yang, XU Sheng, XU Jiajia, et al. Shale reservoir characteristics of the Lower Silurian Longmaxi Formation in northern Guizhou[J]. Fault-Block Oil and Gas Field, 2021, 28(1): 33-39. | |
41 | 胡月, 陈雷, 周昊, 等. 海相页岩纹层特征及其对页岩储层发育的影响——以川南长宁地区龙马溪组为例[J]. 断块油气田, 2021, 28(2): 145-150. |
HU Yue, CHEN Lei, ZHOU Hao, et al. Lamina characteristics of marine shale and its influence on shale reservoir development: A case study of Longmaxi Formation, Changning area, South Sichuan Basin[J]. Fault-Block Oil and Gas Field, 2021, 28(2): 145-150. | |
42 | 方栋梁, 孟志勇. 页岩气富集高产主控因素分析——以四川盆地涪陵地区五峰组—龙马溪组一段页岩为例[J]. 石油实验地质, 2020, 42(1): 37-41. |
FANG Dongliang, MENG Zhiyong. Main controlling factors of shale gas enrichment and high yield: A case study of Wufeng-Longmaxi formations in Fuling area, Sichuan Basin[J]. Petroleum Geology and Experiment, 2020, 42(1): 37-41. | |
43 | 刘娜娜. 南川地区龙马溪组优质页岩段微观孔隙结构特征[J]. 石油地质与工程, 2021, 35(4): 21-25. |
LIU Nana. Micro pore structure characteristics of high quality shale section of Longmaxi formation in Nanchuan area[J]. Petroleum Geology and Engineering, 2021, 35(4): 21-25. | |
44 | 吕艳南, 张金川, 张鹏, 等. 黔西北下寒武统牛蹄塘组页岩气成藏条件与有利勘探区预测[J]. 海相油气地质, 2015, 20(2): 37-44. |
Yannan LYU, ZHANG Jinchuan, ZHANG Peng, et al. Gas accumulation conditions of Lower Cambrian Niutitang shale and prediction of potential zones in northwestern Guizhou[J]. Marine Origin Petroleum Geology, 2015, 20(2): 37-44. | |
45 | 祝庆敏, 卢龙飞, 潘安阳, 等. 湘西地区下寒武统牛蹄塘组页岩沉积环境与有机质富集[J]. 石油实验地质, 2021, 43(5): 797-809, 854. |
ZHU Qingmin, LU Longfei, PAN Anyang, et al. Sedimentary environment and organic matter enrichment of the Lower Cambrian Niutitang Formation shale, western Hunan Province, China[J]. Petroleum Geology and Experiment, 2021, 43(5): 797-809, 854. | |
46 | 罗超, 刘树根, 罗志立, 等. 贵州丹寨南皋下寒武统牛蹄塘组黑色页岩孔隙结构特征[J]. 地质科技情报, 2014, 33(3): 93-105. |
LUO Chao, LIU Shugen, LUO Zhili, et al. Pore structure characteristics of black shale in the Lower Cambrian Niutitang Formation of Nangao section in Danzhai, Guizhou Province[J]. Geological Science and Technology Information, 2014, 33(3): 93-105. | |
47 | 王濡岳, 丁文龙, 龚大建, 等. 黔北地区海相页岩气保存条件——以贵州岑巩区块下寒武统牛蹄塘组为例[J]. 石油与天然气地质, 2016, 37(1): 45-55. |
WANG Ruyue, DING Wenlong, GONG Dajian, et al. Gas preservation conditions of marine shale in northern Guizhou area: A case study of the Lower Cambrian Niutitang Formation in the Cen’gong block, Guizhou Province[J]. Oil & Gas Geology, 2016, 37(1): 45-55. | |
48 | 李中明, 张栋, 张古彬, 等. 豫西地区海陆过渡相含气页岩层系优选方法及有利区预测[J]. 地学前缘, 2016, 23(2): 39-47. |
LI Zhongming, ZHANG Dong, ZHANG Gubin, et al. The transitional facies shale gas formation selection and favorable area prediction in the western Henan[J]. Earth Science Frontiers, 2016, 23(2): 39-47. | |
49 | 邱庆伦, 张古彬, 冯辉, 等. 河南中牟区块页岩气特征及勘探前景分析[J]. 地质找矿论丛, 2018, 33(1): 70-75. |
QIU Qinglun, ZHANG Gubin, FENG Hui, et al. Characteristics of shale gas and analysis of the prospecting potential in Zhongmu block, Henean Province[J]. Contributions to Geology and Mineral Resources Research, 2018, 33(1): 70-75. | |
50 | 冯辉, 邱庆伦, 汪超, 等. 南华北盆地中牟凹陷太原组-山西组页岩气成藏特征——以河南中牟区块ZDY2井为例[J]. 地质找矿论丛, 2019, 34(2): 213-218. |
FENG Hui, QIU Qinglun, WANG Chao, et al. The shale gas accumulation characteristics of Taiyuan and Shanxi Formations in Zhongmu sag in basins in South of the North China: In case of ZDY2 well of Zhongmu block, Henan Province[J]. Contributions to Geology and Mineral Resources Research, 2019, 34(2): 213-218. | |
51 | 谷渊涛, 李晓霞, 万泉, 等. 泥页岩有机质孔隙差异特征及影响因素分析——以我国典型海相、陆相、过渡相储层为例[J]. 沉积学报, 2021, 39(4): 794-810. |
GU Yuantao, LI Xiaoxia, WAN Quan, et al. On the different characteristics of organic pores in shale and their influencing factors: Taking typical marine, continental, and transitional facies reservoirs in China as examples[J]. Acta Sedimentologica Sinica, 2021, 39(4): 794-810. | |
52 | GU Yuantao, WAN Quan, QIN Zonghua, et al. Nanoscale pore characteristics and influential factors of Niutitang Formation shale reservoir in Guizhou Province[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9): 6178-6189. |
53 | 吴伟, 王雨涵, 曹高社, 等. 南华北盆地豫西地区C-P烃源岩地球化学特征[J]. 天然气地球科学, 2015, 26(1): 128-136. |
WU Wei, WANG Yuhan, CAO Gaoshe, et al. The geochemical characteristics of the Carboniferous and Permian source rocks in the western Henan, the southern North China Basin[J]. Natural Gas Geoscience, 2015, 26(1): 128-136. | |
54 | LAGALY G. Principles of flow of kaolin and bentonite dispersions[J]. Applied Clay Science, 1989, 4(2): 105-123. |
55 | O’BRIEN N R. Fabric of kaolinite and illite floccules[J]. Clays and Clay Minerals, 1971, 19(6): 353-359. |
56 | DAY-STIRRAT R J, LOUCKS R G, MILLIKEN K L, et al. Phyllosilicate orientation demonstrates early timing of compactional stabilization in calcite-cemented concretions in the Barnett Shale (Late Mississippian), Fort Worth Basin, Texas (U.S.A)[J]. Sedimentary Geology, 2008, 208(1/2): 27-35. |
57 | LIU Anqi, TANG Dongjie, SHI Xiaoying, et al. Growth mechanisms and environmental implications of carbonate concretions from the ~ 1.4 Ga Xiamaling Formation, North China[J]. Journal of Palaeogeography, 2019, 8(1): 20. |
58 | ZHU Xiaojun, CAI Jingong, LIU Weixin, et al. Occurrence of stable and mobile organic matter in the clay-sized fraction of shale: Significance for petroleum geology and carbon cycle[J]. International Journal of Coal Geology, 2016, 160/161: 1-10. |
59 | BU Hongling, YUAN P, LIU Hongmei, et al. Effects of complexation between organic matter (OM) and clay mineral on OM pyrolysis[J]. Geochimica et Cosmochimica Acta, 2017, 212: 1-15. |
60 | ABID I, HESSE R. Illitizing fluids as precursors of hydrocarbon migration along transfer and boundary faults of the Jeanne d’Arc Basin offshore Newfoundland, Canada[J]. Marine and Petroleum Geology, 2007, 24(4): 237-245. |
61 | HOWER J, ESLINGER E V, HOWER M E, et al. Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence[J]. GSA Bulletin, 1976, 87(5): 725-737. |
62 | 袁鹏. 纳米结构矿物的特殊结构和表-界面反应性[J]. 地球科学, 2018, 43(5): 1384-1407. |
YUAN Peng. Unique structure and surface-interface reactivity of nanostructured minerals[J]. Earth Science, 2018, 43(5): 1384-1407. | |
63 | LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. |
64 | WANG Pengfei, JIANG Zhenxue, CHEN Lei, et al. Pore structure characterization for the Longmaxi and Niutitang shales in the Upper Yangtze Platform, South China: Evidence from focused ion beam-He ion microscopy, nano-computerized tomography and gas adsorption analysis[J]. Marine and Petroleum Geology, 2016, 77: 1323-1337. |
65 | SLATT R M, O'BRIEN N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030. |
66 | ALCOVER J F, QI Y, AL-MUKHTAR M, et al. Hydromechanical effects: (I) on the Na-smectite microtexture[J]. Clay Minerals, 2000, 35(3): 525-536. |
67 | LI Jing, LI Xiangfang, WU Keliu, et al. Water sorption and distribution characteristics in clay and shale: Effect of surface force[J]. Energy & Fuels, 2016, 30(11): 8863-8874. |
[1] | 冯动军. 川东南二叠系龙潭组海-陆过渡相页岩气甜点评价及意义[J]. 石油与天然气地质, 2023, 44(3): 778-788. |
[2] | 姜振学, 李鑫, 王幸蒙, 王国臻, 仇恒远, 朱德宇, 姜鸿阳. 中国南方典型页岩孔隙特征差异及其控制因素[J]. 石油与天然气地质, 2021, 42(1): 41-53. |
[3] | 宋振响, 徐旭辉, 王保华, 赵琳洁, 杨国桥, 邱岐. 页岩气资源评价方法研究进展与发展方向[J]. 石油与天然气地质, 2020, 41(5): 1038-1047. |
[4] | 王朋, 孙灵辉, 王核, 李自安. 库车坳陷下侏罗统阿合组致密砂岩储层孔隙微观结构特征及其对致密气富集的控制作用[J]. 石油与天然气地质, 2020, 41(2): 295-304. |
[5] | 冯国奇, 李吉君, 刘洁文, 章新文, 余志远, 谭静娟. 泌阳凹陷页岩油富集及可动性探讨[J]. 石油与天然气地质, 2019, 40(6): 1236-1246. |
[6] | 徐泽阳, 赵靖舟, 李军. 松辽盆地长垣地区白垩系青山口组一段有机质含量对超压分析的影响及校正方法[J]. 石油与天然气地质, 2019, 40(4): 938-946. |
[7] | 陈方文, 赵红琴, 王淑萍, 卢双舫, 王民, 丁雪. 渤海湾盆地冀中坳陷饶阳凹陷沙一下亚段页岩油可动量评价[J]. 石油与天然气地质, 2019, 40(3): 593-601. |
[8] | 李俊乾, 卢双舫, 张婕, 张鹏飞, 薛海涛. 页岩油吸附与游离定量评价模型及微观赋存机制[J]. 石油与天然气地质, 2019, 40(3): 583-592. |
[9] | 邵新荷, 庞雄奇, 胡涛, 徐田武, 徐源, 唐令, 李慧, 李龙龙. 渤海湾盆地东濮凹陷沙三段泥页岩储层孔隙微观特征及其对油气滞留的意义[J]. 石油与天然气地质, 2019, 40(1): 67-77. |
[10] | 袁玉松, 刘俊新, 周雁. 泥页岩脆-延转化带及其在页岩气勘探中的意义[J]. 石油与天然气地质, 2018, 39(5): 899-906. |
[11] | 黄振凯, 刘全有, 黎茂稳, 陈建平, 李鹏, 张瑞. 鄂尔多斯盆地长7段泥页岩层系排烃效率及其含油性[J]. 石油与天然气地质, 2018, 39(3): 513-521,600. |
[12] | 王明飞, 苏克露, 肖伟, 陈超, 刘晓晶, 王静波. 泥页岩应力场约束的叠后地震裂缝预测技术——以焦石坝区块五峰组-龙马溪组一段为例[J]. 石油与天然气地质, 2018, 39(1): 198-206. |
[13] | 李志明, 钱门辉, 黎茂稳, 蒋启贵, 刘鹏, 芮晓庆, 曹婷婷, 潘银华. 中-低成熟湖相富有机质泥页岩含油性及赋存形式——以渤海湾盆地渤南洼陷罗63井和义21井沙河街组一段为例[J]. 石油与天然气地质, 2017, 38(3): 448-456,466. |
[14] | 彭丽, 陆永潮, 彭鹏, 刘惠民, 刘占红, 杜学斌, 李吉君, 张三盛. 渤海湾盆地渤南洼陷沙三下亚段泥页岩非均质性特征及演化模式——以罗69井为例[J]. 石油与天然气地质, 2017, 38(2): 219-229. |
[15] | 张顺, 王永诗, 刘惠民, 陈世悦, 谭明友, 张云银, 郝雪峰, 谢忠怀. 渤海湾盆地东营凹陷细粒沉积微相对页岩油储层微观结构的控制作用[J]. 石油与天然气地质, 2016, 37(6): 923-934. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||