石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (3): 570-586.doi: 10.11743/ogg20210304
钱一雄1(), 储呈林1, 李曰俊2, 张庆珍1, 李王鹏3, 杨鑫3
收稿日期:
2020-12-01
出版日期:
2021-06-28
发布日期:
2021-06-23
第一作者简介:
钱一雄(1962—),男,博士、研究员, 地球化学。E-mail: 基金项目:
Yixiong Qian1(), Chenglin Chu1, Yuejun Li2, Qingzhen Zhang1, Wangpeng Li3, Xin Yang3
Received:
2020-12-01
Online:
2021-06-28
Published:
2021-06-23
摘要:
新元古界白云岩是反映全球气候和生态环境等重要承载体之一,具有重要的理论意义及应用价值。本文报道了以原定为青白口系硝尔库里群中的平洼沟组含沥青微生物白云岩为代表的原生白云岩的特征、沉积环境及年代厘定等研究成果。通过岩相学、地球化学分析并结合锆石年代学等资料研究表明:平洼沟组是一套藻鲕粒-团粒云岩,绵层状、纹层状细粒、纹层-粗粒状胶结波纹状、锥状、穹窿、柱状叠层石和球粒黏结状微生物岩为主的原生白云岩,夹有风暴岩,属于潮间至潮下浅水沉积。平洼沟组发育了2个向上变浅-变深旋回的内-中缓坡微生物丘、滩相。广泛发育了葡萄状、纤状及纤柱状、放射-束状等海底胶结物,具有较高Mg/Ca、“帽型”为主的稀土配分模式,属于典型的文石海及原白云石沉积。综合叠层石圆锥-柱状的形态结构、正高漂移δ13C(PDB)(平均值7.80‰)、δ18O(PDB)(-1.82‰)和比当时海水稍高的87Sr/86Sr(0.708 07)以及下覆碎屑岩中锆石U-Pb年龄数据,将其厘定为Sturtian冰期后的成冰纪(685~635 Ma)的一套温暖气候下,富镁、富硅的海水以及海底热液参与的原生白云石沉积。平洼沟组虽历经漫长地质演化史,仍能保留一定的储集性,与下覆冰沟南组泥质烃源岩构成了一套生储组合,有一定油气勘探意义。
中图分类号:
图2
若羌县红柳沟Ⅰ号剖面平洼沟组剖面部分层段特征及白云岩主要类型 a.剖面景观,红色箭头为基性岩脉,右下植被是红柳沟Ⅰ号沟;b.亮晶砂砾屑-鲕粒云岩(HLG-033);c.波纹状(红色箭头)-园锥状-柱状(白色)叠层石云岩(HLG-034),大小>15 cm(直径)×40 cm(高), 粒状粉(细)晶胶结的韵律(明暗相间);d.豆荚-竹叶状的亮晶砾屑-巨鲕云岩,拉长状椭园、月牙形、杏仁或“贝壳”状颗粒和扁平破碎鲕粒、发育了铸模孔、扩溶孔缝(HLG-036);e.丘状的叠层石云岩(HLG-037),大小>40 cm(直径)×120 cm(高);f.波纹状(红色箭头)-锥状-柱状(白色)叠层石云岩(HLG-037);g.园锥状-半球形-柱状(红色箭头)、锥状、无壁的轴向构造(白色)叠层石云岩(HLG-039),大小>30 cm(直径)×40 cm(高); h.沿裂隙发育的不规则球形、花边或皮壳-放射状环带的燧石,雁列脉状硅化、大理岩化(HLG-033,39)"
图3
若羌县红柳沟Ⅰ号剖面中不同类型白云岩、沉积、成岩矿物及孔隙类型的显微图像 a.HLG-025+1,亮晶藻鲕粒-球粒(MOo)-藻砂屑云岩,纤状(AC)、刀刃状(Bla)文石或镁方解石胶结、半自形直曲面镶嵌(Blo),少量铸模孔(MO)、微孔(MP),单偏光(-)(下同,未标明);b.HLG-027,亮晶藻鲕粒-团粒(表附藻)云岩,葡萄状(Bot)、纤状、刀刃状及等晶粒状文石或镁方解石,镶嵌(Equ-Blo)状结构,类似于“豆荚状或胡桃状钙豆粒的泥晶(Wal-Mic),孔洞中心为中细晶白云石(DⅢ,黄色箭头所指);c.HLG-028,亮晶肾形藻-藻鲕粒(Oo)云岩,葡萄状-纤状-刀刃状的文石或镁方解石胶结,粒间孔由DⅢ镶嵌充填,扩溶缝洞(DFR);d.HLG-034,纹层状细粒(粗晶)叠层石云岩,长快波的束状光性的纤状-向外为慢波束状-纤柱状放射状巨粗晶(RFC)至刀刃状-束状白云石(Fas),重结晶作用,菱形微孔隙、片状空隙(sheet-cavities)及收缩微缝(SCF,蓝色箭头);e.HLG-036-1,藻球粒黏结云岩, 葡萄状、纤状、放射状及纤刃状(双晶)粒状文石及高镁方解石及胶结(已转化为白云石),重结晶;f.HLG-041,角砾状硅化的绵层状叠层石云岩,明暗条带中的交代微晶石英(QⅡ)、沿扩溶缝洞中的中粗晶白云石DⅣ(蓝色箭头指示了溶蚀边界)、边缘隐晶玉髓、微晶石英(ChⅢ),构成“渗流砂”,一组石英细脉(QⅤ)及开启微裂隙(Fre)穿过,正交偏光(+);g.HLG-031,表附藻粉晶云岩(DⅠ);h.HLG-030,泥粉晶藻球粒云岩(DⅠ-Mic),等晶粒状的微粉晶镶嵌(不发光),粉晶白云石(DⅡ)发中等至暗橙红, 孔洞中粉细晶、中晶(DⅢ)分别发中等-暗橙红、橙红-橙桔黄色(较亮的边缘环带),阴极CL;i.HLG-038,亮晶藻球粒-团粒云岩,葡萄状-纤状-放射状或刀刃状文石及高镁方解石(已转化为白云石)、粒状镶嵌胶结,孔洞中细至中粗晶白云石(DⅢ-DⅥ); j.HLG-043,亮晶藻鲕粒-球粒-团粒云岩,纤状、刀刃状和粒状胶结,扩溶缝洞中充填了沥青(Brt)、后被细石英细脉穿过(QⅤ);k.HLG-034+1,硅化纹层状、不等晶粗粒叠层石云岩,重结晶,放射状-刀刃状-束状波纹状消光及调制结构,平行于生长法线方向,正交偏光(+);l.HLG-038,亮晶藻球粒-鲕粒云岩,纤状-刀刃状胶结,稍暗部分原为文石,溶解后产生的微孔隙,扩溶缝洞及晚期开启微裂隙;m.HLG-041,角砾状硅化绵层状叠层石云岩,粉晶白云石(DⅡ)发中等橙红-桔黄红光(环带),孔洞边缘的中细晶白云石(DⅢ)发亮橙红-橙黄色光、近中心的中粗晶白云石(DⅥ)发亮粉红-玫瑰红光, 树枝状裂隙中的石英(QⅣ)不发光, 阴极CL;n.HLG-042,亮晶藻球粒云岩,晶间孔、粒间孔中被玉髓-微晶石英(ChⅠ)充填;O.HLG-033,角砾状亮晶藻鲕粒云岩,碎裂化,重结晶,孔洞中的中粗晶白云石(DⅢ-DⅣ)发亮橙红色、陆屑或自生石英发蓝色光,角砾间孔(Bre)中充填沥青,阴极CL;p.HLG-044,含陆屑的碳酸盐岩靡棱岩,“σ”碎斑”, 硅质约占25%~30%,含单晶、隐晶质、微晶质玉髓(ChⅥ)及锆石"
表2
若羌县红柳沟Ⅰ号剖面平洼沟组白云岩含量(%)、微量元素(10-6)、碳氧、锶同位素值(‰)及比值"
样号 | HLG-023 | HLG-024 | HLG-025 | HLG-029 | HLG-031 | HLG-032 | HLG-033+1 | HLG-037 | HLG-039 | HLG-042 | HLG-43 |
SiO2 | 33.21 | 4.64 | 12.13 | 1.39 | 0.30 | 1.35 | 5.72 | 1.36 | 0.30 | 10.80 | 4.34 |
Al2O3 | 0.08 | 0.17 | 0.03 | 0.03 | 0.04 | 0.05 | 0.06 | 0.19 | 0.06 | 0.34 | 0.37 |
Fe2O3 | 0.26 | 0.15 | 0.18 | 0.04 | 0.06 | 0.05 | 0.16 | 0.05 | 0.12 | 0.56 | 0.58 |
FeO | 0.22 | 0.12 | 0.13 | 0.02 | 0.02 | 0.02 | 0.13 | 0.02 | 0.10 | 0.49 | 0.48 |
MgO | 15.34 | 22.24 | 20.59 | 23.49 | 23.84 | 23.44 | 22.27 | 23.39 | 23.34 | 20.16 | 21.23 |
CaO | 19.58 | 28.80 | 25.73 | 29.58 | 30.32 | 29.44 | 28.20 | 29.56 | 29.86 | 25.88 | 28.82 |
Na2O | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.015 |
K2O | 0.013 | 0.033 | 0.002 | 0.011 | 0.002 | 0.002 | 0.022 | 0.057 | 0.012 | 0.065 | 0.024 |
MnO | 0.048 | 0.028 | 0.030 | 0.021 | 0.016 | 0.017 | 0.040 | 0.024 | 0.030 | 0.152 | 0.064 |
TiO2 | 0.006 | 0.007 | 0.001 | 0.001 | 0.001 | 0.007 | 0.001 | 0.006 | 0.007 | 0.049 | 0.008 |
P2O5 | 0.010 | 0.042 | 0.009 | 0.010 | 0.008 | 0.012 | 0.010 | 0.009 | 0.029 | 0.014 | 0.071 |
烧失量 | 31.36 | 43.37 | 40.72 | 44.85 | 44.84 | 45.07 | 43.08 | 45.12 | 45.65 | 41.76 | 44.18 |
总计 | 100.13 | 99.60 | 99.55 | 99.44 | 99.44 | 99.46 | 99.69 | 99.79 | 99.52 | 100.27 | 100.18 |
Rb | 0.24 | 0.31 | 0.08 | 0.11 | 0.05 | 0.09 | 0.11 | 0.07 | 0.08 | 1.52 | 0.60 |
Ba | 46.49 | 55.48 | 16.89 | 16.82 | 20.11 | 18.37 | 13.99 | 18.89 | 39.62 | 44.57 | 37.42 |
Ga | 0.16 | 0.13 | 0.16 | 0.07 | 0.07 | 0.06 | 0.13 | 0.07 | 0.08 | 0.39 | 0.43 |
Sr | 104.38 | 137.43 | 77.38 | 89.52 | 86.85 | 81.97 | 71.08 | 95.31 | 122.80 | 51.91 | 644.22 |
Zr | 0.88 | 1.35 | 1.12 | 10.35 | 2.76 | 0.60 | 2.25 | 0.90 | 2.39 | 25.55 | 5.00 |
Hf | 0.01 | 0.03 | 0.01 | 0.03 | 0.02 | 0.01 | 0.03 | 0.01 | 0.02 | 0.20 | 0.09 |
Cr | 6.46 | 11.89 | 4.75 | 4.21 | 5.81 | 4.66 | 3.86 | 4.18 | 4.23 | 18.39 | 10.56 |
V | 2.66 | 2.53 | 1.64 | 2.07 | 1.69 | 1.06 | 1.55 | 1.13 | 2.71 | 21.67 | 7.05 |
Co | 0.97 | 0.91 | 1.06 | 0.84 | 0.86 | 0.77 | 1.04 | 0.91 | 0.94 | 3.23 | 1.65 |
Ni | 8.97 | 7.77 | 9.48 | 9.38 | 9.58 | 8.36 | 10.55 | 8.42 | 14.87 | 16.19 | 8.42 |
U | 0.17 | 0.27 | 0.18 | 0.17 | 0.19 | 0.16 | 0.29 | 0.14 | 0.24 | 0.45 | 0.43 |
Th | 0.04 | 0.09 | 0.03 | 0.02 | 0.03 | 0.03 | 0.03 | 0.04 | 0.07 | 0.17 | 0.18 |
Mo | 0.39 | 0.25 | 0.20 | 0.11 | 0.15 | 0.22 | 0.14 | 0.18 | 0.13 | 0.16 | 0.14 |
Cu | 4.54 | 2.87 | 3.76 | 3.79 | 3.21 | 5.24 | 3.60 | 3.86 | 4.81 | 7.93 | 6.95 |
Zn | 4.28 | 3.55 | 4.27 | 8.39 | 5.95 | 4.73 | 5.88 | 3.43 | 13.04 | 12.52 | 8.13 |
La | 0.20 | 0.42 | 0.13 | 0.17 | 0.24 | 0.14 | 0.19 | 0.20 | 0.49 | 0.79 | 1.82 |
Ce | 0.39 | 0.81 | 0.26 | 0.29 | 0.49 | 0.24 | 0.30 | 0.48 | 1.02 | 1.96 | 3.43 |
Pr | 0.05 | 0.10 | 0.03 | 0.04 | 0.05 | 0.04 | 0.05 | 0.05 | 0.14 | 0.22 | 0.47 |
Nd | 0.18 | 0.44 | 0.14 | 0.15 | 0.24 | 0.14 | 0.19 | 0.19 | 0.59 | 0.94 | 2.03 |
Sm | 0.05 | 0.10 | 0.03 | 0.03 | 0.05 | 0.03 | 0.05 | 0.04 | 0.13 | 0.21 | 0.43 |
Eu | 0.02 | 0.04 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.04 | 0.06 | 0.11 |
Gd | 0.06 | 0.13 | 0.04 | 0.06 | 0.07 | 0.04 | 0.06 | 0.07 | 0.18 | 0.26 | 0.58 |
Tb | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.03 | 0.04 | 0.09 |
Dy | 0.06 | 0.13 | 0.05 | 0.08 | 0.08 | 0.04 | 0.07 | 0.06 | 0.20 | 0.27 | 0.48 |
Ho | 0.01 | 0.03 | 0.01 | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 | 0.05 | 0.06 | 0.10 |
Er | 0.04 | 0.09 | 0.04 | 0.09 | 0.08 | 0.03 | 0.06 | 0.05 | 0.19 | 0.21 | 0.29 |
Tm | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.03 | 0.03 | 0.04 |
Yb | 0.03 | 0.08 | 0.04 | 0.11 | 0.09 | 0.03 | 0.06 | 0.05 | 0.22 | 0.21 | 0.22 |
Lu | 0.01 | 0.01 | 0.01 | 0.03 | 0.02 | 0.00 | 0.01 | 0.01 | 0.04 | 0.03 | 0.03 |
Y | 0.44 | 1.02 | 0.52 | 1.39 | 0.97 | 0.37 | 0.78 | 0.53 | 2.41 | 2.29 | 3.38 |
∑REE | 1.55 | 3.43 | 1.33 | 2.50 | 2.42 | 1.14 | 1.87 | 1.75 | 5.76 | 7.58 | 13.49 |
Mg/Ca | 1.09 | 1.07 | 1.11 | 1.10 | 0.98 | 1.11 | 1.10 | 1.10 | 1.09 | 1.08 | 1.02 |
Sr/Mn | 15.70 | 34.82 | 18.30 | 30.24 | 6.47 | 34.21 | 12.61 | 28.17 | 29.04 | 2.42 | 71.41 |
Fe/Mn | 3.05 | 6.70 | 6.91 | 1.73 | 8.68 | 2.40 | 5.01 | 1.72 | 5.15 | 4.84 | 11.49 |
Sr/Ba | 2.25 | 2.48 | 4.58 | 5.32 | 4.32 | 4.46 | 5.08 | 5.05 | 3.10 | 1.16 | 17.22 |
Mn/Sr | 5.59 | 2.48 | 4.79 | 2.46 | 2.46 | 2.60 | 5.05 | 2.54 | 3.00 | 37.35 | 1.14 |
Fe/Sr | 17.06 | 8.84 | 16.30 | 6.80 | 9.54 | 7.93 | 14.40 | 5.53 | 7.81 | 54.96 | 4.58 |
Ca/Sr | 3 121 | 3 357 | 5 493 | 5 315 | 5 506 | 5 728 | 6 356 | 5 031 | 3 863 | 8 217 | 709 |
Rb/Sr | 0.002 3 | 0.002 3 | 0.001 1 | 0.001 3 | 0.000 5 | 0.001 2 | 0.001 5 | 0.000 8 | 0.000 7 | 0.030 0 | 0.001 0 |
Sr/Ca | 0.000 3 | 0.000 3 | 0.000 2 | 0.000 2 | 0.000 2 | 0.000 2 | 0.000 2 | 0.000 2 | 0.000 3 | 0.000 1 | 0.001 4 |
U/Th | 4.19 | 3.08 | 7.30 | 7.47 | 5.85 | 6.06 | 9.01 | 3.78 | 3.63 | 2.68 | 2.32 |
Th/K | 2.44 | 5.49 | 1.76 | 0.96 | 1.60 | 2.00 | 4.76 | 2.17 | 4.17 | 2.99 | 7.14 |
LREE/HREE | 1.35 | 1.24 | 0.84 | 0.38 | 0.80 | 1.11 | 0.73 | 1.23 | 0.72 | 1.23 | 1.59 |
Ce/La | 1.95 | 1.93 | 2.00 | 1.71 | 2.04 | 1.71 | 1.58 | 2.40 | 2.08 | 2.48 | 1.88 |
δEuN | 1.28 | 1.09 | 0.96 | 0.93 | 0.75 | 1.05 | 0.83 | 0.90 | 0.76 | 0.81 | 0.64 |
δCeN | 0.69 | 0.62 | 0.64 | 0.58 | 0.67 | 0.55 | 0.52 | 0.83 | 0.61 | 0.74 | 0.58 |
Y/Ho | 36.82 | 35.33 | 42.48 | 58.43 | 43.84 | 37.55 | 43.31 | 36.10 | 45.92 | 37.43 | 34.21 |
(La/Yb)N | 0.43 | 0.38 | 0.25 | 0.11 | 0.19 | 0.31 | 0.22 | 0.31 | 0.16 | 0.27 | 0.62 |
(Nd/Yb)N | 0.45 | 0.45 | 0.29 | 0.11 | 0.21 | 0.37 | 0.25 | 0.33 | 0.22 | 0.37 | 0.77 |
(Sm/Yb)N | 0.77 | 0.60 | 0.42 | 0.29 | 0.29 | 0.50 | 0.45 | 0.41 | 0.30 | 0.50 | 1.01 |
δ13C(PDB) | 6.30 | 7.30 | 7.20 | 7.40 | 8.40 | 7.70 | 8.20 | 4.40 | 3.20 | ||
δ18O(PDB) | -3.30 | -1.60 | 0.10 | -0.40 | -1.20 | -2.40 | -0.40 | -4.80 | -1.30 | ||
δ18O(SMOW) | 27.50 | 29.30 | 31.00 | 30.50 | 29.60 | 28.40 | 30.50 | 26.00 | 29.60 | ||
87Sr/86Sr | 0.709 82 | 0.708 06 | 0.708 06 | 0.708 04 | 0.708 11 | 0.707 65 | 0.709 29 | ||||
87Sr/86Sr误差 | 0.000 02 | 0.000 01 | 0.000 02 | 0.000 02 | 0.000 02 | 0.000 02 | 0.000 02 |
图8
若羌县红柳沟Ⅰ号剖面扫描电镜(SEM)下的微生物介导白云石及部分自生矿物图版(岩石类型参见图 2) a.HLG-033,球形(Co)纳米级白云石沿微晶白云石台阶状晶面的生长;b.HLG-034,哑铃型(Du)、椭球状(Ell)、结核(No)、杆状(Rod)的纳(微)米级白云石(EPS作用)沿菱形白云石晶面的生长;c.HLG-036,近球形、椭球状、六方形片状(Hex)纳米(少量微米)级白云石,发育了“格架状”微孔隙;d.HLG-036,光滑表面的泡状、向上微隆的席状、带状的卷曲状(Curl)和不规则膜状的EPS;(e)-(f)HLG-026,扇形、片状纳米-微米级微生物白云石; e,f. Si,C,O能谱,C =13.5%~19.3%、少量Si;g.HLG-038,杆状-丝状菌藻类遗迹化石;h.HLG-034,白云石晶间孔中的球形-草莓状黄铁矿(Pyr); i.HLG-026, 亮晶藻鲕粒云岩,扇形文石假象(Ara);j.HLG-036,细中晶云岩,晶间孔中的自生石英(QⅡ-Ⅲ); k.HLG-038,晶间孔中的六方片状-页片状高岭石(Ka); l.HLG-036,同上,晶间孔中“花椰菜”的绿泥石(Chl)"
1 | Hood A V S , Wallace M W . Extreme ocean anoxia during the Late cryogenian recorded in reefal carbonates of Southern Australia[J]. Precambrian Resarch, 2015, 261 (1): 96- 111. |
2 |
苏玲, 陈留勤. 叠层石衰减事件及臼齿构造碳酸盐岩作用幕—了解前寒武纪碳酸盐岩世界的重要线索[J]. 地质科技情报, 2008, 27 (6): 17- 23.
doi: 10.3969/j.issn.1000-7849.2008.06.004 |
Su Lin , Chen Liuqin . Stromatolite declines and Molar-Tooth Carbonates: Contributions to the understanding of the Precambrian Carbonate World[J]. Geological Science and Technology Information, 2008, 27 (6): 17- 23.
doi: 10.3969/j.issn.1000-7849.2008.06.004 |
|
3 | Nutman A P , Bennett V C , Friend C R L , et al. Cross-examining earth's oldest stromatolites: Seeing through the effects of heterogeneous deformation, metamorphism and metasomatism affecting Isua (Greenland)~3 700 Ma sedimentary rocks[J]. Precambrian Research, 2019, 331 (9): 105- 347. |
4 | Lewis K H , Cavalazzi B , Foucher F , et al. Most ancient evidence for life in the Barberton greenstone belt: Microbial mats and biofabrics of the~3.47Ga Middle Marker horizon[J]. Precambrian Research, 2018, 312 (7): 45- 67. |
5 | 周丽清, 赵微林, 刘孟慧. 燕山西段前寒武系雾迷山组叠层石的环境意义[J]. 石油大学学报(自然科学版), 1989, 13 (3): 11- 19. |
Zhou Liqing , Zhou Weilin , Liu Menghui . The environment significance of stromatolites in Wumishan Formation of Precambrian in Western YanShan Mountains of North China[J]. Journal of the University of Petroleum, China, 1989, 13 (3): 11- 19. | |
6 | Riding R . Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47 (S1): 179- 214. |
7 | Andres M S , Reid R P . Growth morphologies of modern marine Stromatolites: A case study from Highborne Cay, B ahamas[J]. Sedimentary Geology, 2006, 85 (3): 319- 328. |
8 | Bowlin E M , Klaus J S , Foster J S , et al. Environmental controls on microbial community cycling in modern marine Stromatolites[J]. Sedimentary Geology, 2012, 263 (64): 45- 55. |
9 | Papineau D , Purohit R , Fogel M L , et al. High phosphate availability as a possible cause for massive cyanobacterial production of oxygen in the Paleoproterozoic atmosphere[J]. Earth and Planetary Science Letters, 2013, 362 (1): 225- 236. |
10 |
Williams G E , Jenkins R J F , Walter M R . No heliotropism in Neoproterozoic column stromatolite growth, Amadeus basin Central Australia: Geophysical implications[J]. Palaeogeography, Palaeoclimato-logy, Palaeoecology, 2007, 249 (1-2): 80- 89.
doi: 10.1016/j.palaeo.2007.01.005 |
11 | Corkeron M , Webb G E , Moulds J , et al. Discrominating stromatolite formation modes using rare earth element geochemistry: Trapping and binding versus in situ precipitation of stromatolites from the Neopro-terozoic Bitter springs Formation, Northern territory Australia[J]. Precambrian Resarch, 2012, 212-213 (8): 194- 206. |
12 | Craig J , Thurow J , Thusu B , et al. Global Neoproterozoic petroleum systems: the emerging potential in North Africa.Geological Society[M]. London: Special Publication, 2019: 1- 25. |
13 | 崔建堂, 王炬川, 边小卫, 等. 新疆喀喇昆仑地区甜水海岩群发现青白口纪叠层石[J]. 沉积与特提斯地质, 2005, 25 (1-2): 194- 197. |
Cui Jiantang , Wang Juchuan , Bian Xiaowei , et al. The Qingbaikouan stromatolites from the Tianshuihai Group Complex in the Karakorum region, Xinjiang[J]. Sedimentary Geology and Tethyan Geology, 2005, 25 (1-2): 194- 197. | |
14 |
王国灿, 魏启荣, 贾春兴, 等. 关于东昆仑地区前寒武纪地质的几点认识[J]. 地质通报, 2007, 26 (8): 929- 937.
doi: 10.3969/j.issn.1671-2552.2007.08.003 |
Wang Guocan , Wei Qi rong , Jia Chunxing , et al. Some ideas of Precambrian geology in the East Kunlun, China[J]. Geological Bulletin of China, 2007, 26 (8): 929- 937.
doi: 10.3969/j.issn.1671-2552.2007.08.003 |
|
15 | 新疆维吾尔自治区地质矿产局. 新疆维吾尔自治区区域地质志[M]. 北京: 地质出版社, 1982: 8- 33. |
Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region . Regional geology of Xinjiang Uygur Autonomous Region[M]. Beijing: Geological Press, 1982: 8- 33. | |
16 | 青海省地质矿产局. 青海省区域地质志[M]. 北京: 地质出版社, 1982: 15- 21. |
Bureau of Geology and Mineral Resources of QingHai Province . Regional geology of QingHai Province[M]. Beijing: Geological Press, 1982: 19- 21. | |
17 |
Bian Q T , Zhu S X , Pospelov I I , et al. Discovery of the Jiawengmen Stromatolite Assemblage in the Southern Belt of Eastern Kunlun, NW China and Its Significance[J]. Acta Geologica Sinica-English Edition, 2005, 79 (4): 471- 480.
doi: 10.1111/j.1755-6724.2005.tb00913.x |
18 | 牟墩玲, 李三忠, 王倩, 等. 塔里木盆地东南缘早古生代弯山构造[J]. 岩石学报, 2018, 34 (12): 3739- 3757. |
Mu Dunling , Li Sanzhong , Wang Qian , et al. The Early Paleozoic orocline in the southeastern Tarim Basin[J]. Acta Petrologica Sinica, 2018, 34 (12): 3739- 3757. | |
19 | 龚正, 李海兵, 孙知明, 等. 阿尔金断裂带中侏罗世走滑活动及其断裂规模的探讨-来自软沉积物变形的证据[J]. 岩石学报, 2013, 29 (6): 2233- 2250. |
Gong Zheng , Li Haibing , Sun ZhiMing , et al. Middle Jurassic strike slip movement and fault scale of the Altyn Tagh fault system: Evidence from the soft sediment deformation[J]. Acta Petrologica Sinica, 2013, 29 (6): 2233- 2250. | |
20 | 吴磊, 巩庆霖, 覃素华. 阿尔金断裂新生代大规模走滑起始时间的厘定[J]. 岩石学报, 2013, 29 (8): 2837- 2850. |
Wu Lei , Gong Qinglin , Tan Suhua . When did Cenozoic left-slip along the Altyn Tagh Fault initiate? A comprehensive approach[J]. Acta Petrologica Sinica, 2013, 29 (8): 2837- 2850. | |
21 |
Sibley D F , Dedoes R E , Bartlett T R . Kinetics of dolomitization[J]. Geology, 1987, 15, 1112- 1114.
doi: 10.1130/0091-7613(1987)15<1112:KOD>2.0.CO;2 |
22 | Flügel E . Microfacies of carbonate rocks: Analysis, interpretation and application[J]. Berlin: Springer-Verlag, 2004, 369- 396. |
23 | McLennan S M , Hemming S , McDaniel D K , et al. Geochemical approaches to Sedimentation, Provenance, and Tectonics[J]. Geological Society of America Special Papers, 1993, 284 (1): 21- 40. |
24 | Wang W , Bolhar R , Zhou M F , et al. Enhanced terrestrial input into Paleoproterozoic to Mesoproterozoic carbonates in the southwestern South China Block during the fragmentation of the Columbia supercontinent[J]. Precambrian Resarch, 2018, 313 (1): 1- 17. |
25 | Veizer J , Ala D , Bruckschen P , et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161 (1): 59- 88. |
26 |
Halverson G P , Dud S F , Maloof A C , et al. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater[J]. Palaeongeography, Palaeoclimatology, Palaeoecology, 2007, 256 (3-4): 103- 129.
doi: 10.1016/j.palaeo.2007.02.028 |
27 | Verdel C , Phelps B , Welsh K . Rare earth element and 87Sr/86Sr step-leaching geochemistry of central Australian Neoproterozoic carbonate[J]. Precambrian Research, 2018, 310 (6): 229- 242. |
28 | Hesse R . Silica diagenesis: Origin of inorganic and replacement cherts[J]. Earth-Science Reviews, 1989, 26 (4): 253- 284. |
29 | Rodriguez-Blanco J D , Shaw S , Bots P , et al. The role of Mg in the crystallization of monohydrocalcite[J]. Geochimica et Cosmochimica Acta, 2014, 127 (2): 204- 220. |
30 |
Hood A S , Wallace M W , Drysdale R N . Neoproterozoic aragonite-do-lomite seas? Widespread marine dolomite precipitation in Cryogenian reef complexes[J]. Geology, 2011, 39 (9): 871- 874.
doi: 10.1130/G32119.1 |
31 | Hood A S , Wallace M W , Reedb C P , et al. Enigmatic carbonates of the Ombombo Subgroup, Otavi Fold Belt, Namibia: A prelude to extreme Cryogenian anoxia?[J]. Sedimentary Geology, 2015, 324 (1): 12- 31. |
32 | Schlager W . Benthic carbonate factories of the Phanerozoic[J]. International Journal Earth Sciences, 2003, 92 (8): 445- 464. |
33 | Taylor S R , Mcclennan S M . The continental crust: its composition and evolution-An examination of the geochemical record preserved in sedimentary rocks[M]. Oxford London: Blackwell Scientific Publications, 1985: 57- 277. |
34 |
Tribovillard N , Algeo T J , Lyons T . Trace metals as paleoredox and paleo-productivity proxies: An update[J]. Chemical Geology, 2006, 232 (1-2): 12- 32.
doi: 10.1016/j.chemgeo.2006.02.012 |
35 | Garrison R L , Lee R , Kump M A . Shallow water redox conditions from the Permian-Triassic boundary microbialite: The rare earth element and iodine geochemistry of carbonates from Turkey and South China[J]. Chemical Geology, 2013, 351 (5): 195- 208. |
36 |
Kaufman A J , Knoll A H . Neoprototerozoic variation in the C-isotope composition of seawater: stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73 (1-4): 27- 49.
doi: 10.1016/0301-9268(94)00070-8 |
37 | Tang H S , Chen Y J , Santosh M , et al. REE geochemistry of carbonates form the GuanmenShen Formation, Liaohe Group, NE Sino-Korean: Implication for seawater compositional change during the Great oxidation Event[J]. Precambrian Research, 2013, 227 (SI): 316- 336. |
38 | Meyer E E , Quicksall A N , Landis J D , et al. Trace and rare earth elemental investigation of a Sturtian Cap carbonate, Pocattllo, Idaha: Evidence for ocean redox conditions before and during carbonate deposition[J]. Precambrian Research, 2012, 192-195 (1): 89- 106. |
39 | Des Maaris J.Isotopic evolution of the biogeochemical carbon cycle during the Precambrian[C]// Valley JW, Cole DR.Stable isotope geochemistry reviews in mineralogy & geochemistry.Washington D.C.: Mineralogical Society of America, 2001. |
40 |
Giddings J A , Wallace M W . Sedimentology and C-isotope geoche-mistry of the 'Sturtian' cap carbonate, South Australia[J]. Sedimentary Geology, 2009, 216 (1-2): 1- 14.
doi: 10.1016/j.sedgeo.2009.01.007 |
41 | Manning-Berg A R , Wood R S , Williford K H , et al. The taphonomy of proterozoic microbial mats and implications for early diagenetic silicification[J]. Geosciences, 2019, 9 (1): 469- 483. |
42 | Viehmann S , Bau M , BVhu B , et al. Geochemical characterization of Neoproterozoic marine habitats: Evidence from trace elements and Nd isotopes in the Urucum iron and manganese formations, Brazil[J]. Precambrian Research, 2016, 282 (1): 74- 96. |
43 | Purohit R , Papineay D , KrÖner A , et al. Carbon isotope geochemistry and geochronological constraints of Neoproterozoic Sirohi Group from northwest India[J]. Precambrian Research, 2012, 220-221 (11): 80- 90. |
44 | Hohl S V , Becker H , Gamper A , et al. Secular changes of water chemistry in shallow-water Ediacaran ocean: Evidence from carbonates at Xiaofenghe, Three Gorges areas, Yangtze platform, South China[J]. Precambrian Research, 2015, 270 (11): 50- 79. |
45 | Cox G M , Isakson V , Homan P F , et al. South Australian U-Pb zircon (CA-ID-TIMS) age supports globally synchronous Sturtian deglaciation[J]. Precambrian Research, 2018, 315 (9): 257- 263. |
46 | 钱一雄, 何治亮, 李慧莉, 等. 塔里木盆地北部上震旦统葡萄状白云岩的发现及成因探讨[J]. 古地理学报, 2017, 19 (2): 196- 207. |
Qian Yixiong , He Zhiliang , Li Huili , et al. The discovery and interpretation for origin of grape-like dolostone in the Upper Sinian in NorthTarim[J]. Journal of Palaeogeography, 2017, 19 (2): 196- 207. | |
47 | 钱一雄, 冯菊芳, 何冶亮, 等. 从岩石学及微区同位素探讨四川盆地灯影组皮壳-葡萄状白云石成因[J]. 石油与天然气地质, 2017, 38 (4): 665- 676. |
Qian Yixiong , Feng Jufang , He Zhiliang , et al. Applications of petrographic and δ13CPDB, δ18OPDB of Micro-drill samplings to the study of genesis of grape-like dolomite of Dengying formation, Upper Sinian, Sichuan Basin[J]. Oil & Gas Geology, 2017, 38 (4): 665- 676. | |
48 | Xiao S H , Shen B , Tang Q , et al. Biostratigraphic and chemostratigraphic constraints on the age of early Neoproterozoic carbonate successions in North China[J]. Precambrian Research, 2014, 246 (6): 208- 225. |
49 | Arubam C K , Manikyamba C , Subramanyam K S V , et al. Archean sea water composition and depositional environment-Geochemical and isotopic signatures from the stromatolitic carbonates of Dharwar Craton, India[J]. Precambrian Research, 2019, 330 (8): 35- 57. |
50 |
Hill A C , Cotter K L , Grey K . Mid-Neoproterozoic biostratigraphy and isotope stratigraphy in Australia[J]. Precambrian Research, 2000, 100 (1-3): 281- 298.
doi: 10.1016/S0301-9268(99)00077-7 |
51 | Caxito F A , Frei R , Uhlein G J , et al. Multiproxy geochemical and isotope stratigraphy records of a neoproterozoic oxygenation event in the Ediacaran Sete Lagoas cap carbonate, Bambuí Group, Brazil[J]. Chemical Geology, 2018, 481 (3): 119- 132. |
[1] | 刘成林, 丁振刚, 范立勇, 康锐, 洪思婕, 朱玉新, 陈践发, 王海东, 许诺. 鄂尔多斯盆地含氦天然气地球化学特征与富集影响因素[J]. 石油与天然气地质, 2024, 45(2): 384-392. |
[2] | 翟常博, 林良彪, 尤东华, 刘冯斌, 刘思雨. 川西南地区中二叠统茅口组一段沉积微相特征及有机质富集模式[J]. 石油与天然气地质, 2024, 45(2): 440-456. |
[3] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[4] | 侯佳凯, 张志遥, 师生宝, 朱光有. 全二维气相色谱技术在石油地球化学中的应用进展[J]. 石油与天然气地质, 2024, 45(2): 565-580. |
[5] | 许汇源, 刘全有, 朱东亚, 孟庆强, 金之钧. 深部铅锌热液流体作用下的原油地球化学特征[J]. 石油与天然气地质, 2023, 44(1): 178-185. |
[6] | 高怡文, 郝世彦, 王庆, 王维波, 江绍静, 范庆雄, 陈治军, 周晔. 银额盆地巴北凹陷烃源岩地球化学特征与资源潜力[J]. 石油与天然气地质, 2022, 43(6): 1445-1458. |
[7] | 张琴, 周琛, 田寒云, 朱筱敏, 吴新松, 宋泽平, 王凯. 华北龙山地区青白口系混积岩层序地层格架及发育模式[J]. 石油与天然气地质, 2022, 43(4): 792-803. |
[8] | 陈治军, 张春明, 贺永红, 文志刚, 马芳侠, 李渭, 高怡文, 陈义国, 张慧元, 魏东涛. 银额盆地古生界过成熟烃源岩特征及其地球化学意义[J]. 石油与天然气地质, 2022, 43(3): 682-695. |
[9] | 吴小奇, 陈迎宾, 翟常博, 周凌方, 周小进, 杨俊, 王彦青, 宋晓波. 川西坳陷中三叠统雷口坡组沥青地球化学特征及气源示踪[J]. 石油与天然气地质, 2022, 43(2): 407-418. |
[10] | 李天军, 黄志龙, 郭小波, 赵静, 蒋一鸣, 谭思哲. 东海盆地西湖凹陷平北斜坡带平湖组煤系原油地球化学特征与油-源精细对比[J]. 石油与天然气地质, 2022, 43(2): 432-444. |
[11] | 桂亚倩, 朱光有, 阮壮, 曹颖辉, 沈臻欢, 常秋红, 陈郭平, 于炳松. 塔里木盆地塔北隆起寒武系地层水化学特征、成因及矿物溶解-沉淀模拟[J]. 石油与天然气地质, 2022, 43(1): 196-206. |
[12] | 董庆民, 胡忠贵, 陈世悦, 李世临, 蔡家兰, 朱宜新, 张玉颖. 川东北地区长兴组-飞仙关组碳酸盐岩同位素地球化学响应及其地质意义[J]. 石油与天然气地质, 2021, 42(6): 1307-1320. |
[13] | 李美俊, 刘晓强, 韩秋雅, 肖洪, 方镕慧, 何大祥, 高志伟. 分子模拟在油气地球化学中的应用研究进展[J]. 石油与天然气地质, 2021, 42(4): 919-930. |
[14] | 金晓辉, 张军涛, 孙冬胜, 丁茜, 杨佳奇. 鄂尔多斯盆地南缘上奥陶统平凉组浅钻中古岩溶洞穴的发现及其意义[J]. 石油与天然气地质, 2021, 42(3): 595-603. |
[15] | 郭春涛, 宋海强, 梁洁, 倪玲梅. 塔东地区米兰1井寒武系白云岩成因及其对储层的影响[J]. 石油与天然气地质, 2020, 41(5): 953-964. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||