石油与天然气地质 ›› 2021, Vol. 42 ›› Issue (6): 1295-1306.doi: 10.11743/ogg20210605
王濡岳1,2,3(), 胡宗全1, 周彤1, 包汉勇4, 吴靖5, 杜伟1, 何建华6, 王鹏威1, 陈前1
收稿日期:
2021-07-26
出版日期:
2021-12-28
发布日期:
2021-12-16
第一作者简介:
王濡岳(1990-), 男, 博士、高级工程师, 非常规油气地质与油气勘探规划。E-mail: 基金项目:
Ruyue Wang1,2,3(), Zongquan Hu1, Tong Zhou1, Hanyong Bao4, Jing Wu5, Wei Du1, Jianhua He6, Pengwei Wang1, Qian Chen1
Received:
2021-07-26
Online:
2021-12-28
Published:
2021-12-16
摘要:
利用岩心、测井、扫描电镜和相关样品物性分析等手段,探讨了四川盆地周缘五峰组-龙马溪组页岩裂缝类型、发育特征、分布规律及其对页岩气富集与保存的影响。结果表明:①页岩裂缝发育受沉积、成岩、构造与压力演化等因素共同影响。低角度滑脱缝与层理缝充填程度低,对储层孔隙度和渗透率均有贡献;高角度裂缝和水平层间缝通常被充填,裂缝有效性较低。低角度裂缝对高角度裂缝穿层性的调节对页岩气的富集与保存具有重要意义。②页岩微裂缝以非构造成因为主,上部低有机质高粘土层段层理缝与大尺度层间微裂缝发育程度低,小尺度粘土粒间孔缝发育,宜采用"密切割"和"高砂比"等储层改造工艺技术以提高缝网控制储量。底部硅质页岩层理缝、层间微裂缝和刚性矿物粒缘缝发育程度高,裂缝力学性质薄弱,它们与密集发育的低角度及小尺度高角度裂缝共生形成了有利的天然缝网系统。③中-浅埋深下层理缝和层间微裂缝渗透率显著高于基质,利于储层改造与页岩气的渗流。深层条件下裂缝与基质渗透率均较低且大致相当,储层渗流能力与压裂改造效果是影响深层页岩气高效开发的重要因素。
中图分类号:
表1
四川盆地周缘五峰组-龙马溪组页岩裂缝主要类型及其成因"
类型 | 亚类 | 主要成因 |
构造裂缝 | 剪切裂缝 | 局部或区域构造应力作用下,泥页岩剪切/张性破裂形成,常与褶皱或断层伴生,裂缝以中高角度为主 |
张剪性裂缝 | ||
低角度滑脱裂缝 | 伸展或挤压构造作用下,沿层理或层间薄弱面滑动剪切形成 | |
高角度扭动性裂缝 | 压扭或张扭作用下,剪切裂缝沿缝面发生明显滑动位移形成 | |
非构造裂缝 | 层理缝 | 沉积过程中沉积物成分、结构的差异使力学性质薄弱的剥离线理广泛发育,易于剥离 |
层间缝 | 层间黄铁矿生长、页岩生排烃异常压力等作用下形成 | |
溶蚀缝 | 有机酸等地层流体对不稳定矿物溶蚀作用下形成 | |
成岩收缩缝 | 岩石干缩、脱水、矿物相变或热力收缩等作用下形成 | |
风化裂缝 | 风化、淋滤等作用下形成 |
图2
四川盆地JY1井五峰组-龙马溪组底部页岩裂缝发育特征 a.五峰组和龙马溪组下部成像测井图,页理与层间缝发育;b.低TOC层段高角度构造缝,纵向延伸长,埋深2 330.9 m,S1l1,岩心照片;c.中TOC层段高角度构造缝,裂缝长度与开度有所减小,埋深2 342.0 m,S1l1,岩心照片;d.层理缝,未充填,埋深2 403.5 m,S1l1,岩心照片;e.层间滑脱缝,见擦痕,埋深2 407.9 m,S1l1,岩心照片;f.层间超压裂缝与黄铁矿纹层,埋深2 404.8 m,S1l1,岩心照片;g.层理缝与斑脱岩夹层,易于剥离,埋深2 412.3 m,03w,岩心照片;h.高角度构造缝与水平方解石充填缝,埋深2 414.0 m,O3w,岩心照片;i.高角度构造缝与水平方解石充填缝发育,见两条扭动性裂缝,缝面见擦痕,埋深2 414.5 m,O3w,岩心照片;j.不同类型裂缝纵向发育模式"
图3
四川盆地周缘五峰组-龙马溪组层间微裂缝扫描电镜下发育特征 a.层间缝发育程度低,S1l1上部,埋深2 337.9 m,JY1井;b.层间缝,有机质充填,S1l1下部,埋深3 812.4 m,DY5井;c.层间缝,有机质充填,O3w,埋深2 821.1 m,JY8井;d.层间缝,有机质半充填,S1l1上部,埋深2 330.5 m,JY1井;e.层间缝,有机质半充填,S1l1中下部,埋深2 385.4 m,JY1井;f.层间缝,有机质充填,S1l1下部,埋深3 856.6 m,YY1井;g.图f局部放大,有机质边缘见收缩缝;h.层间缝,粒缘缝沟通形成,重晶石充填,S1l1上部,埋深3 819.4 m,YY1井;i.层间缝,粒缘缝沟通形成,重晶石半充填,O3w,埋深3 870.8 m,YY1井"
图4
四川盆地周缘五峰组-龙马溪组粒缘(间)缝与粒内缝扫描电镜下发育特征 a.粘土矿物粒间缝,未充填为主,S1l1上部,埋深3 800.6 m,YY1井;b.矿物粒缘(间)缝,O3w,埋深2 593.1 m,JY4井;c.粘土矿物粒间缝,有机质充填为主,S1l1下部,埋深2 407.4 m,JY1井;d.莓状黄铁矿及粘土矿物粒间孔缝,S1l1上部,埋深3 784.2 m,YY1井;e.莓状黄铁矿及粘土矿物粒间孔缝,有机质充填,O3w,埋深2 414.9 m,JY1井;f.方解石粒缘缝,S1l1中部,埋深2 373.6 m,JY1井;g.碳酸盐矿物粒缘、粒内孔缝发育,有机质充填为主,O3w,埋深3 865.6 m,YY1井;h.碳酸盐颗粒内孔缝,有机质充填,S1l1下部,埋深3 587.3 m,WY1井;i.长石溶蚀缝,粘土矿物与有机质充填,S1l1下部,埋深2 049.0 m,DY1井"
1 | 郭旭升, 李宇平, 腾格尔, 等. 四川盆地五峰组-龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020, 47 (1): 1- 9. |
Guo Xusheng , Li Yuping , Borjigen Tenger , et al. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan Basin, China[J]. Petroleum Exploration and Production, 2020, 47 (1): 1- 9. | |
2 |
孙焕泉, 周德华, 蔡勋育, 等. 中国石化页岩气发展现状与趋势[J]. 中国石油勘探, 2020, 25 (2): 14- 26.
doi: 10.3969/j.issn.1672-7703.2020.02.002 |
Sun Huanquan , Zhou Dehua , Cai Xunyu , et al. Progress and prospect of shale gas development of Sinopec[J]. China Petroleum Exploration, 2020, 25 (2): 14- 26.
doi: 10.3969/j.issn.1672-7703.2020.02.002 |
|
3 |
郭彤楼. 页岩气勘探开发中的几个地质问题[J]. 油气藏评价与开发, 2019, 9 (5): 14- 19.
doi: 10.3969/j.issn.2095-1426.2019.05.002 |
Guo Tonglou . A few geological issues in shale gas exploration and development[J]. Reservoir Evaluation and Development, 2019, 9 (5): 14- 19.
doi: 10.3969/j.issn.2095-1426.2019.05.002 |
|
4 |
郭旭升, 胡东风, 魏志红, 等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 2016, 21 (3): 24- 37.
doi: 10.3969/j.issn.1672-7703.2016.03.003 |
Guo Xusheng , Hu Dongfeng , Wei Zhihong , et al. Discovery and exploration of Fuling shale gas field[J]. China Petroleum Exploration, 2016, 21 (3): 24- 37.
doi: 10.3969/j.issn.1672-7703.2016.03.003 |
|
5 | 何治亮, 聂海宽, 张钰莹. 四川盆地及其周缘奥陶系五峰组-志留系龙马溪组页岩气富集主控因素分析[J]. 地学前缘, 2016, 23 (2): 8- 17. |
He Zhiliang , Nie Haikuan , Zhang Yuying . The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its adjacent areas[J]. Earth Science Frontiers, 2016, 23 (2): 8- 17. | |
6 | 胡宗全, 杜伟, 彭勇民, 等. 页岩微观孔隙特征及源-储关系: 以川东南地区五峰组-龙马溪组为例[J]. 石油与天然气地质, 2015, 36 (6): 1001- 1008. |
Hu Zongquan , Du Wei , Peng Yongmin , et al. Microscopic pore characteristics and the source-reservoir relationship of shale: A case study from the Wufeng and Longmaxi Formations in Southeast Sichuan Basin[J]. Oil & Gas Geology, 2015, 36 (6): 1001- 1008. | |
7 | 何登发, 马永生, 刘波, 等. 中国含油气盆地深层勘探的主要进展与科学问题[J]. 地学前缘, 2019, 26 (1): 1- 12. |
He Dengfa , Ma Yongsheng , Liu Bo , et al. Main advances and key issues for deep-seated exploration in petroliferous basins in China[J]. Earth Science Frontiers, 2019, 26 (1): 1- 12. | |
8 | 王濡岳, 胡宗全, 董立, 等. 页岩气储层表征评价技术进展与思考[J]. 石油与天然气地质, 2021, 42 (1): 54- 65. |
Wang Ruyue , Hu Zongquan , Dong Li , et al. Advancement and trends of shale gas reservoir characterization and evaluation[J]. Oil & Gas Geology, 2021, 42 (1): 54- 65. | |
9 | 郭旭升, 胡东风, 魏祥峰, 等. 四川盆地焦石坝地区页岩裂缝发育主控因素及对产能的影响[J]. 石油与天然气地质, 2016, 37 (6): 799- 808. |
Guo Xusheng , Hu Dongfeng , Li Yuping , et al. Main controlling factors on shale fractures and their influences on production capacity in Jiaoshiba area, the Sichuan Basin[J]. Oil & Gas Geology, 2016, 37 (6): 799- 808. | |
10 | 王濡岳, 胡宗全, 刘敬寿, 等. 中国南方海相与陆相页岩裂缝发育特征及主控因素对比——以黔北岑巩地区下寒武统为例[J]. 石油与天然气地质, 2018, 39 (4): 631- 640. |
Wang Ruyue , Hu Zongquan , Liu Jingshou , et al. Comparative analysis of characteristics and controlling factors of fractures in marine and continental shales: A case study of the Lower Cambrian in Cengong area, northern Guizhou Province[J]. Oil & Gas Geology, 2018, 39 (4): 631- 640. | |
11 | 田鹤, 曾联波, 徐翔, 等. 四川盆地涪陵地区海相页岩天然裂缝特征及对页岩气的影响[J]. 石油与天然气地质, 2020, 41 (3): 474- 483. |
Tian He , Zeng Lianbo , Xu Xiang , et al. Characteristics of natural fractures in marine shale in Fuling area, Sichuan Basin, and their influence on shale gas[J]. Oil & Gas Geology, 2020, 41 (3): 474- 483. | |
12 | 董大忠, 施振生, 孙莎莎, 等. 黑色页岩微裂缝发育控制因素——以长宁双河剖面五峰组-龙马溪组为例[J]. 石油勘探与开发, 2018, 45 (5): 763- 774. |
Dong Dazhong , Shi Zhensheng , Sun Shasha , et al. Factors controlling microfractures in black shale: A case study of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Shuanghe Profile, Changning area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45 (5): 763- 774. | |
13 | 王濡岳, 龚大建, 丁文龙, 等. 上扬子地区下寒武统牛蹄塘组页岩储层脆性评价: 以贵州岑巩区块为例[J]. 地学前缘, 2016, 23 (1): 87- 95. |
Wang Ruyue , Gong Dajian , Ding Wenlong , et al. Brittleness evaluation of the Lower Cambrian Niutitang shale in the Upper Yangtze region: A case study in the Cengong block, Guizhou province[J]. Earth Science Frontiers, 2016, 23 (1): 87- 95. | |
14 | 周彤, 陈铭, 张士诚, 等. 非均匀应力场影响下的裂缝扩展模拟及投球暂堵优化[J]. 天然气工业, 2020, 40 (3): 82- 91. |
Zhou Tong , Chen Ming , Zhang Shicheng , et al. Simulation of fracture propagation and optimization of ball-sealer in-stage diversion under the effect of heterogeneous stress field in a horizontal well[J]. Natural Gas Industry, 2020, 40 (3): 82- 91. | |
15 | 胡宗全, 杜伟, 刘忠宝, 等. 页岩气源储耦合机理及其应用[M]. 北京: 地质出版社, 2018: 1- 38. |
Hu Zongquan , Du Wei , Liu Zhongbao , et al. Source-reservoir coupling mechanisms and its application of shale gas[M]. Beijing: Geological Publishing House, 2018: 1- 38. | |
16 | 何治亮, 胡宗全, 聂海宽, 等. 四川盆地五峰组-龙马溪组页岩气富集特征与"建造-改造"评价思路[J]. 天然气地球科学, 2017, 28 (5): 724- 733. |
He Zhiliang , Hu Zongquan , Nie Haikuan , et al. Characterization of shale gas enrichment in the Wufeng-Longmaxi Formation in the Sichuan Basin and its evaluation of geological construction-transformation evolution sequence[J]. Natural Gas Geoscience, 2017, 28 (5): 724- 733. | |
17 | 王濡岳, 丁文龙, 龚大建, 等. 渝东南-黔北地区下寒武统牛蹄塘组页岩裂缝发育特征与主控因素[J]. 石油学报, 2016, 37 (7): 832- 845, 877. |
Wang Ruyue , Ding Wenlong , Gong Dajian , et al. Development characteristics and major controlling factors of shale fractures in the Lower Cambrian Niutitang Formation, southeastern Chongqing-northern Guizhou area[J]. Acta Petrolei Sinica, 2016, 37 (7): 832- 845, 877. | |
18 | 范存辉, 李虎, 钟城, 等. 川东南丁山构造龙马溪组页岩构造裂缝期次及演化模式[J]. 石油学报, 2018, 39 (4): 379- 390. |
Fan Cunhui , Li Hu , Zhong Cheng , et al. Tectonic fracture stages and evolution model of Longmaxi Formation shale, Dingshan structure, Southeast Sichuan[J]. Acta Petrolei Sinica, 2018, 39 (4): 379- 390. | |
19 |
Zeng L , Lyu W , Li J , et al. Natural fractures and their influence on shale gas enrichment in Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 30, 1- 9.
doi: 10.1016/j.jngse.2015.11.048 |
20 | 高键, 何生, 易积正. 焦石坝页岩气田中高密度甲烷包裹体的发现及其意义[J]. 石油与天然气地质, 2015, 36 (3): 472- 480. |
Gao Jian , He Sheng , Yi Jizheng . Discovery of high density methane inclusions in Jiaoshiba shale gas field and its significance[J]. Oil & Gas Geology, 2015, 36 (3): 472- 480. | |
21 | 席斌斌, 腾格尔, 俞凌杰, 等. 川东南页岩气储层脉体中包裹体古压力特征及其地质意义[J]. 石油实验地质, 2016, 38 (4): 473- 479. |
Xi Binbin , Borjigin Tenger , Yu Lingjie , et al. Trapping pressure of fluid inclusions and its significance in shale gas reservoirs, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38 (4): 473- 479. | |
22 |
王濡岳, 聂海宽, 胡宗全, 等. 压力演化对页岩储层的控制作用——以四川盆地五峰组-龙马溪组页岩为例[J]. 天然气工业, 2020, 40 (10): 1- 11.
doi: 10.3787/j.issn.1000-0976.2020.10.001 |
Wang Ruyue , Nie Haikuan , Hu Zongquan , et al. Controlling effect of pressure evolution on shale gas reservoirs: A case study of the Wufeng-Longmaxi Formation in the Sichuan Basin[J]. Natural Gas Industry, 2020, 40 (10): 1- 11.
doi: 10.3787/j.issn.1000-0976.2020.10.001 |
|
23 |
Zhang Jianguo , Jiang Zaixing , Wang Siqi , et al. Bedding-parallel calcite veins as a proxy for shale reservoir quality[J]. Marine and Petroleum Geology, 2021, 127, 104975.
doi: 10.1016/j.marpetgeo.2021.104975 |
24 | 杜伟, 胡宗全, 刘光祥, 等. 四川盆地及周缘上奥陶统五峰组岩相特征[J]. 石油实验地质, 2020, 42 (3): 398- 404. |
Du Wei , Hu Zongquan , Liu Guangxiang , et al. Lithofacies of Upper Ordovician Wufeng Formation in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2020, 42 (3): 398- 404. | |
25 | 马军. 页岩裂缝成因及其对含气性影响——以渝东南地区阳春沟构造带五峰-龙马溪组为例[J]. 油气藏评价与开发, 2020, 10 (3): 126- 134. |
Ma Jun . Origin of shale fractures and its influence on gas-bearing properties: A case study of Wufeng-Longmaxi Formation in Yangchungou structural belt in southeast Chongqing[J]. Reservoir Evaluation and Development, 2020, 10 (3): 126- 134. | |
26 |
Laubach S E , Olson J E , Gross M R . Mechanical and fracture stratigraphy[J]. AAPG Bulletin, 2009, 93 (11): 1413- 1426.
doi: 10.1306/07270909094 |
27 |
Xu X , Zeng L , Tian H , et al. Controlling factors of lamellation fractures in marine shales: A case study of the Fuling area in eastern Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2021, 207, 109091.
doi: 10.1016/j.petrol.2021.109091 |
28 | 魏祥峰, 李宇平, 魏志红, 等. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[J]. 石油实验地质, 2017, 39 (2): 147- 153. |
Wei Xiangfeng , Li Yuping , Wei Zhihong , et al. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2017, 39 (2): 147- 153. | |
29 | 王濡岳, 丁文龙, 龚大建, 等. 黔北地区海相页岩气保存条件——以贵州岑巩区块下寒武统牛蹄塘组为例[J]. 石油与天然气地质, 2016, 37 (1): 45- 55. |
Wang Ruyue , Ding Wenlong , Gong Dajian , et al. Gas preservation conditions of marine shale in northern Guizhou area: A case study of the Lower Cambrian Niutitang Formation in the Cen'gong block, Guizhou Province[J]. Oil & Gas Geology, 2016, 37 (1): 45- 55. | |
30 | 包汉勇, 张柏桥, 曾联波, 等. 华南地区海相页岩气差异富集构造模式[J]. 地球科学, 2019, 44 (3): 993- 1000. |
Bao Hanyong , Zhang Boqiao , Zeng Lianbo , et al. Marine shale gas differential enrichment structure models in South China[J]. Earth Science, 2019, 44 (3): 993- 1000. | |
31 | 刘安, 周鹏, 陈孝红, 等. 运用方解石脉包裹体和碳氧同位素评价页岩气保存条件——以中扬子地区寒武系为例[J]. 天然气工业, 2021, 41 (2): 47- 55. |
Liu An , Zhou Peng , Chen Xiaohong , et al. Evaluation of shale gas preservation conditions using calcite vein inclusions and C/O isotopes: A case study on the Cambrian strata of Middle Yangtze area[J]. Natural Gas Industry, 2021, 41 (2): 47- 55. | |
32 |
何希鹏, 何桂松, 高玉巧, 等. 渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J]. 天然气工业, 2018, 38 (12): 1- 14.
doi: 10.3787/j.issn.1000-0976.2018.12.001 |
He Xipeng , He Guisong , Gao Yuqiao , et al. Geological characteristics and enrichment laws of normal-pressure shale gas in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018, 38 (12): 1- 14.
doi: 10.3787/j.issn.1000-0976.2018.12.001 |
|
33 |
Wang Ruyue , Hu Zongquan , Long Shengxiang , et al. Differential characteristics of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi shale reservoir and its implications for exploration and development of shale gas in/around the Sichuan Basin[J]. Acta Geologica Sinica (English edition), 2019, 93 (3): 520- 535.
doi: 10.1111/1755-6724.13875 |
34 | 陆亚秋, 梁榜, 王超, 等. 四川盆地涪陵页岩气田江东区块下古生界深层页岩气勘探开发实践与启示[J]. 石油与天然气地质, 2021, 42 (1): 241- 250. |
Lu Yaqiu , Liang Bang , Wang Chao , et al. Shale gas exploration and development in the Lower Paleozoic Jiangdong block of Fuling gas field, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42 (1): 241- 250. | |
35 | 王丹, 王维旭, 朱炬辉, 等. 四川盆地中浅层龙马溪组页岩储层改造技术[J]. 断块油气田, 2019, 26 (3): 350- 354. |
Wang Dan , Wang Weixu , Zhu Juhui , et al. Stimulation technology of medium-shallow shale gas in Longmaxi Formation of Sichuan Basin[J]. Fault-Block Oil and Gas Field, 2019, 26 (3): 350- 354. | |
36 | 龙胜祥, 冯动军, 李凤霞, 等. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29 (4): 443- 451. |
Long Shengxiang , Feng Dongjun , Li Fengxia , et al. Prospect of the deep marine shale gas exploration and development in the Sichuan Basin[J]. Natural Gas Geoscience, 2018, 29 (4): 443- 451. | |
37 |
胡大梁, 郭治良, 李果, 等. 川南威荣气田深层页岩气水平井钻头优选及应用[J]. 石油地质与工程, 2019, 33 (5): 103- 106.
doi: 10.3969/j.issn.1673-8217.2019.05.025 |
Hu Daliang , Guo Zhiliang , Li Guo , et al. Bit optimization and application of deep shale gas wells in Weirong gas field of southern Sichuan basin[J]. Petroleum Geology & Engineering, 2019, 33 (5): 103- 106.
doi: 10.3969/j.issn.1673-8217.2019.05.025 |
|
38 | 曹学军, 王明贵, 康杰, 等. 四川盆地威荣区块深层页岩气水平井压裂改造工艺[J]. 天然气工业, 2019, 39 (7): 81- 87. |
Cao Xuejun , Wang Minggui , Kang Jie , et al. Fracturing technologies of deep shale gas horizontal wells in the Weirong Block, southern Sichuan Basin[J]. Natural Gas Industry, 2019, 39 (7): 81- 87. |
[1] | 易积正, 包汉勇, 李以严, 张道洪, 秦军, 谢洪光. 鄂西渝东地区中-新生代构造变形及其对油气保存的制约[J]. 石油与天然气地质, 2024, 45(3): 684-695. |
[2] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[3] | 丁文龙, 李云涛, 韩俊, 黄诚, 王来源, 孟庆修. 碳酸盐岩储层高精度构造应力场模拟与裂缝多参数分布预测方法及其应用[J]. 石油与天然气地质, 2024, 45(3): 827-851. |
[4] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[5] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[6] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[7] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[8] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[9] | 付超, 谢玉洪, 赵雨初, 王晖, 苑志旺, 徐伟, 陈国宁. 深水峡谷上游复合浊积砂岩储层类型及其展布规律[J]. 石油与天然气地质, 2024, 45(2): 516-529. |
[10] | 曾联波, 巩磊, 宿晓岑, 毛哲. 深层-超深层致密储层天然裂缝分布特征及发育规律[J]. 石油与天然气地质, 2024, 45(1): 1-14. |
[11] | 张宝收, 张本健, 汪华, 陈践发, 刘凯旋, 豆霜, 戴鑫, 陈双玲. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[12] | 张自力, 乔艳萍, 豆霜, 李堃宇, 钟原, 武鲁亚, 张宝收, 戴鑫, 金鑫, 王斌, 宋金民. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质, 2024, 45(1): 200-214. |
[13] | 张益, 张斌, 刘帮华, 柳洁, 魏千盛, 张歧, 陆红军, 朱鹏宇, 王瑞. 页岩气储层吸附渗流研究现状及发展趋势[J]. 石油与天然气地质, 2024, 45(1): 256-280. |
[14] | 王冠民, 庞小军, 黄晓波, 张雪芳, 潘凯. 渤海海域辽中凹陷南部古近系东营组三段重力流砂岩优质储层特征及成因[J]. 石油与天然气地质, 2024, 45(1): 81-95. |
[15] | 王光付, 李凤霞, 王海波, 周彤, 张亚雄, 王濡岳, 李宁, 陈昱辛, 熊晓菲. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||