石油与天然气地质 ›› 2022, Vol. 43 ›› Issue (3): 658-669.doi: 10.11743/ogg20220314
孙光远1(), 王哲麟2,3, 刘培刚3,4(), 张志强3
收稿日期:
2021-12-02
修回日期:
2022-03-10
出版日期:
2022-06-01
发布日期:
2022-05-06
通讯作者:
刘培刚
E-mail:3130000936@zju.edu.cn;dongfangwy@upc.edu.cn
第一作者简介:
孙光远(1995—),男,硕士研究生,油气地质。E?mail: Guangyuan Sun1(), Zhelin Wang2,3, Peigang Liu3,4(), Zhiqiang Zhang3
Received:
2021-12-02
Revised:
2022-03-10
Online:
2022-06-01
Published:
2022-05-06
Contact:
Peigang Liu
E-mail:3130000936@zju.edu.cn;dongfangwy@upc.edu.cn
摘要:
长石次生溶孔是致密砂岩储层微-纳米级别孔喉网络的重要组成部分。为进一步明确碱性长石溶孔发育特征及其对致密砂岩储层物性的改造作用,以鄂尔多斯盆地中南部华庆地区三叠系延长组6段3亚段(长63亚段)致密砂岩储层为研究对象,利用能谱分析获取各类长石的钾、钠元素分布特征及组成特点;基于Image J软件对场发射环境扫描电镜图像进行二值化处理及参数提取,分别对具有典型溶蚀特征的波状条纹长石和斑块状条纹长石进行图像分析和理论计算,提出了基于溶蚀强度参数评价储层溶孔对储集空间贡献程度的方法;定量评价了长石溶蚀对孔隙发育的影响,精准刻画了长石发育特征、溶蚀率及孔隙度贡献率等参数。图像分析和理论计算结果表明,研究区碱性长石溶蚀微孔主要由弱溶蚀作用形成,形态特征为条带状和蜂窝状,面孔率大小分布在2.06 %~35.20 %,平均值为13.99 %,因溶蚀作用形成的孔隙面积占比与碱性长石中K+富含区域面积大小呈负相关。
中图分类号:
表1
鄂尔多斯盆地华庆地区长63亚段致密砂岩储层碱性长石能谱数据"
分类 | 测试编号 | 矿物类型 | 元素含量/% | ||||||
---|---|---|---|---|---|---|---|---|---|
K | Na | Ca | Al | Si | C | O | |||
波状条纹长石 | 1 | 钾长石 | 5.13 | 0.77 | 0 | 6.43 | 19.44 | 2.70 | 65.53 |
2 | 钾长石 | 4.82 | 1.04 | 0 | 6.24 | 19.89 | 4.29 | 63.72 | |
3 | 钾长石 | 5.22 | 0.70 | 0 | 6.06 | 19.44 | 2.79 | 65.79 | |
4 | 钾长石 | 7.01 | 0 | 0 | 5.51 | 18.40 | 2.64 | 66.44 | |
5 | 钾长石 | 5.14 | 0.75 | 0 | 6.21 | 19.33 | 3.84 | 64.73 | |
6 | 钾长石 | 4.76 | 0 | 0 | 6.17 | 17.32 | 11.29 | 60.46 | |
平均值 | 5.35 | 0.54 | 0 | 6.10 | 18.97 | 4.59 | 64.45 | ||
7 | 钠长石 | 0 | 5.96 | 0 | 5.85 | 19.48 | 2.38 | 66.33 | |
8 | 钠长石 | 0 | 6.28 | 0.58 | 6.48 | 17.85 | 3.05 | 65.76 | |
9 | 钠长石 | 0 | 5.73 | 0 | 6.00 | 18.76 | 3.63 | 65.88 | |
10 | 钠长石 | 0 | 6.17 | 0.65 | 6.82 | 18.66 | 3.14 | 64.56 | |
11 | 钠长石 | 0 | 5.65 | 0 | 5.60 | 16.98 | 12.63 | 59.14 | |
12 | 钠长石 | 0 | 6.27 | 0 | 6.00 | 18.63 | 6.06 | 63.04 | |
平均值 | 0 | 6.01 | 0.62 | 6.13 | 18.39 | 5.15 | 64.12 | ||
斑块状条纹长石 | 1 | 钾长石 | 4.99 | 0 | 0 | 6.27 | 20.42 | 3.60 | 64.72 |
2 | 钾长石 | 5.14 | 0.71 | 0 | 5.90 | 19.00 | 4.68 | 64.57 | |
3 | 钾长石 | 5.49 | 0.26 | 0 | 6.17 | 19.40 | 3.32 | 65.36 | |
4 | 钾长石 | 5.41 | 0.26 | 0 | 6.23 | 19.04 | 3.45 | 65.61 | |
5 | 钾长石 | 5.68 | 0.67 | 0 | 5.86 | 18.76 | 2.86 | 66.17 | |
6 | 钾长石 | 5.29 | 0.38 | 0 | 6.57 | 19.76 | 3.85 | 64.15 | |
平均值 | 5.33 | 0.38 | 0 | 6.17 | 19.40 | 3.63 | 65.10 | ||
7 | 钠长石 | 0 | 5.95 | 0.82 | 7.06 | 18.21 | 2.37 | 65.59 | |
8 | 钠长石 | 0 | 6.56 | 0 | 6.18 | 18.80 | 4.19 | 64.27 | |
9 | 钠长石 | 0 | 6.23 | 0.54 | 6.32 | 18.72 | 3.16 | 65.03 | |
10 | 钠长石 | 0 | 6.27 | 0 | 6.11 | 18.99 | 2.51 | 66.12 | |
11 | 钠长石 | 0 | 5.30 | 0 | 4.80 | 14.99 | 17.74 | 57.17 | |
12 | 钠长石 | 0 | 6.65 | 0 | 6.26 | 19.49 | 2.51 | 65.09 | |
平均值 | 0 | 6.16 | 0.68 | 6.12 | 18.20 | 5.41 | 63.88 |
表2
致密储层长石次生溶孔孔隙度理论计算结果[24-25]"
矿物类型 | 长石溶蚀过程反应式 | 反应前、后矿物体积差/cm3 | 参加反应矿物总体积/cm3 | 理论溶蚀孔隙度/% |
---|---|---|---|---|
钾长石 | 初期:1 mol钾长石→1/2 mol高岭石+2 mol石英 | -14.05 | 109.1 | 12.88 |
后期:1 mol钾长石→1/3 mol伊利石+2 mol石英 | -16.80 | 109.1 | 15.40 | |
钠长石 | 初期:1 mol钠长石→1/2 mol高岭石+2 mol石英 | -5.15 | 100.2 | 5.14 |
后期:1 mol钠长石→1/3 mol伊利石+2 mol石英 | -7.93 | 100.2 | 7.91 | |
钙长石 | 初期:1 mol钙长石→1 mol高岭石 | -1.40 | 100.7 | 1.39 |
后期:1 mol钙长石→2/3 mol伊利石 | -6.97 | 100.7 | 6.92 |
表3
鄂尔多斯盆地华庆地区长63亚段致密砂岩储层长石溶孔率与溶蚀强度判定"
样品编号 | 溶孔率/% | 总孔隙度/ % | 溶孔贡献率/% | 总溶孔贡献率/% | 溶蚀强度判定 | ||
---|---|---|---|---|---|---|---|
钾长石 | 钠长石 | 钾长石 | 钠长石 | ||||
2 | 0.70 | 0.33 | 10.90 | 6.43 | 3.03 | 9.45 | 弱溶蚀 |
4 | 0.60 | 0.28 | 5.95 | 10.14 | 4.78 | 14.92 | 弱溶蚀 |
7 | 1.16 | 0.55 | 8.84 | 13.16 | 6.20 | 19.37 | 中溶蚀 |
11 | 0.22 | 0.10 | 15.38 | 1.40 | 0.66 | 2.06 | 弱溶蚀 |
13 | 0.36 | 0.17 | 14.03 | 2.53 | 1.19 | 3.73 | 弱溶蚀 |
14 | 0.79 | 0.37 | 7.82 | 10.15 | 4.78 | 14.93 | 弱溶蚀 |
16 | 0.84 | 0.40 | 8.00 | 10.51 | 4.95 | 15.46 | 中溶蚀 |
17 | 0.48 | 0.23 | 7.49 | 6.47 | 3.05 | 9.52 | 弱溶蚀 |
18 | 1.63 | 0.77 | 6.83 | 23.93 | 11.28 | 35.20 | 强溶蚀 |
19 | 0.61 | 0.29 | 10.40 | 5.91 | 2.78 | 8.69 | 弱溶蚀 |
23 | 0.27 | 0.13 | 8.58 | 3.18 | 1.50 | 4.68 | 弱溶蚀 |
25 | 0.95 | 0.45 | 10.70 | 8.86 | 4.18 | 13.04 | 弱溶蚀 |
26 | 1.31 | 0.62 | 8.08 | 16.18 | 7.63 | 23.81 | 中溶蚀 |
27 | 1.53 | 0.72 | 10.74 | 14.28 | 6.73 | 21.01 | 中溶蚀 |
1 | 吴松涛, 朱如凯, 崔景伟, 等. 非常规储层孔隙结构表征:思路、思考与展望[J]. 地质论评, 2020, 66(S1): 151-154. |
Wu Songtao, Zhu Rukai, Cui Jingweiet al. Ideas and prospect of porous structure characterization in unconventional reservoirs[J]. Geology Review, 2020, 66(S1): 151-154. | |
2 | 朱如凯, 吴松涛, 苏玲, 等. 中国致密储层孔隙结构表征需注意的问题及未来发展方向[J]. 石油学报, 2016, 37(11): 1321-1336. |
Zhu Rukai, Wu Songtao, Su Ling, et al. Problems and future works of porous texture characterization of tight reservoirs in China[J]. Acta Petrolei Sinica, 2016, 37(11):1323-1336. | |
3 | 邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173-187. |
Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types,characteristics,genesis and prospects of conventional and unconventional hydrocarbon acumulations:taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187. | |
4 | 贺艳祥, 张伟, 胡作维, 等. 鄂尔多斯盆地姬塬地区长8油层组砂岩中长石的溶解作用对储层物性的影响[J]. 天然气地球科学, 2010, 21(3): 482-488. |
He Yanxiang, Zhang Wei, Hu Zuowei, et al. Affect of feldspar dissolution to properties of sandstone reservoir of Chang‑8 Oil layer in Jiyuan Area Ordos Basin[J]. 天然气地球科学, 2010, 21(3): 482-488. | |
5 | 于川淇, 宋晓蛟, 李景景, 等. 长石溶蚀作用对储层物性的影响——以渤海湾盆地东营凹陷为例[J]. 石油与天然气地质, 2013, 34(6): 765-770. |
Yu Chuanqi, Song Xiaojiao, Li Jingjing, et al. Impact of feldspar dissolution on reservoir physical properties: a case from Dongying Sag the Bohai Bay Basin[J]. Oil Gas Geology, 2013, 34(6): 765-770. | |
6 | Wilkinson M, Haszeldine R S.; Morton A, et al. Deep burial dissolution of K-feldspars in a fluvial sandstone, Pentland Formation, UK Central North Sea[J]. Journal of the Geological Society, 2014, 171(5): 635-647. |
7 | Elizabeth T, Baruch M J, S.C Kennedy, et al. Feldspar disso⁃lution‑enhanced porosity in Paleoproterozoic shale reservoir facies from the Barney Creek Formation (McArthur Basin, Australia)[J]. AAPG Bulletin, 2015, 99(9): 1745-1770. |
8 | 康逊, 胡文瑄, 曹剑, 等. 钾长石和钠长石差异溶蚀与含烃类流体的关系——以准噶尔盆地艾湖油田百口泉组为例[J]. 石油学报, 2016, 37(11): 1381-1393. |
Kang Xun, Hu Wenxuan, Cao Jian, et al. Relation between hydrocarbon bearing fluid and the differential corrosion of potash feldspar and albite: a case study of Baikouquan Formation in Aiho oilfield, Junggar Basin[J]. Acta Petrolei Sinica, 2016, 37(11): 1381-1393. | |
9 | 崔景伟, 朱如凯. 致密砂岩层内强钙质胶结物成因机制及其意义: 以鄂尔多斯盆地三叠系延长组长7油层组为例[J].吉林大学学报(地球科学版), 2020, 50(4): 957-967. |
Cui Jingwei, Zhu Rukai. Mechanism of strong calcium cementation in tight sandstone and its significance:A case study on triassic Chang 7 oil Formation of Yanchang Formation in Ordos Basin[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(4):957-967. | |
10 | 符勇, 白玉彬, 黄礼, 等. 靖边地区长6段致密砂岩储层孔隙结构及影响因素[J]. 断块油气田, 2020, 27(1): 34-39. |
Fu Yong, Bai Yubin, Huang Li, et al. Pore structure and influencing factors of Chang 6 tight sandstone reservoir in Jingbian area[J]. Fault-Block Oil and Gas Field, 2020, 27(1): 34-39. | |
11 | 黄思静, 黄可可, 冯文立, 等. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J]. 地球化学, 2009, 38(5): 498-506. |
Huang Sijing, Huang Keke, Feng Wenli, et al. Mass exchanges among feldspar, kaolinite andillite and their influences on secondary porosity formation in clastic diagenesis —— A case study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, Wes⁃tern Sichuan Depression[J]. Geochemica, 2009, 38(5): 498-506. | |
12 | 李汶国, 张晓鹏, 钟玉梅. 长石砂岩次生溶孔的形成机理[J]. 石油与天然气地质, 2005, 26(2): 220-223. |
Li Wenguo, Zhang Xiaopeng, Zhong Yumei. Formation mechanism of secondary dissolved pores in arcose[J]. Oil Gas Geology, 2005, 26(2): 220-223. | |
13 | 刘翰林, 王凤琴, 杨友运, 等. 西峰油田DZ—ZY地区长8储集层长石溶蚀特征及溶蚀强度计算[J]. 新疆石油地质, 2017, 38(1): 27-33. |
Liu Hanlin, Wang Fengqin, Yang Youyun, et al. Characteristics and intensity calculation of feldspar dissolution in Chang⁃8 reservoir of district DZ‑ZY, Xifeng oilfield[J]. Xinjiang Petroleum Geology, 2017, 38(1): 27-33. | |
14 | De Ros L F, Morad S, Sgarbi G N C. Multiple authigenesis of K⁃feldspar in sandstones: Evidence from the Cretaceous Areado Formation, Sao Francisco basin, central Brazil[J]. Journal of Sedimentary Research, Section A: Sedimentary Petrology and Processes (United States), 1994, 64(4): 778-787. |
15 | Huang W L, Longo J M. The effect of organics on feldspar dissolution and the development of secondary porosity[J]. Chemical Geology, 1992, 98(3-4): 271-292. |
16 | 王琪, 许勇, 李树同, 等. 鄂尔多斯盆地姬塬地区长8致密储层溶蚀作用模拟及其影响因素[J].地球科学与环境学报, 2017, 39(2): 225-237. |
Wang Qi, Xu Yong, Li Shutong, et al. Dissolution simulation of Chang-8 tight reservoir in Jiyuan area of Ordos basin, China and its influencing Factors[J]. Journal of Earth Sciences and Environment, 2017, 39(2): 225-237. | |
17 | 董姜畅, 王爱国, 樊志强, 等. 鄂尔多斯盆地中部延长组长7段致密储层成因及控制因素[J]. 断块油气田, 2021, 28(4): 446-451. |
Dong Jiangchang, Wang Aiguo, Fan Zhiqiang, et al. Origin and dominated factors of Chang 7 Member tight reservoirs in Yanchang Formation, central Ordos Basin[J]. Fault‑Block Oil and Gas Field, 2021, 28(4): 446-451. | |
18 | 王永田, 付兴亮, 王一航, 等. 长石溶蚀作用特征及对储层的影响——以鄂尔多斯盆地姬塬地区长4+5油层组为例[J]. 长江大学学报(自科版),2017, 14(15): 9-13. |
Wang Yongtina, Fu Xingliang, Wang Yihang, et al. The feature of feldspar dissolution and its inlfunence reservoirs —— by taking Chang4‑5 Reservoir of Jiyuan Area in Ordos Basin for example[J]. Journal of Yangtze University (Natural Science Edition) 2017, 14(15): 9-13. | |
19 | Ma B B, Cao Y C, Jia Y C, et al. Feldspar dissolution with implications for reservoir quality in tight gas sandstones: evidence from the Eocene Es4 interval, Dongying Depression, Bohai Bay Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 150: 74-84. |
20 | Gao Z Y, Feng J R, Cui J G. Physical simulation and quantitative calculation of increased feldspar dissolution pores in deep reservoirs[J]. Petroleum Exploration and Development, 2017, 44(3), 387-398. |
21 | 卢进才, 李玉宏, 魏仙样, 等. 鄂尔多斯盆地三叠系延长组长7油层组油页岩沉积环境与资源潜力研究[J]. 吉林大学学报(地球科学版), 2006, 36(6): 928-932. |
Lu Jincai, Li Yuhong, Wei Xianyang, et al. Research on the depositional environment and resources potential of the Oil shale in the Chang 7 Member, triassic Yanchang formation in the Ordos basin[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(6): 928-932. | |
22 | 杨华, 付金华, 何海清,等. 鄂尔多斯华庆地区低渗透岩性大油区形成与分布[J]. 石油勘探与开发, 2012, 39(6): 641-648. |
Yang Hua, Fu Jinhua, Liu Xinshe, et al., Accumulation conditions and exploration and development of tight gas in the Upper Paleozoic of the Ordos Basin[J]. Petroleum exploration and Development, 2012, 39(6): 641-648. | |
23 | Zou C N, Wang L. Deep‑lacustrine transformation of sandy debrites into turbidites, Upper Triassic, Central China[J]. Sedimentary Geology, 2012, 265: 143-155. |
24 | 林传仙, 白正华, 张哲儒.矿物及有关化合物热力学数据手册[M]. 北京: 科学出版社, 1985. |
Lin Chuanxian, Bai Zhenghua, Zhang Zheru. Handbook of thermodynamic data for minerals and related Compounds[M]. Beijing: Science Press,1985. | |
25 | Andri S. Dissolution of primary minerals of basalt in natural waters. I. Calculation of mineral solubilities from 0 ℃ to 350 ℃[J]. Chemical Geology, 2001, 172: 225-250. |
26 | 王林生, 叶义平, 覃建华, 等. 陆相页岩油储层微观孔喉结构表征与含油性分级评价——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 石油与天然气地质, 2022, 43(1): 149-160. |
Wang Linsheng, Ye Yiping, Qin Jianhua, et al. Microscopic pore structure characterization and oil‑bearing property evaluation of lacustrine shale reservoir: A case study of the Permian Lucaogou Formation in Jimsar Sag Junggar Basin[J]. Oil & Gas Geology, 2022, 43(1): 149-160. | |
27 | 魏赫鑫, 赖枫鹏, 蒋志宇, 等. 延长致密气储层微观孔隙结构及流体分布特征[J]. 断块油气田, 2020, 27(2): 182-187. |
Wei Hexin, Lai Fengpeng, Jiang Zhiyu, et al. Micropore structure and fluid distribution characteristics of Yanchang tight gas reservoir[J]. Fault‑Block Oil and Gas Field, 2020, 27(2): 182-187. | |
28 | 王付勇, 程辉. 鄂尔多斯盆地延长组致密砂岩孔喉结构与油藏物性表征[J].吉林大学学报(地球科学版), 2020, 50(3): 721-731. |
Wang Fuyong, Cheng Hui. Characterization of Pore Structure and Petrophysical Properties of Tight Sandstone of Yanchang Formation, Ordos Basin[J]. Journal of Jilin University (Earth Science Edition),2020, 50(3): 721-731. | |
29 | 王松, 肖玲. 鄂尔多斯盆地新安边地区长71储层特征[J]. 石油地质与工程, 2021, 35(1): 47-51. |
Wang Song, Xiao Ling. Characteristics of Chang 71 reservoir in Xin'anbian area of Ordos Basin [J]. Petroleum Geology & Engineering, 2021, 35(1): 47-51. | |
30 | 陈朝兵, 赵振宇, 付玲, 等. 鄂尔多斯盆地华庆地区延长组6段深水致密砂岩填隙物特征及对储层发育的影响[J]. 石油与天然气地质, 2021, 42(5):1098-1111. |
Chen Zhaobing, Zhao Zhenyu, Fu Ling, et al. Interstitial matter and its impact on reservoir development in Chang 6 deepwater tight sandstone in Huaqing area, Ordos Basin[J]. Oil & Gas Geo⁃logy, 2021, 2(5): 1098-1111. | |
31 | 刘池洋, 王建强, 张东东, 等. 鄂尔多斯盆地油气资源丰富的成因与赋存-成藏特点[J]. 石油与天然气地质, 2021, 42(5): 1011-1029. |
Liu Chiyang, Wang Jianqiang, Zhang Dongdong, et al. Genesis of rich hydrocarbon resources and their occurrence and accumulation characteristics in the Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1011-1029. | |
32 | 阮昱, 王超, 代超. 华庆地区长63深水重力流沉积及油气地质意义[J]. 石油地质与工程, 2020, 34(2): 1-7. |
Ruan Yu, Wang Chao, Dai Chao. Deep water gravity flow sedimentation of Chang 63 in Huaqing area and its petroleum geological significance[J]. Petroleum Geology & Engineering, 2020, 34(2): 1-7. | |
33 | 任战利, 祁凯, 李进步, 等. 鄂尔多斯盆地热动力演化史及其对油气成藏与富集的控制作用[J]. 石油与天然气地质, 2021, 42(5): 1030-1042. |
Ren Zhanli, Qi Kai, Li Jinbu, et al. Thermodynamic evolution and hydrocarbon accumulation in the Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1030-1042. | |
34 | 李易隆, 贾爱林, 冀光, 等. 鄂尔多斯盆地中—东部下石盒子组八段辫状河储层构型[J]. 石油学报, 2018, 39(9): 1037-1050. |
Li Yilong, Jia Ailin, Ji Guang, et al. Reservoir architecture of braided river in Member 8 of Xiashihezi Formation central‑eastern Ordos Basin[J]. Acta Petrolei Sinica, 2018, 39(9): 1037-1050. | |
35 | Liu P, Wang Z, Zhang Z. A new quantitative approach for element‑mineral determination based on “EDS (Energy Dispersive Spectroscopy) method”[J]. Geofluids, 2021: 1-15. |
[1] | 吴伟涛, 冯炎松, 费世祥, 王一妃, 吴和源, 杨旭东. 鄂尔多斯盆地神木气田二叠系石千峰组5段致密气富集因素及有利区预测[J]. 石油与天然气地质, 2024, 45(3): 739-751. |
[2] | 刘成林, 丁振刚, 范立勇, 康锐, 洪思婕, 朱玉新, 陈践发, 王海东, 许诺. 鄂尔多斯盆地含氦天然气地球化学特征与富集影响因素[J]. 石油与天然气地质, 2024, 45(2): 384-392. |
[3] | 万俊雨, 朱建辉, 姚素平, 张毅, 李春堂, 张威, 姜海健, 王杰. 鄂尔多斯盆地中、东部奥陶系马家沟组成烃生物及烃源岩地球生物学评价[J]. 石油与天然气地质, 2024, 45(2): 393-405. |
[4] | 杨丽华, 刘池洋, 黄雷, 周义军, 刘永涛, 秦阳. 鄂尔多斯盆地古峰庄地区疑似侵入岩体的发现及其地质意义[J]. 石油与天然气地质, 2024, 45(1): 142-156. |
[5] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[6] | 曹江骏, 王继平, 张道锋, 王龙, 李笑天, 李娅, 张园园, 夏辉, 于占海. 深层致密砂岩储层成岩演化对含气性的影响[J]. 石油与天然气地质, 2024, 45(1): 169-184. |
[7] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[8] | 刘成林, 丁振刚, 陈践发, 范立勇, 康锐, 王海东, 洪思婕, 田安琦, 陈学勇. 鄂尔多斯盆地氦源岩特征及生氦潜力[J]. 石油与天然气地质, 2023, 44(6): 1546-1554. |
[9] | 李勇, 朱治同, 吴鹏, 申陈州, 高计县. 鄂尔多斯盆地东缘上古生界致密储层含气系统压力演化[J]. 石油与天然气地质, 2023, 44(6): 1568-1581. |
[10] | 曾溅辉, 张亚雄, 张在振, 乔俊程, 王茂云, 陈冬霞, 姚泾利, 丁景辰, 熊亮, 刘亚洲, 赵伟波, 任克博. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067-1083. |
[11] | 梁岳立, 赵晓明, 张喜, 李树新, 葛家旺, 聂志宏, 张廷山, 祝海华. 轨道周期约束下海-陆过渡相页岩层系高精度层序界面识别及其地质意义[J]. 石油与天然气地质, 2023, 44(5): 1231-1242. |
[12] | 李涵, 付金华, 季汉成, 张雷, 佘钰蔚, 官伟, 井向辉, 王红伟, 曹茜, 刘刚, 魏嘉怡. 鄂尔多斯盆地西南部上古生界风化壳型铝土岩系发育过程及优势储层分布规律[J]. 石油与天然气地质, 2023, 44(5): 1243-1255. |
[13] | 李晓, 郭鹏, 胡彦智, 李士祥, 杨伟伟. 陆相页岩压裂试验与数值模拟[J]. 石油与天然气地质, 2023, 44(4): 1009-1019. |
[14] | 高嘉洪, 金之钧, 梁新平, 李士祥, 杨伟伟, 朱如凯, 杜晓宇, 刘全有, 李彤, 董琳, 李鹏, 张旺. 火山活动对鄂尔多斯盆地三叠系长7段淡水湖盆富营养化与沉积水体介质环境的影响[J]. 石油与天然气地质, 2023, 44(4): 887-898. |
[15] | 王梓毅, 付金华, 刘显阳, 李士祥, 张昌虎, 梁新平, 董琳. 鄂尔多斯盆地上三叠统延长组7段埋藏期热液活动对页岩油储层的影响[J]. 石油与天然气地质, 2023, 44(4): 899-909. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||