石油与天然气地质 ›› 2022, Vol. 43 ›› Issue (5): 1221-1237.doi: 10.11743/ogg20220517
王光付1(), 李凤霞1,2,3, 王海波1,2,3, 李军1, 张宏1, 周彤1,2,3, 商晓飞1, 潘林华1, 沈云琦1
收稿日期:
2022-07-11
修回日期:
2022-08-20
出版日期:
2022-10-01
发布日期:
2022-09-02
第一作者简介:
王光付(1965-),男,博士、教授级高级工程师,油气田开发。E?mail: 基金项目:
Guangfu Wang1(), Fengxia Li1,2,3, Haibo Wang1,2,3, Jun Li1, Hong Zhang1, Tong Zhou1,2,3, Xiaofei Shang1, Linhua Pan1, Yunqi Shen1
Received:
2022-07-11
Revised:
2022-08-20
Online:
2022-10-01
Published:
2022-09-02
摘要:
地质-工程一体化理念和做法已广泛应用于非常规油气藏勘探开发,贯穿井位地质设计、钻井、完井、压裂投产全过程,但不同阶段和不同地质条件下侧重点有所差异。在涪陵页岩气田开发成功引进并完善了北美非常规地质-工程一体化压裂技术,但这一技术在新区探井压裂中的推广存在局限性。由于四川盆地沉积和构造类型具多样性和复杂性,盆地内非常规气探井的压裂测试无法获得工业气流现象突出,相邻或同一区块探井或评价井压裂产量差异大,主要原因是甜点的裂缝和地应力等地质-工程关键参数三维定量表征及建模精度不够,针对性的分段分簇、压裂优化设计及布缝控缝定量模拟技术手段欠缺。系统总结了地质-工程一体化团队在四川盆地复杂致密气和页岩气探井及评价井压裂方面的实践经验,通过开展地质、测井、地震、工程等多专业联合研究,定量表征非常规储层空间展布、物性、含气性、岩石力学及矿物含量、地层压力、应力场、天然裂缝等关键参数,建立了区域气藏三维地质-工程模型,利用模型进行压裂裂缝空间扩展模拟,优化射孔、暂堵、压裂液、支撑剂、排量等工艺参数,及时跟踪分析和调整必要的现场施工参数,从而增加有效改造体积、提高单井产能,探索并形成了地质-工程一体化压裂技术体系及方法流程,在普光千佛崖组致密气和林滩场页岩气等探区应用效果显著,为类似油气藏地质-工程一体化勘探与开发提供借鉴。
中图分类号:
1 | Gupta J K, ZIelonka M G, Albert R A,et al .Integrated methodology for optimizing development of unconventional gas resources[C]//SPE. SPE hydraulic fracturing technology conference. Texas: SPE, 2012. |
2 | 吴奇,梁兴,鲜成钢,等. 地质-工程一体化高效开发中国南方海相页岩气[J]. 中国石油勘探,2015,20(4):1-23. |
Wu Qi, Liang Xing, Xian Chenggang, et al. Geoscience‑to⁃production integration ensures effective and efficient South China marine shale gas development[J]. China Petroleum Exploration,2014,19(6):14-23. | |
3 | 孙焕泉,周德华,蔡勋育,等. 中国石化页岩气发展现状与趋势[J]. 中国石油勘探,2020,25(2):14-26. |
Sun Huanquan, Zhou Dehua, Cai Xunyu,et al. Progress and prospect of shale gas development of Sinopec[J]. China Petroleum Exploration,2020,25(2):14-26. | |
4 | 谢建勇,崔新疆,李文波,等. 准噶尔盆地吉木萨尔凹陷页岩油效益开发探索与实践[J]. 中国石油勘探,2022,27(1):99-110. |
Xie Jianyong, Cui Xinjiang, Li Wenbo,et al .Exploration and practice of benefit development of shale oil in Jimsar Sag,Junggar Basin[J]. China Petroleum Exploration,2022,27(1):99-110. | |
5 | 唐磊,王建峰,曹敬华,等 .塔里木盆地顺北地区超深断溶体油藏地质工程一体化模式探索[J]. 油气藏评价与开发,2021,11(3):329-339. |
Tang Lei, Wang Jianfeng, Cao Jinghua,et al. Geology‑engineering integration mode of ultra‑deep fault‑karst reservoir in Shunbei area,Tarim Basin[J]. Petroleum Reservoir Evaluation and Development, 2021,11(3):329-339. | |
6 | 刘乃震,何凯,叶成林 .地质工程一体化在苏里格致密气藏开发中的应用[J].中国石油勘探,2017,22(1):53-60. |
Liu Naizhen, He Kai, Ye Chenglin. Application of geology engineering integration in the development of tight gas reservoir in Sulige Gasfield[J]. China Petroleum Exploration,2017,22(1):53-60. | |
7 | 鲜成钢. 页岩气地质工程一体化建模及数值模拟:现状、挑战和机遇[J]. 石油科技论坛,2018, 37(5):24-34. |
Xian Chenggang. Shale gas geological engineering integrated modeling and numerical simulation: Present conditions,challenges and opportunities[J]. Petroleum Science and Technology Forum,2018,37(5):24-34. | |
8 | 梁兴,单长安,蒋佩,等. 浅层页岩气井全生命周期地质工程一体化应用[J]. 西南石油大学学报:自然科学版,2021,43(5):1-18. |
Liang Xing, Shan Changan, Jiang Pei,et al. Geology and engineering integration application in the whole life cycle of shallow shale gas wells[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2021,43(5):1-18. | |
9 | 吴奇,胡文瑞,李峋 .地质工程一体化在复杂油气藏效益勘探开发中存在的“异化”现象及思考建议[J]. 中国石油勘探,2018,23(2):1-5. |
Wu Qi, Hu Wenrui, Li Xun. The phenomenon of alienation of geology‑engineering integration in exploration and development of complicated oil and gas reservoirs,and related thoughts and suggestions[J]. China Petroleum Exploration,2018,23(2):1-5. | |
10 | 戴金星,倪云燕,刘全有,等. 四川超级气盆地[J]. 石油勘探与开发, 2021,48(6):1081-1088. |
Dai Jinxing, Ni Yunyan, Liu Quanyou,et al. Sichuan super gas basin in southwest China[J]. Petroleum Exploration and Development, 2021,48(6):1081-1088. | |
11 | 张道伟 .四川盆地未来十年天然气工业发展展望[J]. 天然气工业,2021,41(8):34-45. |
Zhang Daowei. Development prospect of natural gas industry in the Sichuan Basin in the next decade[J]. Natural Gas Industry,2021,41(8):34-45. | |
12 | 郭旭升 .南方海相页岩气“二元富集”规律—四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报,2014,88(7):1209-1218. |
Guo Xusheng. Rules of two‑factor enrichment for marine shale gas in Southern China:Understanding from the Longmaxi formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica,2014,88(7):1209-1218. | |
13 | 胡东风,王良军,黄仁春,等. 四川盆地东部地区中二叠统茅口组白云岩储层特征及其主控因素[J]. 天然气工业,2019,39(6):13-21. |
Hu Dongfeng, Wang Liangjun, Huang Renchun,et al .Characteristics and main controlling factors of the Middle Permian Maokou dolomite reservoirs in the eastern Sichuan Basin[J]. Natural Gas Industry,2019,39(6):13-21. | |
14 | 王濡岳,胡宗全,龙胜祥,等. 四川盆地上奥陶统五峰组-下志留统龙马溪组页岩储层特征与演化机制[J]. 石油与天然气地质,2022,43(2):353-364. |
Wang Ruyue, Hu Zongquan, Long Shengxiang,et al. Reservoir characteristics and evolution mechanisms of the Upper Ordovician Wufeng‑Lower Silurian Longmaxi shale,Sichuan Basin[J]. Oil & Gas Geology,2022,43(2): 353-364. | |
15 | 杨克明,朱宏权,叶军. 川西致密砂岩气藏地质特征[M]. 科学出版社,2012. |
Yang Keming, Zhu Hongquan, Ye Jun. Geological characteristics of tight sandstone gas reservoirs in western Sichuan[M]. Science Press,2012. | |
16 | 郑志红,李登华,白森舒, 等. 四川盆地天然气资源潜力[J].中国石油勘探,2017,22(3): 12-20. |
Zheng Zhihong, Li Denghua, Bai Senshu,et al. Resource potential of natural gas in the Sichuan Basin[J]. China Petroleum Exploration,2017,22(3) : 12-20. | |
17 | 张道伟,杨雨. 四川盆地陆相致密砂岩气勘探潜力与发展方向[J]. 天然气工业,2022,42(1):1-11. |
Zhang Daowei, Yang Yu. Exploration potential and development direction of continental tight sandstone gas in the Sichuan Basin[J]. Natural Gas Industry,2022,42(1):1-11. | |
18 | 胡文瑞. 地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[J]. 中国石油勘探,2017,22(1):1-5. |
Hu Wenrui. Geology‑engineering integration‑a necessary way to realize profitable exploration and development of complex reservoirs[J]. China Petroleum Exploration,2017,22(1):1-5. | |
19 | 谢军,张浩淼,余朝毅,等. 地质工程一体化在长宁国家级页岩气示范区中的实践[J]. 中国石油勘探,2017,22(1):8. |
Xie Jun, Zhang Haomiao, She Chaoyi, et al. Practice of geology⁃engineering integration in Changning state shale gas demonstration area[J]. China Petroleum Exploration,2017,22(1):21-28. | |
20 | 南泽宇,李军,刘志远,等. 基于数值模拟的双感应测井裂缝参数定量评价方法[J]. 地球物理学进展,2017,32(2):696-701. |
Zeyu Nan, Li Jun, Liu Zhiyuan,et al. Fracture evaluation method of dual induction log based on numerical simulation[J]. Progress in Geophysics(in Chinese),2017,32(2):696-701. | |
21 | Zeyu Nan, Tan Maojin, Li Jun, al et,Numerical simulation,response analysis,and physical experiment of induction logging in an inclined fractured formation[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-11. |
22 | Li Jun, Wu Qingzhao, Jin Wujun,et al. Logging evaluation of free‑gas saturation and volume content in Wufeng‑Longmaxi organic‑rich shales in the Upper Yangtze Platform,China[J]. Marine and Petroleum Geology,2019,100:530-539. |
23 | 李军,路菁,李争,等. 页岩气储层“四孔隙”模型建立及测井定量表征方法[J]. 石油与天然气地质,2014,35(2):266-271. |
Li Jun, Lu Jing, Li Zheng,et al. Four‑pore modeling and its quantitative logging description of shale gas reservoir[J]. Oil & Gas Geology,2014,35(2):266-271. | |
24 | 李军,武清钊,金武军,路菁,页岩气储层总孔隙度与有效孔隙度测量及测井评价-以四川盆地龙马溪组页岩气储层为例 [J].石油与天然气地质,2017,38(3):602-609. |
Li Jun, Wu Qingzhao, Lu Jing,et al. Measurement and logging evaluation of total porosity and effective porosity of shale gas reservoirs:A case from the Silurian Longmaxi Formation shale in the Sichuan Basin[J]. Oil & Gas Geology,2017,38(3):602-609. | |
25 | Rickman R, Mullen M J, Petre J E, Grieser W V. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale[C]//SPE. SPE Annual Technical Conference and Exhibition.Denver,Colorado: SPE,2008. |
26 | Du B, Zhang G, Zhang J,et al. The application of tight gas reservoir stress prediction through pre‑stack azimuthal AVO inversion[C]//SEG. SEG Nanjing 2020 International Geophysical Conference. Nanjing: SEG, 2020. |
27 | 商晓飞,李蒙,刘君龙,等. 基于源-汇系统的砂体分布预测与三维地质建模——以四川盆地川西坳陷新场构造带须二段为例[J].天然气工业,2022,42(1):62-72. |
Shang Xiaofei, Li Meng, Liu Junlong,et al. Source‑sink system based sand body distribution prediction and 3D geological modeling: A case study of the 2nd Member of Xujiahe Formation in Xinchang structural belt of Western Sichuan Depression,Sichuan Basin[J]. Natural Gas Industry,2022,42(1):62-72. | |
28 | 商晓飞,龙胜祥,段太忠. 页岩气藏裂缝表征与建模技术应用现状及发展趋势[J]. 天然气地球科学,2021,32(2):18. |
Shang Xiaofei, Long Shengxiang, Duan Taizhong. Current situation and development trend of fracture characterization and modeling techniques in shale gas reservoirs[J]. Natural Gas Geoscience,2021,32(2):215-232. | |
29 | 李蒙,商晓飞,赵华伟,等. 基于likelihood地震属性的致密气藏断裂预测——以四川盆地川西坳陷新场地区须二段为例[J].石油与天然气地质,2020,41(6):1299-130. |
Li Meng, Shang Xiaofei, Zhao Huawei,et al. Prediction of fractures in tight gas reservoirs based on likelihood attribute—A case study of the 2nd member of Xujiahe Formation in Xinchang area,Western Sichuan Depression,Sichuan Basin[J]. Oil & Gas Geology,2020,41(6):1299-1309. | |
30 | 金衍,程万,陈勉. 页岩气储层压裂数值模拟技术研究进展[J]. 力学与实践,2016,38(1):1-9. |
Jin Yan, Cheng Wan, Chen Mian. A review of numerical simulation of hydro‑fracking in shale gas reservoir[J]. Mechanics in Engineering,2016,38(1):1-9. | |
31 | 赵金洲,任岚,沈骋,等 .页岩气储层缝网压裂理论与技术研究新进展[J]. 天然气工业,2018,38(3):1-14. |
Zhao Jinzhou, Ren Lan, Shen Cheng,et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry,2018,38(3):1-14. | |
32 | 周彤,王海波,李凤霞,等. 层理发育的页岩气储集层压裂裂缝扩展模拟[J]. 石油勘探与开发,2020,47(5):1039-1051. |
Zhou Tong, Wang Haibo, Li Fengxia,et al. Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs[J]. Petroleum Exploration and Development, 2020, 47(5): 1039-1051. | |
33 | Zou Y, Ma X, Zhou T,et al. Hydraulic fracture growth in a layered formation based on fracturing experiments and discrete element modeling[J]. Rock Mechanics and Rock Engineering,2017,50:2381-2395. |
34 | 周彤,陈铭,张士诚,等. 非均匀应力场影响下的裂缝扩展模拟及投球暂堵优化[J]. 天然气工业,2020,40(3):82-88. |
Zhou Tong, Chen Ming, Zhang Shicheng,et al. Simulation of fracture propagation and optimization of ball‑sealer in‑stage diversion under the effect of heterogeneous stress field in a horizontal well[J]. Natural Gas Industry,2020,40(3):82-91. | |
35 | 周彤,张士诚,陈铭,等. 水平井多簇压裂裂缝的竞争扩展与控制[J]. 中国科学(技术科学),2019,49(4):469-478. |
Zhou Tong, Zhang Shicheng, Chen Ming,et al. Competitive propagation of multi‑fractures and their control on multi‑clustered fracturing of horizontal wells[J]. Scientia Sinica Technologica,2019,49(4):469-478. | |
36 | 周彤,苏建政,李凤霞,等. 基于停泵压力降落曲线分析的压后裂缝参数反演[J]. 天然气地球科学,2019,30(11):1646-1654. |
Zhou Tong, Su Jianzheng, Li Fengxia,et al. An approach to estimate hydraulic fracture parameters with the pressure fall off data of main treatment[J]. Natural Gas Geoscience,2019,30(11):1646-1654. |
[1] | 吴伟涛, 冯炎松, 费世祥, 王一妃, 吴和源, 杨旭东. 鄂尔多斯盆地神木气田二叠系石千峰组5段致密气富集因素及有利区预测[J]. 石油与天然气地质, 2024, 45(3): 739-751. |
[2] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[3] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[4] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[5] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[6] | 张赫驿, 杨帅, 张玺华, 彭瀚霖, 李乾, 陈聪, 高兆龙, 陈安清. 川东地区中二叠统茅口组沉积微相与环境演变[J]. 石油与天然气地质, 2024, 45(2): 457-470. |
[7] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[8] | 曾联波, 巩磊, 宿晓岑, 毛哲. 深层-超深层致密储层天然裂缝分布特征及发育规律[J]. 石油与天然气地质, 2024, 45(1): 1-14. |
[9] | 张宝收, 张本健, 汪华, 陈践发, 刘凯旋, 豆霜, 戴鑫, 陈双玲. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[10] | 张自力, 乔艳萍, 豆霜, 李堃宇, 钟原, 武鲁亚, 张宝收, 戴鑫, 金鑫, 王斌, 宋金民. 四川盆地蓬莱气区震旦系灯影组二段岩溶古地貌与控储模式[J]. 石油与天然气地质, 2024, 45(1): 200-214. |
[11] | 张益, 张斌, 刘帮华, 柳洁, 魏千盛, 张歧, 陆红军, 朱鹏宇, 王瑞. 页岩气储层吸附渗流研究现状及发展趋势[J]. 石油与天然气地质, 2024, 45(1): 256-280. |
[12] | 王光付, 李凤霞, 王海波, 周彤, 张亚雄, 王濡岳, 李宁, 陈昱辛, 熊晓菲. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
[13] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[14] | 胡东风, 魏志红, 刘若冰, 魏祥峰, 王威, 王庆波. 川东南盆缘复杂构造区綦江页岩气田的发现与启示[J]. 石油与天然气地质, 2023, 44(6): 1418-1429. |
[15] | 王红岩, 周尚文, 赵群, 施振生, 刘德勋, 焦鹏飞. 川南地区深层页岩气富集特征、勘探开发进展及展望[J]. 石油与天然气地质, 2023, 44(6): 1430-1441. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||