石油与天然气地质 ›› 2022, Vol. 43 ›› Issue (5): 1206-1220.doi: 10.11743/ogg20220516
郑国伟1,2(), 高之业1,2(), 黄立良3, 姜振学1,2, 何文军3, 常佳琦1,2, 段龙飞1,2, 魏维航1,2, 王志伟1,2
收稿日期:
2021-09-14
修回日期:
2022-07-13
出版日期:
2022-10-01
发布日期:
2022-09-02
通讯作者:
高之业
E-mail:zhengguowei7@163.com;gaozhiye@163.com
第一作者简介:
郑国伟(1997—),男,硕士研究生,非常规油气储层评价。E?mail: 基金项目:
Guowei Zheng1,2(), Zhiye Gao1,2(), Liliang Huang3, Zhenxue Jiang1,2, Wenjun He3, Jiaqi Chang1,2, Longfei Duan1,2, Weihang Wei1,2, Zhiwei Wang1,2
Received:
2021-09-14
Revised:
2022-07-13
Online:
2022-10-01
Published:
2022-09-02
Contact:
Zhiye Gao
E-mail:zhengguowei7@163.com;gaozhiye@163.com
摘要:
页岩储层润湿性会对储层相对渗透率、毛细管力产生重要影响,并最终影响页岩油气成藏过程和采收率。以准噶尔盆地玛湖凹陷二叠系风城组页岩为研究对象,综合利用接触角、自发渗吸+微米CT等多种实验手段对页岩储层润湿性特征及其主控因素进行研究。研究结果显示:①玛湖凹陷风城组页岩为偏向亲油的混合润湿,不同岩相的水润湿能力依次为长英质页岩>含灰长英质页岩>含云长英质页岩>含长英云质页岩>粉砂岩。②页岩润湿性受有机质丰度、矿物组分和孔隙结构等多因素共同控制,页岩亲油性与总有机碳含量、白云石含量呈正相关,与石英含量呈负相关,与方解石含量呈分段式相关;宏孔孔体积越大,页岩亲油性越强。③亲油孔隙连通性沿着裂缝和纹层发育的方向会变好;云质团块会形成聚集型的、具有一定连通性的孔隙系统,同页岩基质中连通的小孔隙一起构成云质团块特有的页岩油储集空间和运移通道。④小于1 μm的孔隙连通性较好,为页岩油的主要运移通道;大于1 μm的孔隙连通性差,是页岩油主要的储集空间。⑤依据不同岩相润湿性特征和沉积构造特征初步确定研究区优质储层为发育裂缝、云质团块、纹层构造的粉砂岩和含云长英质页岩。
中图分类号:
表2
玛湖凹陷X井页岩样品矿物组成和有机地化特征"
样品 编号 | 深度/ m | TOC/ % | S1/ (mg·g-1) | S2/ (mg·g-1) | Tmax/ ℃ | 矿物组分含量/% | 岩相类型 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
石英 | 长石 | 方解石 | 白云石 | 粘土矿物 | 黄铁矿 | 其他 | |||||||
FC1 | 4 582.6 | 0.105 6 | 0.08 | 0.07 | 370 | 28.8 | 25.0 | 25.6 | 4.7 | 6.3 | 9.6 | 0 | 块状含灰长英质页岩 |
FC2 | 4 591.6 | 0.616 8 | 1.44 | 1.53 | 440 | 52.0 | 12.8 | 0 | 33.5 | 0 | 1.7 | 0 | 层状含云长英质页岩 |
FC3 | 4 660.7 | 1.235 0 | 2.29 | 5.41 | 440 | 9.0 | 29.2 | 1.4 | 51.8 | 1.2 | 7.4 | 0 | 层状含长英云质页岩 |
FC4 | 4 690.8 | 1.420 0 | 1.44 | 6.82 | 441 | 39.7 | 27.9 | 1.1 | 18.5 | 2.3 | 8.9 | 1.6 | 层状长英质页岩 |
FC5 | 4 709.6 | 0.856 2 | 0.59 | 2.61 | 438 | 22.9 | 27.5 | 10.2 | 27.0 | 2.4 | 8.3 | 1.7 | 纹层状含云长英质页岩 |
FC6 | 4 720.3 | 0.575 9 | 2.61 | 1.41 | 437 | 41.6 | 21.5 | 4.5 | 25.7 | 0 | 0 | 6.7 | 层状含云长英质页岩 |
FC7 | 4 750.6 | 0.812 5 | 2.97 | 2.74 | 432 | 46.8 | 38.8 | 0.7 | 9.1 | 0 | 4.6 | 0 | 层状长英质页岩 |
FC8 | 4 758.4 | 0.719 5 | 4.59 | 2.28 | 418 | 14.5 | 41.2 | 2.3 | 29.5 | 0 | 12.5 | 0 | 层状含云长英质页岩 |
FC9 | 4 764.4 | 0.579 2 | 3.76 | 2.25 | 416 | 32.5 | 47.4 | 2.2 | 7.4 | 0 | 5.6 | 4.9 | 块状粉砂岩 |
FC10 | 4 776.6 | 0.938 3 | 0.31 | 3.92 | 438 | 33.8 | 35.8 | 4.8 | 12.9 | 0 | 8.8 | 3.9 | 纹层状长英质页岩 |
FC11 | 4 780.5 | 0.674 2 | 0.51 | 1.70 | 430 | 19.4 | 36.5 | 15.7 | 18.5 | 0 | 9.9 | 0 | 纹层状含云长英质页岩 |
FC12 | 4 783.1 | 0.652 3 | 5.08 | 2.36 | 425 | 58.7 | 31.3 | 2.5 | 3.1 | 0 | 4.4 | 0 | 块状粉砂岩 |
FC13 | 4 820.5 | 0.414 9 | 0.15 | 0.94 | 440 | 20.9 | 29.9 | 0 | 41.0 | 1.1 | 7.1 | 0 | 层状含云长英质页岩 |
FC14 | 4 829.1 | 0.581 3 | 0.45 | 1.42 | 435 | 35.4 | 25.8 | 0 | 27.2 | 3.9 | 6.2 | 1.5 | 层状含云长英质页岩 |
FC15 | 4 848.6 | 0.724 6 | 4.01 | 1.81 | 408 | 14.2 | 35.4 | 10.0 | 22.8 | 0 | 15.0 | 2.6 | 块状粉砂岩 |
FC16 | 4 858.4 | 0.672 2 | 0.63 | 1.47 | 434 | 36.2 | 19.2 | 21.3 | 9.8 | 5.1 | 8.4 | 0 | 纹层状含灰长英质页岩 |
表3
玛湖凹陷X井风城组页岩接触角测定结果"
样品 编号 | 水接触角/(°) | |||
---|---|---|---|---|
实验1 | 实验2 | 实验3 | 平均值 | |
FC1 | 90.82 | 74.72 | 78.51 | 81.35 |
FC2 | 64.67 | 62.98 | 80.80 | 69.48 |
FC3 | 80.16 | 78.78 | 93.91 | 84.28 |
FC4 | 77.14 | 45.45 | 66.49 | 63.03 |
FC5 | 74.65 | 75.03 | 59.60 | 69.76 |
FC6 | 67.65 | 87.02 | 101.35 | 85.34 |
FC7 | 79.35 | 85.86 | 83.83 | 83.01 |
FC8 | 112.33 | 113.91 | 102.09 | 109.44 |
FC9 | 112.87 | 117.47 | 93.27 | 107.87 |
FC10 | 68.30 | 78.94 | 73.74 | 73.66 |
FC11 | 54.66 | 60.05 | 84.62 | 66.44 |
FC12 | 119.27 | 116.08 | 103.64 | 113.00 |
FC13 | 89.24 | 63.40 | 76.47 | 76.37 |
FC14 | 63.62 | 81.73 | 85.02 | 76.79 |
FC15 | 113.61 | 98.50 | 111.60 | 107.90 |
FC16 | 64.78 | 63.91 | 73.74 | 67.48 |
表4
玛湖凹陷X井风城组页岩不同流体自发渗吸实验结果"
样品 编号 | 水相渗吸斜率 | 油相渗吸斜率 | ||
---|---|---|---|---|
顺层(P1) | 穿层(T1) | 顺层(P2) | 穿层(T2) | |
FC1 | 0.558 | 0.103 | 0.178 | 0.645 |
FC2 | 0.328 | 0.255 | 0.274 | 0.483 |
FC3 | 0.513 | 0.338 | 0.238 | 0.307 |
FC4 | 0.126 | 0.22 | 0.345 | 0.249 |
FC5 | 0.228 | 0.167 | 0.360 | 0.220 |
FC6 | 0.160 | 0.090 | 0.624 | 0.198 |
FC7 | 0.273 | 0.694 | 0.700 | 0.425 |
FC8 | 0.296 | 0.253 | 0.548 | 0.588 |
FC9 | 0.243 | 0.434 | 0.424 | 0.994 |
FC10 | 0.326 | 0.525 | 0.540 | 0.384 |
FC11 | 0.351 | 0.378 | 0.680 | 0.380 |
FC12 | 0.543 | 0.188 | 0.320 | 0.363 |
FC13 | 0.160 | 0.331 | 0.271 | 0.380 |
FC14 | 0.392 | 0.209 | 0.477 | 0.125 |
FC15 | 0.392 | 0.386 | 0.365 | 0.493 |
FC16 | 0.380 | 0.376 | 0.714 | 0.526 |
1 | 盛湘, 陈祥, 章新文, 等. 中国陆相页岩油开发前景与挑战[J].石油实验地质, 2015, 37(3): 267-271. |
Sheng Xiang, Chen Xiang, Zhang Xinwen, et al. Prospects and challenges of continental shale oil development in China[J]. Petroleum Geology & Experiment, 2015, 37(3): 267-271. | |
2 | 卢双舫, 薛海涛, 王民, 等. 页岩油评价中的若干关键问题及研究趋势[J]. 石油学报, 2016, 37(10): 1309-1322. |
Lu Shuangfang, Xue Haitao, Wang Min, et al. Several key issues and research trends in evaluation of shale oil[J]. Acta Petrolei Sinica, 2016, 37(10): 1309-1322. | |
3 | 杨智, 邹才能. “进源找油”:源岩油气内涵与前景[J]. 石油勘探与开发, 2019, 46(1): 173-184. |
Yang Zhi, Zou Caineng. “Exploring petroleum inside source kitchen”: Connotation and prospects of source rock oil and gas[J]. Petroleum Exploration and Development, 2019, 46(1): 173-184. | |
4 | 姜在兴, 张文昭, 梁超, 等. 页岩油储层基本特征及评价要素[J]. 石油学报, 2014, 35(1): 184-196. |
Jiang Zaixing, Zhang Wenzhao, Liang Chao, et al. Characteristics and evaluation elements of shale oil reservoir[J]. Acta Petrolei Sinica, 2014, 35(1): 184-196. | |
5 | 柳波, 吕延防, 孟元林, 等. 湖相纹层状细粒岩特征、成因模式及其页岩油意义——以三塘湖盆地马朗凹陷二叠系芦草沟组为例[J]. 石油勘探与开发, 2015, 42(5): 598-607. |
Liu Bo, Lu Yanfang, Meng Yuanlin, et al. Petrologic characteristics and genetic model of lacustrine lamellar fine⁃grained rock and its significance for shale oil exploration: A case study of Permian Lucaogou Formation in Malang Sag, Santanghu Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(5): 598-607. | |
6 | 赵贤正, 周立宏, 蒲秀刚, 等. 断陷湖盆湖相页岩油形成有利条件及富集特征——以渤海湾盆地沧东凹陷孔店组二段为例[J]. 石油学报, 2019, 40(9): 1013-1029. |
Zhao Xianzheng, Zhou Lihong, Pu Xiugang, et al. Favorable formation conditions and enrichment characteristics of lacustrine facies shale oil in faulted lake basin :A case study of Member 2 of Kongdian Formation in Candong Sag, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2019, 40(9): 1013-1029. | |
7 | 邹才能, 杨智, 王红岩, 等. “进源找油”:论四川盆地非常规陆相大型页岩油气田[J]. 地质学报, 2019, 93(7):1551-1562. |
Zou Caineng, Yang Zhi, Wang Hongyan, et al. “Exploring petroleum inside source kitchen”: Jurassic unconventional continental giant shale oil & gas field in Sichuan Basin, China[J]. Acta Geoligica Sinica, 2019, 93(7):1551-1562. | |
8 | 李国欣, 朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探, 2020, 25(2): 1-13. |
Li Guoxin, Zhu Rukai. Progress, challenges and key issues of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2): 1-13. | |
9 | 杨智, 唐振兴, 李国会, 等. 陆相页岩层系石油富集区带优选、甜点区段评价与关键技术应用[J]. 地质学报, 2021, 95(8): 2257-2272. |
Yang Zhi, Tang Zhenxing, Li Guohui, et al. Optimization of enrichment plays, evaluation of sweet area & section and application of key technologics for the continental shale strata oil in China[J]. Acta Geoligica Sinica, 2021, 95(8): 2257-2272. | |
10 | 赵文智, 朱如凯, 胡素云, 等. 陆相富有机质页岩与泥岩的成藏差异及其在页岩油评价中的意义[J]. 石油勘探与开发, 2020, 47(6): 1079-1089. |
Zhao Wenzhi, Zhu Rukai, Hu Suyun, et al. Accumulation contribution differences between lacustrine organic‑rich shales and mudstones and their significance in shale oil evaluation[J]. Petroleum Exploration and Development, 2020, 47(6): 1079-1089. | |
11 | 支东明, 唐勇, 郑孟林, 等. 准噶尔盆地玛湖凹陷风城组页岩油藏地质特征与成藏控制因素[J]. 中国石油勘探, 2019, 24(5): 615-623. |
Zhi Dongming, Tang Yong, Zheng Menglin, et al. Geological characteristics and accumulation controlling factors of shale reservoirs in Fengcheng Formation, Mahu Sag, Junggar Basin[J]. China Petroleum Exploration, 2019, 24(5): 615-623. | |
12 | 郑孟林, 樊向东, 何文军, 等. 准噶尔盆地深层地质结构叠加演变与油气赋存[J]. 地学前缘, 2019, 26(1): 22-32. |
Zheng Menglin, Fan Xiangdong, He Wenjun, et al. Superosition of deep geological structural evolution and hydrocarbon accumulation in the Junggar Bsain[J]. Earth Science Frontiers, 2019, 26(1): 22-32. | |
13 | 冯有良, 张义杰, 王瑞菊, 等. 准噶尔盆地西北缘风城组白云岩成因及油气富集因素[J].石油勘探与开发, 2011, 38(6): 685-692. |
Feng Youliang, Zhang Yijie, Wang Ruiju, et al. Dolomites genesis and hydrocarbon enrichment of the Fengcheng Formation in the northwestern margin of Junggar Basin[J]. Petroleum Exploration and Development, 2011, 38(6): 685-692. | |
14 | 匡立春, 唐勇, 雷德文, 等. 准噶尔盆地玛湖凹陷斜坡区三叠系百口泉组扇控大面积岩性油藏勘探实践[J]. 中国石油勘探, 2014, 19(6): 14-23. |
Kuang Lichun, Tang Yong, Lei Dewen, et al. Exploration of fan⁃controlled large‑area lithologic oil reservoirs of Triassic Baikouquan Formation in slope zone of Mahu Depression in Junggar Basin[J]. China Petroleum Exploration, 2014, 19(6): 14-23. | |
15 | 曹剑, 雷德文, 李玉文, 等. 古老碱湖优质烃源岩:准噶尔盆地下二叠统风城组[J]. 石油学报, 2015, 36(7): 781-790. |
Cao Jian, Lei Dewen, Li Yuwen, et al. Ancient high‑quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar Basin[J]. Acta Petrolei Sinica, 2015, 36(7): 781-790. | |
16 | 秦志军, 陈丽华, 李玉文, 等. 准噶尔盆地玛湖凹陷下二叠统风城组碱湖古沉积背景[J]. 新疆石油地质, 2016, 37(1): 1-6. |
Qin Zhijun, Chen Lihua, Li Yuwen, et al. Paleo‑sedimentary setting of the Lower Permian Fengcheng Alkali Lake in Mahu Sag, Junggar Basin[J]. XinJiang Petroleum Geology, 2016, 37(1): 1-6. | |
17 | 支东明, 宋永, 何文军, 等. 准噶尔盆地中—下二叠统页岩油地质特征、资源潜力及勘探方向[J]. 新疆石油地质, 2019, 40(4): 389-401. |
Zhi Dongming, Song Yong, He Wenjun, et al. Geological characteristics, resource potential and exploration direction of shale oil in Middle‑Lower Permian, Junggar Basin[J]. XinJiang Petroleum Geology, 2019, 40(4): 389-401. | |
18 | 唐勇,宋永,何文军,等. 准噶尔叠合盆地复式油气成藏规律[J]. 石油与天然气地质, 2022, 43(1): 132-148. |
Tang Yong, Song Yong, He Wenjun, et al. Characteristics of composite hydrocarbon accumulation in a superimposed basin, Junggar Basin[J]. Oil & Gas Geology, 2022, 43(1): 132-148. | |
19 | Anderson W G. Wettability literature survey‑part 1: Rock/oil/brine interactions and the effects of core handling on wettability[J]. Journal of Petroleum Technology, 1986, 38(10): 1125-1144. |
20 | 冯程, 樊海涛, 石玉江, 等. 润湿性影响下低渗透储层地层水矿化度预测——以鄂尔多斯盆地陇东地区三叠系延长组长81段为例[J]. 石油与天然气地质, 2020, 41(2): 442-448. |
Feng cheng, Fan Haitao, Shi Yujiang, et al. Prediction for the formation water salinity in low‑permeability reservoirs with complex wettability: A case study of the Triassic Chang 81 Member, Longdong area, Ordos Basin[J]. Oil & Gas Geology, 2020, 41(2): 442-448. | |
21 | 王民, 马睿, 李进步, 等. 济阳坳陷古近系沙河街组湖相页岩油赋存机理[J]. 石油勘探与开发, 2019, 46(4): 789-802. |
Wang Min, Ma Rui, Li Jinbu, et al. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2019, 46(4): 789-802. | |
22 | 李浩, 王保华, 陆建林,等. 东濮凹陷古近系页岩油富集地质条件与勘探前景[J]. 中国石油大学学报(自然科学版),2021,45(3):33-41. |
Li Hao, Wang Baohua, Lu Jianlin, et al.Geological characteristics and exploration prospects of Paleogene continental shale oil accumulation in Dongpu Sag, Bohai Bay Basin[J].Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(3):33-41. | |
23 | 刘向君, 熊健, 梁利喜, 等. 川南地区龙马溪组页岩润湿性分析及影响讨论[J]. 天然气地球科学, 2014, 25(10): 1644-1652. |
Liu Xiangjun, Xiong Jian, Liang Lixi, et al. Analysis of the wettability of Longmaxi formation shale in the south region of Sichuan Basin ang its influence[J]. Natural Gas Geoscience, 2014, 25(10): 1644-1652. | |
24 | Hu Q H, Ewing R P, Rowe H D. Low nanopore connectivity limits gas production in Barnett Formation: Journal of geophysical research[J]. Solid Earth, 2015, 120(12): 8073-8087. |
25 | Liu H H, Lai B T, Chen J H. Unconventional spontaneous imbibition into shale matrix: Theory and a methodology to determine relevant parameters[J]. Transport in Porous Media, 2016, 111(1): 41-57. |
26 | Odusina E O, Sondergeld C H, Rai C S. An NMR study of shale wettability[C]∥Canadian Unconventional Resources Conference. Calgary: SPE, 2011:147371. |
27 | Sulucarnain I D, Sondergeld C H, Rai C S, et al. An NMR study of shale wettability and effective surface relaxivity[C] ∥SPE Canadian Unconventional Resources Conference. Calgary: SPE, 2012:162236. |
28 | Gao Z Y, Hu Q H. Wettability of Mississippian Barnett shale samples at different depths: Investigations from directional spontaneous imbibition[J]. AAPG Bulletin, 2016, 100(1): 101-114. |
29 | Xu M, Dehghanpour H. Advances in understanding wettability of gas shales[J]. Energy Fuels, 2014, 28(7): 4362-4375. |
30 | Sharifigaliuk H, Mahmood S M, Padmanabhan E. Evaluation of the wettability variation of shales by drop shape analysis approach[C] ∥ SPE/AAPG/SEG Asia Pacific Unconventional Resources Technology Conference. Brisbane: SPE/AAPG/SEG, 2019:198277. |
31 | Sharifigaliuk H, Mahmood S M, Al‑Bazzaz W, et al. Complexities driving wettability evaluation of shales toward unconventional approaches: A comprehensive review[J]. Energy Fuels, 2021, 35(2):1011-1023. |
32 | Gao Z Y, Hu Q H. Initial water saturation and imbibition fluid affect spontaneous imbibition into Barnett shale samples[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 541-551. |
33 | Clarkson C R, Jensen J L, Pedersen P K, et al. Innovative methods for flow‑unit and pore‑structure analyses in a tight siltstone and shale gas reservoir[J]. AAPG Bulletin, 2012, 96 (2): 355–374. |
34 | Ruppert L F, Sakurovs R, Blach T P, et al. A USANS/SANS study of the accessibility of pores in the Barnett Shale to methane and water[J]. Energy Fuels, 2013, 27(2) : 772-779. |
35 | Su S Y, Jiang Z X, Shan X L, et al. The wettability of shale by NMR measurements and its controlling factors[J]. Journal of Petroleum Science and Engineering, 2018, 169: 309-316. |
36 | Siddiqui M A Q, Ali S, Fei H, et al. Current understanding of shale wettability: A review on contact angle measurements[J]. Earth-Science Reviews, 2018, 181: 1-11. |
37 | 郭建春, 陶亮, 陈迟, 等. 川南地区龙马溪组页岩混合润湿性评价新方法[J]. 石油学报, 2020, 41(2): 216-225. |
Guo Jianchun, Tao Liang, Chen Chi, et al. A new method for evaluating the mixed wettability of shale in Longmaxi Formation in the southern Sichuan[J]. Acta Petrolei Sinica, 2020, 41(2): 216-225. | |
38 | Tang W B, Zhang Y Y, Georgia P P, et al. Soft‑sediment deformation structures in alkaline lake deposits of Lower Permian Fengcheng Formation, Junggar Basin, NW China: Implications for syn‑sedimentary tectonic activity[J]. Sedimentary Geology, 2020, (406):105719. |
39 | 金之钧. 叠合盆地油气成藏体系研究思路与方法——以准噶尔盆地中部地区油气藏为例[J].高校地质学报,2011, 17(2): 161-169. |
Jin Zhijun. Methods in studying petroleum accumulation systems in a superimposed basin: A case study of petroleum reserviors in the Central Junggar Basin[J]. Geological Journal of China Universities, 2011, 17(2): 161-169. | |
40 | 张元元, 李威, 唐文斌. 玛湖凹陷风城组碱湖烃源岩发育的构造背景和形成环境[J]. 新疆石油地质, 2018,39(1):48-54. |
Zhang Yuanyuan, Li Wei, Tang Wenbin. Tectonic setting and environment of alkaline lacustrine source rocks in the Lower Permian Fengcheng Formation of Mahu Sag[J]. Xinjiang Petroleum Geology, 2018,39(1):48-54. | |
41 | 陈建平, 王绪龙, 邓春萍, 等. 准噶尔盆地油气源、油气分布与油气系统[J]. 地质学报, 2016, 90(3): 421-450. |
Chen Jianping, Wang Xulong, Deng Chunping, et al. Oil and gas source, occurrence and petroleum system in the Junggar Basin, Northwest China[J]. Acta Geologica Sinica, 2016, 90(3): 421-450. | |
42 | 刘得光, 周路, 李世宏, 等. 玛湖凹陷风城组烃源岩特征与生烃模式[J]. 沉积学报, 2020, 38(5): 946-955. |
Liu Deguang, Zhou Lu, Li Shihong, et al. Characteristics of source rocks and hydrocarbon generation models of Fengcheng Formation in Mahu Depression[J]. Acta Sedimentologica Sinica, 2020, 38(5): 946-955. | |
43 | Washbure E W. Note on a method of determining the distribution of pore sizes in a porous material[J]. Proceedings of the National Academy of Sciences of the United States of America, 1921, 7(4): 115-116. |
44 | Gao Z Y, Hu Q H. Pore structure and spontaneous imbibition characteristics of marine and continental shales in China[J]. AAPG Bulletin, 2018, 102(10): 1941-1961. |
45 | Hu M Q, Persoff P, Wang J S Y. Laboratory measurement of water imbibition into low‑permeability welded tuff[J]. Journal of Hydrology, 2001, 242(1-2): 64-78. |
46 | 张志杰, 袁选俊, 汪梦诗, 等. 准噶尔盆地玛湖凹陷二叠系风城组碱湖沉积特征与古环境演化[J]. 石油勘探与开发, 2018, 45(6): 972-984. |
Zhang Zhijie, Yuan Xuanjun, Wang Mengshi, et al. Alkaline⁃lacustrine deposition and paleoenvironmental evolution in Permian Fengcheng Formation at the Mahu Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(6): 972-984. | |
47 | 姜涛, 金之钧, 刘光祥,等. 四川盆地元坝地区自流井组页岩储层孔隙结构特征[J]. 石油与天然气地质, 2021, 42(4): 909-918. |
Jiang Tao, Jin Zhijun, Liu Guangxiang,et al. Pore structure characteristics of shale reservoirs in the Ziliujing Formation in Yuanba area, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 909-918. | |
48 | 胡钦红, 刘惠民, 黎茂稳, 等. 东营凹陷沙河街组页岩油储集层润湿性、孔隙连通性和流体-示踪剂运移[J]. 石油学报, 2018, 39(3): 278-289. |
Hu Qinhong, Liu Huimin, Li Maowen, et al. Wettability, pore connectivity and fluid‑tracer migration in shale oil reservoirs of Paleogene Shehejie Formation in Dongying Sag of Bohai Bay Basin, East China[J]. Acta Petrolei Sinica, 2018, 39(3): 278-289. | |
49 | Arsalan N, Palayangoda S S, Burnett D J, et al. Surface energy characterization of sandstone rocks[J]. Journal of Physics and Chemistry of Solids, 2013, 74(8): 1069-1077. |
[1] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[2] | 潘虹, 于庆森, 李晓山, 宋俊强, 蒋志斌, 王丽, 罗官幸, 徐文秀, 尤浩宇. 准噶尔盆地红车断裂带石炭系重新认识及油气成藏特征[J]. 石油与天然气地质, 2024, 45(1): 215-230. |
[3] | 陈轩, 陶鑫, 覃建华, 许长福, 李映艳, 邓远, 高阳, 尹太举. 准噶尔盆地吉木萨尔凹陷及周缘二叠系芦草沟组异重流沉积[J]. 石油与天然气地质, 2023, 44(6): 1530-1545. |
[4] | 刘惠民, 张关龙, 范婕, 曾治平, 郭瑞超, 宫亚军. 准噶尔盆地腹部征沙村地区征10井的勘探发现与启示[J]. 石油与天然气地质, 2023, 44(5): 1118-1128. |
[5] | 赵耀, 潘虹, 骆飞飞, 李亮, 李丹杨, 谢宗瑞, 卢东连, 张琴. 准噶尔盆地红车断裂带石炭系火山岩储层特征及质量控制因素[J]. 石油与天然气地质, 2023, 44(5): 1129-1140. |
[6] | 王宏博, 马存飞, 曹铮, 李志鹏, 韩长城, 纪文明, 杨艺. 基于岩相的致密砂岩差异成岩作用及其储层物性响应[J]. 石油与天然气地质, 2023, 44(4): 976-992. |
[7] | 周家全, 王越, 宋子怡, 柳季廷, 成赛男. 准噶尔盆地博格达地区中二叠统芦草沟组热液硅质结核特征及页岩油意义[J]. 石油与天然气地质, 2023, 44(3): 789-800. |
[8] | 孙靖, 尤新才, 薛晶晶, 曹元婷, 常秋生, 陈超. 准噶尔盆地异常压力特征及其对深层-超深层致密储层的影响[J]. 石油与天然气地质, 2023, 44(2): 350-365. |
[9] | 李建忠, 王小军, 杨帆, 宋永, 阿布力米提·依明null, 卞保力, 刘海磊, 王学勇, 龚德瑜. 准噶尔盆地中央坳陷西部下组合油气成藏模式及勘探前景[J]. 石油与天然气地质, 2022, 43(5): 1059-1072. |
[10] | 印森林, 陈恭洋, 许长福, 熊先钺, 赵军, 胡可. 陆相混积细粒储集岩岩相构型及其对甜点的控制作用[J]. 石油与天然气地质, 2022, 43(5): 1180-1193. |
[11] | 马克, 侯加根, 董虎, 吴国强, 闫林, 张丽薇. 页岩油储层混合细粒沉积孔喉特征及其对物性的控制作用[J]. 石油与天然气地质, 2022, 43(5): 1194-1205. |
[12] | 葛勋, 郭彤楼, 马永生, 王国力, 黎茂稳, 余小群, 赵培荣, 温真桃, 王鹏. 四川盆地东南缘林滩场地区上奥陶统五峰组-龙马溪组页岩气储层甜点预测[J]. 石油与天然气地质, 2022, 43(3): 633-647. |
[13] | 唐勇, 宋永, 何文军, 赵龙, 杨海波, 赵长永, 郑孟林, 孙帅, 费李莹. 准噶尔叠合盆地复式油气成藏规律[J]. 石油与天然气地质, 2022, 43(1): 132-148. |
[14] | 王林生, 叶义平, 覃建华, 高阳, 邓远, 李映艳, 肖佃师. 陆相页岩油储层微观孔喉结构表征与含油性分级评价[J]. 石油与天然气地质, 2022, 43(1): 149-160. |
[15] | 龚德瑜, 赵长永, 何文军, 赵龙, 孔玉梅, 马丽亚, 王瑞菊, 吴卫安. 准噶尔盆地西北缘天然气成因来源及勘探潜力[J]. 石油与天然气地质, 2022, 43(1): 161-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||