石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (4): 1020-1032.doi: 10.11743/ogg20230417
张谦1(), 金之钧1,2,3(), 朱如凯4, 刘全有1,2, 张瑞1, 王冠平5, 陈万利6, Littke Ralf7
收稿日期:
2023-02-20
修回日期:
2023-05-19
出版日期:
2023-08-01
发布日期:
2023-08-09
通讯作者:
金之钧
E-mail:amadozhang@pku.edu.cn;jinzj1957@pku.edu.cn
第一作者简介:
张谦(1989—),男,讲师、博士后,页岩油气勘探开发。E-mail: 基金项目:
Qian ZHANG1(), Zhijun JIN1,2,3(), Rukai ZHU4, Quanyou LIU1,2, Rui ZHANG1, Guanping WANG5, Wanli CHEN6, Ralf Littke7
Received:
2023-02-20
Revised:
2023-05-19
Online:
2023-08-01
Published:
2023-08-09
Contact:
Zhijun JIN
E-mail:amadozhang@pku.edu.cn;jinzj1957@pku.edu.cn
摘要:
岩石热解方法自问世以来被广泛地应用于烃源岩的研究,其可以简便、快捷地评价岩石的含油特性、干酪根的生烃特征以及有机质的丰度、类型和成熟度,但该方法有其适用的范围,且岩石热解数据不合理的解释会增加页岩油气勘探的风险。基于近年来发表的大量实验测试数据,总结了在岩石热解分析数据解释中经常出现的3个问题。①对于高-过成熟的样品,其应用性受到限制;利用氢指数(HI)、氧指数(OI)、岩石最高热解峰温(Tmax)以及热解过程中产生的烃类(S2)与二氧化碳(S3)数量的比值(S2/S3)来划分有机质的类型,应尽量针对有机质成熟度(镜质体反射率,Ro)低于1.35 %的烃源岩。② Tmax的有效性取决于S2峰的大小及其是否对称,Tmax的准确性依赖于有机质的类型和Ro;残余烃与黄铁矿含量会对Tmax的准确性造成一定的影响。对于Ⅰ,Ⅱ和Ⅲ型有机质,为确保测试获得的Tmax准确、有效,烃源岩的Ro应不高于1.70 %。③含油饱和度指数(OSI)被用来表征页岩油的可动潜力,OSI大于100 mg/g指示页岩油甜点。值得注意的是,OSI并不能直接指示页岩中的含油饱和度,对于有机质含量较高的层段,OSI通常低于100 mg/g,而较低的总有机碳含量也能导致OSI大于100 mg/g。目前,大多数论文所报道的极具潜力的页岩油储层,只有极少数OSI高于100 mg/g。因此,将OSI大于100 mg/g作为一个评价页岩油可动性和甜点的参数值是否合适值得进一步思考。建议针对不同类型的沉积盆地和不同的页岩地层建立各自的OSI评价标准。此外,不同岩性的样品在存储和制备过程中轻烃损失量差异较大,应对多岩相共生页岩油储层采用分岩相评价方法。
中图分类号:
表1
本次研究的12套经典页岩地层有机质丰度、类型、成熟度和含油饱和度指数"
盆地 | 地层 | 组/段 | TOC/% | 有机质类型 | Tmax/℃ | OSI/(mg/g) | 文献来源 |
---|---|---|---|---|---|---|---|
下萨克森 | 侏罗系 | 波西多尼亚 | 5.04 ~ 14.75 (8.17) | Ⅱ型 | 425 ~ 465 (445) | 10 ~ 43 (26) | [ |
沃斯堡 | 石炭系 | 巴奈特 | 0.98 ~ 6.84 (3.67) | Ⅱ型 | 340 ~ 504 (446) | 10 ~ 727 (67) | [ |
阿德莫 | 泥盆系 | 伍德福德 | 0.07 ~ 15.6 (8.97) | Ⅰ型,Ⅱ型 | 413 ~ 429 (421) | 11 ~ 97 (48) | [ |
威利斯顿 | 泥盆系-石炭系 | 巴肯 | 2.44 ~ 23.44 (13.77) | Ⅱ型 | 416 ~ 465 (441) | 11 ~ 135 (47) | [ |
渤海湾 | 古近系 | 沙河街组 | 1.01 ~ 5.33 (2.23) | Ⅰ型,Ⅱ型 | 438 ~ 458 (444) | 13 ~ 193 (60) | [ |
鄂尔多斯 | 三叠系 | 长7段 | 1.90 ~ 14.70(5.71) | Ⅰ型,Ⅱ型 | 428 ~ 459 (448) | 24 ~ 200 (84) | [ |
松辽 | 白垩系 | 青山口组 | 0.98 ~ 7.27 (3.30) | Ⅰ型 | 440 ~ 455 (448) | 28 ~ 88 (50) | [ |
准噶尔 | 二叠系 | 芦草沟组 | 0.40 ~ 35.00 (4.84) | Ⅰ型 | 425 ~ 455 (446) | 6 ~ 492 (51) | [ |
麦肯齐 | 白垩系 | 鹰滩 | 0.30 ~ 8.53 (3.12) | Ⅱ型 | 426 ~ 494 (454) | 21 ~ 497 (124) | [ |
丹佛 | 白垩系 | 尼奥布拉拉 | 0.51 ~ 10.34 (3.89) | Ⅱ型 | 435 ~ 467 (448) | 17 ~ 201 (66) | [ |
西西伯利亚 | 白垩系 | 巴热诺夫 | 2.04 ~ 14.72 (9.18) | Ⅱ型 | 425 ~ 464 (440) | 32 ~ 154 (71) | [ |
扎格罗斯 | 白垩系 | 盖鲁 | 0.75 ~ 26.40 (16.03) | Ⅱ-S型 | 423 ~ 438 (431) | 2 ~ 20 (10) | [ |
1 | 卢双舫, 冯亚丽, 刘晓艳, 等. 与未熟-低熟油产出相关的有机质样品的宏观热解特征及其意义[J]. 石油勘探与开发, 2000, 27(1): 16-18. |
LU Shuangfang, FENG Yali, LIU Xiaoyan, et al. Megascopic pyrolysis characteristics of organic matter samples related to the occurrence of immature and low mature oils[J]. Petroleum Exploration and Development, 2000, 27(1): 16-18. | |
2 | 孙丽娜, 张中宁, 吴远东, 等. 半开放体系下温压对烃源岩HTHP模拟产物产率的影响[J]. 天然气地球科学, 2015, 26(1): 118-127. |
SUN Lina, ZHANG Zhongning, WU Yuandong, et al. Effect of temperature and pressure on hydrocarbon yield of source rock HTHP simulation experiment in semi-open system[J]. Natural Gas Geoscience, 2015, 26(1): 118-127. | |
3 | ESPITALIÉ J, LAPORTE J L, MADEC M, et al. Méthode rapide de caractérisation des roches mètres, de leur potentiel pétrolier et de leur degré d'évolution[J]. Oil & Gas Science and Technology-Revue d'IFP Energies Nouvelles, 1977, 32(1): 23-42. |
4 | PETERS K E. Guidelines for evaluating petroleum source rock using programmed pyrolysis[J]. AAPG Bulletin, 1986, 70(3): 318-329. |
5 | VAN KREVELEN D W. Coal-typology, chemistry, physics, constitution[M]. Amsterdam: Elsevier, 1961. |
6 | TISSOT B, DURAND B, ESPITALIÉ J, et al. Influence of nature and diagenesis of organic matter in formation of petroleum[J]. AAPG Bulletin, 1974, 58(3): 499-506. |
7 | BANERJEE A, SINHA A K, JAIN A K, et al. A mathematical representation of Rock-Eval hydrogen index vs Tmax profiles[J]. Organic Geochemistry, 1998, 28(1/2): 43-55. |
8 | ZHANG Qian, GROHMANN S, XU Xiaochen, et al. Depositional environment and thermal maturity of the coal-bearing Longtan Shale in southwest Guizhou, China: Implications for shale gas resource potential[J]. International Journal of Coal Geology, 2020, 231:103607. |
9 | LUO Wen, HOU Mingcai, LIU Xinchun, et al. Geological and geochemical characteristics of marine-continental transitional shale from the Upper Permian Longtan formation, Northwestern Guizhou, China[J]. Marine and Petroleum Geology, 2018, 89(Part 1): 58-67. |
10 | ZHANG Jizhen, LI Xianqing, ZHANG Xueqing, et al. Geochemical and geological characterization of marine-continental transitional shales from Longtan Formation in Yangtze area, South China[J]. Marine and Petroleum Geology, 2018, 96: 1-15. |
11 | TAN Jingqiang, HORSFIELD B, MAHLSTEDT N, et al. Natural gas potential of Neoproterozoic and Lower Palaeozoic marine shales in the Upper Yangtze Platform, South China: Geological and organic geochemical characterization[J]. International Geology Review, 2015, 57(3): 305-326. |
12 | YANG Shengyu, HORSFIELD B. Critical review of the uncertainty of Tmax in revealing the thermal maturity of organic matter in sedimentary rocks[J]. International Journal of Coal Geology, 2020, 225: 103500. |
13 | KILLOPS S D, FUNNELL R H, SUGGATE R P, et al. Predicting generation and expulsion of paraffinic oil from vitrinite-rich coals[J]. Organic Geochemistry, 1998, 29(1/3): 1-21. |
14 | JARVIE D M. Shale resource systems for oil and gas: Part 2—shale-oil resource systems[M]//BREYER J A. Shale Reservoirs—Giant Resources for the 21st Century. Tulsa: American Association of Petroleum Geologists, 2012: 89-119. |
15 | ZHANG Shaohua, LIU Chiyang, LIANG Hao, et al. Paleoenvironmental conditions, organic matter accumulation, and unconventional hydrocarbon potential for the Permian Lucaogou Formation organic-rich rocks in Santanghu Basin, NW China[J]. International Journal of Coal Geology, 2018, 185: 44-60. |
16 | LIU Bo, BECHTEL A, GROSS D, et al. Middle Permian environmental changes and shale oil potential evidenced by high-resolution organic petrology, geochemistry and mineral composition of the sediments in the Santanghu Basin, Northwest China[J]. International Journal of Coal Geology, 2018, 185: 119-137. |
17 | SONG Jinli, LITTKE R, WENIGER P, et al. Shale oil potential and thermal maturity of the Lower Toarcian Posidonia Shale in NW Europe[J]. International Journal of Coal Geology, 2015, 150/151: 127-153. |
18 | FANG Ronghui, LITTKE R, ZIEGER L, et al. Changes of composition and content of tricyclic terpane, hopane, sterane, and aromatic biomarkers throughout the oil window: A detailed study on maturity parameters of Lower Toarcian Posidonia Shale of the Hils Syncline, NW Germany[J]. Organic Geochemistry, 2019, 138: 103928. |
19 | ABARGHANI A, OSTADHASSAN M, GENTZIS T, et al. Correlating Rock-Eval™ Tmax with bitumen reflectance from organic petrology in the Bakken Formation[J]. International Journal of Coal Geology, 2019, 205: 87-104. |
20 | FROIDL F, ZIEGER L, MAHLSTEDT N, et al. Comparison of single- and multi-ramp bulk kinetics for a natural maturity series of Westphalian coals: Implications for modelling petroleum generation[J]. International Journal of Coal Geology, 2020, 219: 103378. |
21 | JASPER K, KROOSS B M, FLAJS G, et al. Characteristics of type III kerogen in coal-bearing strata from the Pennsylvanian (Upper Carboniferous) in the Ruhr Basin, Western Germany: Comparison of coals, dispersed organic matter, kerogen concentrates and coal-mineral mixtures[J]. International Journal of Coal Geology, 2009, 80(1): 1-19. |
22 | DENG Ende, ZHANG Qian, JIN Zhijun, et al. Non-overmature equivalents confirmed a high initial hydrocarbon generation potential of the Permian Longtan Shale in southern China[J]. International Journal of Coal Geology, 2022, 259: 104043. |
23 | TISSOT B P, PELET R, UNGERER P H. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation[J]. AAPG Bulletin, 1987, 71(12): 1445-1466. |
24 | STOCK A T, LITTKE R, SCHWARZBAUER J, et al. Organic geochemistry and petrology of Posidonia Shale (Lower Toarcian, Western Europe)-The evolution from immature oil-prone to overmature dry gas-producing kerogen[J]. International Journal of Coal Geology, 2017, 176/177: 36-48. |
25 | JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. |
26 | ZHANG Qian, FINK R, KROOSS B, et al. Reduction of shale permeability by temperature-induced creep[J]. SPE Journal, 2021, 26(2): 750-764. |
27 | LEWAN M D, PAWLEWICZ M J. Reevaluation of thermal maturity and stages of petroleum formation of the Mississippian Barnett Shale, Fort Worth Basin, Texas[J]. AAPG Bulletin, 2017, 101(12): 1945-1970. |
28 | 张振苓, 邬立言, 舒念祖. 烃源岩热解分析参数Tmax异常的原因[J]. 石油勘探与开发, 2006, 33(1): 72-75. |
ZHANG Zhenling, WU Liyan, SHU Nianzu. Cause analysis of abnormal Tmax values on Rock-Eval pyrolysis[J]. Petroleum Exploration and Development, 2006, 33(1): 72-75. | |
29 | 张振苓, 邬立言, 脱奇, 等. 烃源岩热解分析参数Tmax异常值的还原[J]. 石油勘探与开发, 2007, 34(5): 580-584. |
ZHANG Zhenling, WU Liyan, Qi TUO, et al. Abnormal value recovery of maturity parameter Tmax for Rock-Eval[J]. Petroleum Exploration and Development, 2007, 34(5): 580-584. | |
30 | SASSEN R, CHINN E W. Effects of elemental sulfur during programmed pyrolysis of kerogen[J]. Organic Geochemistry, 1989, 14(4): 475-477. |
31 | HUNT J M, LEWAN M D, HENNET R J C. Modeling oil generation with time-temperature index graphs based on the Arrhenius equation[J]. AAPG Bulletin, 1991, 75(4): 795-807. |
32 | SNOWDON L R. Rock-Eval Tmax suppression: Documentation and amelioration[J]. AAPG Bulletin, 1995, 79(9): 1337-1348. |
33 | SRINIVASAN P, JACOBI D, ATWAH I, et al. Integration of methyldibenzothiophene and pyrolysis techniques to determine thermal maturity in sulfur-rich Type II-S source rocks and oils[J]. Organic Geochemistry, 2022, 163: 104333. |
34 | 祖小京, 妥进才, 张明峰, 等. 矿物在油气形成过程中的作用[J]. 沉积学报, 2007, 25(2): 298-306. |
ZU Xiaojing, Jincai TUO, ZHANG Mingfeng, et al. The roles of inorganic minerals on the oil and gas generating processes[J]. Acta Sedimentologica Sinica, 2007, 25(2): 298-306. | |
35 | HAN Yuanjia, MAHLSTEDT N, HORSFIELD B. The Barnett Shale: Compositional fractionation associated with intraformational petroleum migration, retention, and expulsion[J]. AAPG Bulletin, 2015, 99(12): 2173-2202. |
36 | WANG Boyang, LIU Bo, SUN Guoxiang, et al. Evaluation of the shale oil reservoir and the oil enrichment model for the first member of the Lucaogou Formation, western Jimusaer Depression, Junggar Basin, NW China[J]. ACS Omega, 2021, 6(18): 12081-12098. |
37 | MATHIA E J, BOWEN L, THOMAS K M, et al. Evolution of porosity and pore types in organic-rich, calcareous, Lower Toarcian Posidonia Shale[J]. Marine and Petroleum Geology, 2016, 75: 117-139. |
38 | Romero-Sarmiento M F, Rouzaud J N, Bernard S, et al. Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation[J]. Organic Geochemistry, 2014, 71: 7-16. |
39 | PHILP R P, DEGARMO C D. Geochemical characterization of the Devonian-Mississippian Woodford Shale from the McAlister Cemetery Quarry, Criner Hills Uplift, Ardmore Basin, Oklahoma[J]. Marine and Petroleum Geology, 2020, 112: 104078. |
40 | CARVAJAL-ORTIZ H, GENTZIS T, OSTADHASSAN M. Sulfur differentiation in organic-rich shales and carbonates via open-system programmed pyrolysis and oxidation: Insights into fluid souring and H2S production in the Bakken Shale, United States[J]. Energy & Fuels, 2021, 35(15): 12030-12044. |
41 | ZHENG Tianyu, ZIEGER L, BANIASAD A, et al. The Shahejie Formation in the Dongpu Depression, Bohai Bay Basin, China: Geochemical investigation of the origin, deposition and preservation of organic matter in a saline lacustrine environment during the Middle Eocene[J]. International Journal of Coal Geology, 2022, 253: 103967. |
42 | SUN Xun, LIANG Quansheng, JIANG Chengfu, et al. Liquid hydrocarbon characterization of the lacustrine Yanchang Formation, Ordos Basin, China: Organic-matter source variation and thermal maturity[J]. Interpretation, 2017, 5(2): SF225-SF242. |
43 | LIU Bo, BAI Longhui, CHI Yaao, et al. Geochemical characterization and quantitative evaluation of shale oil reservoir by two-dimensional nuclear magnetic resonance and quantitative grain fluorescence on extract: A case study from the Qingshankou Formation in Southern Songliao Basin, northeast China[J]. Marine and Petroleum Geology, 2019, 109: 561-573. |
44 | ZHANG Tongwei, SUN Xun, MILLIKEN K L, et al. Empirical relationship between gas composition and thermal maturity in Eagle Ford Shale, south Texas[J]. AAPG Bulletin, 2017, 101(8): 1277-1307. |
45 | HAN Yuanjia, HORSFIELD B, MAHLSTEDT N, et al. Factors controlling source and reservoir characteristics in the Niobrara shale oil system, Denver Basin[J]. AAPG Bulletin, 2019, 103(9): 2045-2072. |
46 | KOZLOVA E V, FADEEVA N P, KALMYKOV G A, et al. Geochemical technique of organic matter research in deposits enrich in kerogene (the Bazhenov Formation, West Siberia)[J]. Moscow University Geology Bulletin, 2015, 70(6): 409-418. |
47 | SHEKARIFARD A, DARYABANDEH M, RASHIDI M, et al. Petroleum geochemical properties of the oil shales from the Early Cretaceous Garau Formation, Qalikuh locality, Zagros Mountains, Iran[J]. International Journal of Coal Geology, 2019, 206: 1-18. |
48 | XIE Xiaomin, AMANN-HILDENBRAND A, LITTKE R, et al. The influence of partial hydrocarbon saturation on porosity and permeability in a Palaeogene lacustrine shale-hosted oil system of the Bohai Bay Basin, Eastern China[J]. International Journal of Coal Geology, 2019, 207: 26-38. |
49 | 王广昀, 王凤兰, 蒙启安, 等. 古龙页岩油战略意义及攻关方向[J]. 大庆石油地质与开发, 2020, 39(3): 8-19. |
WANG Guangyun, WANG Fenglan, MENG Qi’an, et al. Strategic significance and research direction for Gulong shale oil[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 8-19. | |
50 | 王玉华, 梁江平, 张金友, 等. 松辽盆地古龙页岩油资源潜力及勘探方向[J]. 大庆石油地质与开发, 2020, 39(3): 20-34. |
WANG Yuhua, LIANG Jiangping, ZHANG Jinyou, et al. Resource potential and exploration direction of Gulong shale oil in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 20-34. | |
51 | 何文渊, 蒙启安, 张金友. 松辽盆地古龙页岩油富集主控因素及分类评价[J]. 大庆石油地质与开发, 2021, 40(5): 1-12. |
HE Wenyuan, MENG Qi’an, ZHANG Jinyou. Controlling factors and their classification-evaluation of Gulong shale oil enrichment in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5): 1-12. | |
52 | 王凤兰, 付志国, 王建凯, 等. 松辽盆地古龙页岩油储层特征及分类评价[J]. 大庆石油地质与开发, 2021, 40(5): 144-156. |
WANG Fenglan, FU Zhiguo, WANG Jiankai, et al. Characteristics and classification evaluation of Gulong shale oil reservoir in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5): 144-156. | |
53 | 孙龙德. 古龙页岩油 (代序)[J]. 大庆石油地质与开发, 2020, 39(3): 1-7. |
SUN Longde. Gulong shale oil (preface)[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 1-7. | |
54 | ABARGHANI A, OSTADHASSAN M, GENTZIS T, et al. Organofacies study of the Bakken source rock in North Dakota, USA, based on organic petrology and geochemistry[J]. International Journal of Coal Geology, 2018, 188: 79-93. |
55 | LIU Kouqi, OSTADHASSAN M, ZHOU Jie, et al. Nanoscale pore structure characterization of the Bakken Shale in the USA[J]. Fuel, 2017, 209: 567-578. |
56 | LIU Kouqi, OSTADHASSAN M, SUN Liangwei, et al. A comprehensive pore structure study of the Bakken Shale with SANS, N2 adsorption and mercury intrusion[J]. Fuel, 2019, 245: 274-285. |
57 | LIU Kouqi, OSTADHASSAN M, ZOU Jie, et al. Multifractal analysis of gas adsorption isotherms for pore structure characterization of the Bakken Shale[J]. Fuel, 2018, 219: 296-311. |
58 | AMIN S, WEHNER M, HEIDARI Z, et al. Rock classification in the Eagle Ford Formation through integration of petrophysical, geological, geochemical, and geomechanical characterization[J]. AAPG Bulletin, 2021, 105(7): 1357-1381. |
59 | JIANG Shuxian, MOKHTARI M. Characterization of marl and interbedded limestone layers in the Eagle Ford Formation, DeWitt county, Texas[J]. Journal of Petroleum Science and Engineering, 2019, 172: 502-510. |
60 | LIANG Chao, CAO Yingchang, JIANG Zaixing, et al. Shale oil potential of lacustrine black shale in the Eocene Dongying Depression: Implications for geochemistry and reservoir characteristics[J]. AAPG Bulletin, 2017, 101(11): 1835-1858. |
61 | LI Maowen, CHEN Zhuoheng, MA Xiaoxiao, et al. Shale oil resource potential and oil mobility characteristics of the Eocene-Oligocene Shahejie Formation, Jiyang Super-Depression, Bohai Bay Basin of China[J]. International Journal of Coal Geology, 2019, 204: 130-143. |
62 | ZHANG Hong, HUANG Haiping, LI Zheng, et al. Oil physical status in lacustrine shale reservoirs-A case study on Eocene Shahejie Formation shales, Dongying Depression, East China[J]. Fuel, 2019, 257: 116027. |
63 | HAN Yuanjia, HORSFIELD B, WIRTH R, et al. Oil retention and porosity evolution in organic-rich shales[J]. AAPG Bulletin, 2017, 101(6): 807-827. |
64 | 朱如凯, 邹才能, 吴松涛, 等. 中国陆相致密油形成机理与富集规律[J]. 石油与天然气地质, 2019, 40(6): 1168-1184. |
ZHU Rukai, ZOU Caineng, WU Songtao, et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil & Gas Geology, 2019, 40(6): 1168-1184. | |
65 | 金之钧, 朱如凯, 梁新平, 等. 当前陆相页岩油勘探开发值得关注的几个问题[J]. 石油勘探与开发, 2021, 48(6): 1276-1287. |
JIN Zhijun, ZHU Rukai, LIANG Xinping, et al. Several issues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development, 2021, 48(6): 1276-1287. | |
66 | 朱如凯, 李梦莹, 杨静儒, 等. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质, 2022, 43(2): 251-264. |
ZHU Rukai, LI Mengying, YANG Jingru, et al. Advances and trends of fine-grained sedimentology[J]. Oil & Gas Geology, 2022, 43(2): 251-264. | |
67 | 朱毅秀, 吕品, 金科, 等. 四川元坝地区大安寨段陆相细粒沉积岩储层物性特征及有利储集层研究[J]. 特种油气藏, 2021, 28(4): 39-47. |
ZHU Yixiu, Pin LYU, JIN Ke, et al. Study on physical properties and favorable reservoirs of terrestrial pulveryte reservoirs in Da’anzhai member, Yuanba area, Sichuan[J]. Special Oil & Gas Reservoirs, 2021, 28(4): 39-47. | |
68 | 聂银兰, 谢庆宾, 朱筱敏, 等. 基于岩相表征的细粒沉积物沉积机制和研究展望[J]. 断块油气田, 2021, 28(3): 305-310. |
NIE Yinlan, XIE Qingbin, ZHU Xiaomin, et al. The sedimentary mechanism and research prospect of fine grain sediments based on lithofacies characterization[J]. Fault-Block Oil and Gas Field, 2021, 28(3): 305-310. | |
69 | 张亚雄. 鄂尔多斯盆地中部地区三叠系延长组7段暗色泥岩烃源岩特征[J]. 石油与天然气地质, 2021, 42(5): 1089-1097. |
ZHANG Yaxiong. Source rock characterization: The dark mudstone in Chang 7 Member of Triassic, central Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1089-1097. | |
70 | 范柏江, 师良, 杨杰, 等. 鄂尔多斯盆地中部湖相有机质沉积环境特征[J]. 石油与天然气地质, 2022, 43(3): 648-657. |
FAN Bojiang, SHI Liang, YANG Jie, et al. Sedimentary environment of lacustrine organic matter in the central Ordos Basin[J]. Oil & Gas Geology, 2022, 43(3): 648-657. | |
71 | LI Wenhao, LU Shuangfang, XUE Haitao, et al. Oil content in argillaceous dolomite from the Jianghan Basin, China: Application of new grading evaluation criteria to study shale oil potential[J]. Fuel, 2015, 143: 424-429. |
72 | 胡莹, 卢双舫, 李文浩, 等. 江汉盆地新沟嘴组泥质白云岩含油性分析[J]. 东北石油大学学报, 2015, 39(3): 76-82, 5-6. |
HU Ying, LU Shuangfang, LI Wenhao, et al. Oil-bearing property analysis of argillaceous dolomite in Xingouzui Formation in the Jianghan Basin[J]. Journal of Northeast Petroleum University, 2015, 39(3): 76-82, 5-6. | |
73 | 张鹏飞, 卢双舫, 李文浩, 等. 江汉盆地新沟嘴组页岩油储层物性下限[J]. 石油与天然气地质, 2016, 37(1): 93-100. |
ZHANG Pengfei, LU Shuangfang, LI Wenhao, et al. Lower limits of porosity and permeability of shale oil reservoirs in the Xingouzui Formation, Jianghan Basin[J]. Oil & Gas Geology, 2016, 37(1): 93-100. | |
74 | JARVIE D M. Components and processes affecting producibility and commerciality of shale resource systems[J]. Geologica Acta, 2014, 12(4): 307-325. |
75 | 李志明, 陶国亮, 黎茂稳, 等. 鄂尔多斯盆地西南部彬长区块三叠系延长组7段3亚段页岩油勘探前景探讨[J]. 石油与天然气地质, 2019, 40(3): 558-570. |
LI Zhiming, TAO Guoliang, LI Maowen, et al. Discussion on prospecting potential of shale oil in the 3rd sub-member of the Triassic Chang 7 member in Binchang Block, southwestern Ordos Basin[J]. Oil & Gas Geology, 2019, 40(3): 558-570. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[3] | 潘辉, 蒋裕强, 朱讯, 邓海波, 宋林珂, 王占磊, 李杪, 周亚东, 冯林杰, 袁永亮, 王猛. 河流相致密砂岩气地质甜点评价[J]. 石油与天然气地质, 2024, 45(2): 471-485. |
[4] | 孟江辉, 吕沛熙, 吴伟, 潘仁芳, 朱逸青. 基于笔石表皮体反射率和拉曼光谱评价海相页岩热成熟度的方法[J]. 石油与天然气地质, 2022, 43(6): 1515-1528. |
[5] | 姜在兴, 王运增, 王力, 孔祥鑫, 杨叶芃, 张建国, 薛欣宇. 陆相细粒沉积岩物质来源、搬运-沉积机制及多源油气甜点[J]. 石油与天然气地质, 2022, 43(5): 1039-1048. |
[6] | 周立宏, 何海清, 郭绪杰, 陈长伟, 韩国猛, 杨飞, 马建英, 周素彦. 渤海湾盆地歧口凹陷古近系沙一下亚段中等成熟页岩油富集主控因素与勘探突破[J]. 石油与天然气地质, 2022, 43(5): 1073-1086. |
[7] | 刘晓宁, 姜在兴, 袁晓冬, 陈晨, 王成. 滦平盆地白垩系细粒火山物质对页岩油气形成的影响[J]. 石油与天然气地质, 2022, 43(2): 390-406. |
[8] | 李志强, 杨波, 王军, 韩自军, 吴庆勋. 南黄海盆地中-新生界湖相烃源岩地球化学特征及生烃史[J]. 石油与天然气地质, 2022, 43(2): 419-431. |
[9] | 李纯泉, 陈红汉, 肖雪薇, 汪泽成, 姜华. 四川盆地中部高石梯-磨溪地区震旦系灯影组储层沥青拉曼光谱分析[J]. 石油与天然气地质, 2022, 43(2): 456-466. |
[10] | 唐勇, 宋永, 何文军, 赵龙, 杨海波, 赵长永, 郑孟林, 孙帅, 费李莹. 准噶尔叠合盆地复式油气成藏规律[J]. 石油与天然气地质, 2022, 43(1): 132-148. |
[11] | 张琴, 周琛, 田寒云, 王凯, 宋泽平, 董岐石. 不同地质时期海绿石发育特征差异及成因[J]. 石油与天然气地质, 2022, 43(1): 186-195. |
[12] | 周庆凡. 页岩油气资源评价基本问题的讨论[J]. 石油与天然气地质, 2022, 43(1): 26-33. |
[13] | 李美俊, 刘晓强, 韩秋雅, 肖洪, 方镕慧, 何大祥, 高志伟. 分子模拟在油气地球化学中的应用研究进展[J]. 石油与天然气地质, 2021, 42(4): 919-930. |
[14] | 邱振, 韦恒叶, 刘翰林, 邵男, 王玉满, 张磊夫, 张琴. 异常高有机质沉积富集过程与元素地球化学特征[J]. 石油与天然气地质, 2021, 42(4): 931-948. |
[15] | 周立宏, 韩国猛, 杨飞, 马建英, 牟连刚, 周可佳, 王昌丽, 孟立娜. 渤海湾盆地歧口凹陷沙河街组三段一亚段地质特征与页岩油勘探实践[J]. 石油与天然气地质, 2021, 42(2): 443-455. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||