石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (4): 887-898.doi: 10.11743/ogg20230407
高嘉洪1,2(), 金之钧1,2,3(), 梁新平1,2, 李士祥4, 杨伟伟4, 朱如凯1, 杜晓宇1,2, 刘全有1,2, 李彤2, 董琳2, 李鹏3, 张旺5
收稿日期:
2023-02-27
修回日期:
2023-05-20
出版日期:
2023-08-01
发布日期:
2023-08-09
通讯作者:
金之钧
E-mail:2101210101@stu.pku.edu.cn;jinzj1957@pku.edu.cn
第一作者简介:
高嘉洪(1998—),男,博士研究生,非常规油气地质与勘探。E?mail: 基金项目:
Jiahong GAO1,2(), Zhijun JIN1,2,3(), Xinping LIANG1,2, Shixiang LI4, Weiwei YANG4, Rukai ZHU1, Xiaoyu DU1,2, Quanyou LIU1,2, Tong LI2, Lin DONG2, Peng LI3, Wang ZHANG5
Received:
2023-02-27
Revised:
2023-05-20
Online:
2023-08-01
Published:
2023-08-09
Contact:
Zhijun JIN
E-mail:2101210101@stu.pku.edu.cn;jinzj1957@pku.edu.cn
摘要:
大规模富有机质页岩多见于盐盆,但鄂尔多斯盆地作为典型的淡水盆地,其三叠系延长组7段(长7段)的总有机碳含量(TOC)最高却达30 %,远超咸化湖盆的平均水平,亦使其有机质富集主控因素成为热点问题。大量研究表明,长7段页岩较高TOC层段中普遍伴生多套凝灰岩层,指示长7段页岩沉积时期伴随着强烈的火山活动,也暗示淡水湖盆富有机质页岩的异常高有机质富集程度与火山活动存在着一定的内在联系。通过对长7段页岩主、微量元素数据分析,发现页岩受火山活动影响,Al和K等为黏土矿物富集元素,Ni,Cr和V等为指示高古生产力和还原环境的元素,而Zr,Th和Hf等不易流失的高场强元素含量相对较高。同时,凝灰岩层段上部有机质明显富集,生烃强度逐渐升高,指示凝灰层上段古生产力的提升。长7段富有机质页岩整体上FeHR/FeT ≥ 0.38,Fepy/FeHR ≤ 0.8,指示缺氧、含铁的还原环境。随着有机质富集程度的提高,Fepy/FeHR逐渐升高,指示有硫化的趋势。当长7段有机质富集程度较高时(TOC>6 %),较高的Mo元素含量及EFMo/EFU比等均说明长7段沉积时期部分富有机质页岩层段形成于Mo富集的硫化环境的形成。综上,火山活动向淡水湖盆输入的火山物质和无机元素提高了古生产力,并促进形成了短时性有利于有机质保存的还原环境,从而发育了有机质异常富集的页岩层段。因此在淡水湖盆富有机质页岩的勘探和开发,应当将含凝灰质层段之上的富有机质页岩层段纳入重点关注对象之一。
中图分类号:
1 | POWELL T G. Petroleum geochemistry and depositional setting of lacustrine source rocks[J]. Marine and Petroleum Geology, 1986, 3(3): 200-219. |
2 | GRANT W D, TIINDALL B J. The alkaline, saline environment[C]//HERBERT R A, CODD G A. Microbes in Extreme Environments, Dundee, 1984. London: Academic Press, 1986:22-54. |
3 | GRANT W D. Introductory chapter: Half a lifetime in soda lakes[M]//VENTOSA A. Halophilic Microorganisms. Berlin: Springer, 2004: 17-31. |
4 | 袁伟, 柳广弟, 徐黎明, 等. 鄂尔多斯盆地延长组7段有机质富集主控因素[J]. 石油与天然气地质, 2019, 40(2): 326-334. |
YUAN Wei, LIU Guangdi, XU Liming, et al. Main controlling factors for organic matter enrichment in Chang 7 member of the Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2019, 40(2): 326-334. | |
5 | 刘池洋, 王建强, 张东东, 等. 鄂尔多斯盆地油气资源丰富的成因与赋存-成藏特点[J]. 石油与天然气地质, 2021, 42(5): 1011-1029. |
LIU Chiyang, WANG Jianqiang, ZHANG Dongdong, et al. Genesis of rich hydrocarbon resources and their occurrence and accumulation characteristics in the Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1011-1029. | |
6 | 范柏江, 晋月, 师良, 等. 鄂尔多斯盆地中部三叠系延长组7段湖相页岩油勘探潜力[J]. 石油与天然气地质, 2021, 42(5): 1078-1088. |
FAN Bojiang, JIN Yue, SHI Liang, et al.Shale oil exploration potential in central Ordos Basin: A case study of Chang 7 lacustrine shale[J]. Oil & Gas Geology, 2021, 42(5): 1078-1088. | |
7 | 张亚雄. 鄂尔多斯盆地中部地区三叠系延长组7段暗色泥岩烃源岩特征[J]. 石油与天然气地质, 2021, 42(5): 1089-1097. |
ZHANG Yaxiong. Source rock characterization: The dark mudstone in Chang 7 Member of Triassic,central Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1089-1097. | |
8 | 付锁堂, 姚泾利, 李士祥,等.鄂尔多斯盆地中生界延长组陆相页岩油富集特征与资源潜力[J].石油实验地质,2020,42(5):698-710. |
FU Suotang, YAO Jingli, LI Shixiang,et al.Enrichment characteristics and resource potential of continental shale oil in Mesozoic Yanchang Formation, Ordos Basin[J].Petroleum Geology & Experiment,2020,42(5):698-710. | |
9 | 张文正, 杨华, 杨奕华, 等. 鄂尔多斯盆地长7优质烃源岩的岩石学、元素地球化学特征及发育环境[J]. 地球化学, 2008, 37(1): 59-64. |
ZHANG Wenzheng, YANG Hua, YANG Yihua, et al. Petrology and element geochemistry and development environment of Yanchang Formation Chang-7 high quality source rocks in Ordos Basin[J]. Geochimica, 2008, 37(1): 59-64. | |
10 | 杨华, 张文正. 论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用: 地质地球化学特征[J]. 地球化学, 2005, 34(2): 147-154. |
YANG Hua, ZHANG Wenzheng. Leading effect of the Seventh Member high-quality source rock of Yanchang Formation in Ordos Basin during the enrichment of low-penetrating oil-gas accumulation: Geology and geochemistry[J]. Geochimica, 2005, 34(2): 147-154. | |
11 | CANFIELD D E, RAISWELL R, WESTRICH J T, et al. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales[J]. Chemical Geology, 1986, 54(1/2): 149-155. |
12 | POULTON S W, CANFIELD D E. Development of a sequential extraction procedure for iron: Implications for iron partitioning in continentally derived particulates[J]. Chemical Geology, 2005, 214(3/4): 209-221. |
13 | ZHANG Wenzheng, YANG Weiwei, XIE Liqin. Corrigendum to “Controls on organic matter accumulation in the Triassic Chang 7 lacustrine shale of the Ordos Basin, central China” [Int. J. Coal Geol. 183 (2017) 38-51][J]. International Journal of Coal Geology, 2018, 191: 157. |
14 | 张文正, 杨华, 彭平安, 等. 晚三叠世火山活动对鄂尔多斯盆地长7优质烃源岩发育的影响[J]. 地球化学, 2009, 38(6): 573-582. |
ZHANG Wenzheng, YANG Hua, PENG Ping’an, et al. The influence of late Triassic volcanism on the development of Chang 7 high grade hydrocarbon source rock in Ordos Basin[J]. Geochimica, 2009, 38(6): 573-582. | |
15 | 邱欣卫, 刘池洋, 毛光周, 等. 鄂尔多斯盆地延长组火山灰沉积物岩石地球化学特征[J]. 地球科学(中国地质大学学报), 2011, 36(1): 139-150. |
QIU Xinwei, LIU Chiyang, MAO Guangzhou, et al. Petrological-geochemical characteristics of volcanic ash sediments in Yanchang Formation in Ordos Basin[J]. Earth Science(Journal of China University of Geosciences), 2011, 36(1): 139-150. | |
16 | 李庆, 卢浩, 吴胜和, 等. 鄂尔多斯盆地南部三叠系长73亚段凝灰岩沉积成因及储层特征[J]. 石油与天然气地质, 2022, 43(5): 1141-1154. |
LI Qing, LU Hao, WU Shenghe, et al. Sedimentary origins and reservoir characteristics of the Triassic Chang 73 tuffs in the southern Ordos Basin[J]. Oil & Gas Geology, 2022, 43(5): 1141-1154. | |
17 | WEDEPOHL K H. Environmental influences on the chemical composition of shales and clays[J]. Physics and Chemistry of the Earth, 1971, 8: 307-333. |
18 | PARVIAINEN A, LOUKOLA-RUSKEENIEMI K. Environmental impact of mineralised black shales[J]. Earth-Science Reviews, 2019, 192: 65-90. |
19 | ZOU Caineng, ZHU Rukai, CHEN Zhongqiang, et al. Organic-matter-rich shales of China[J]. Earth-Science Reviews, 2019, 189: 51-78. |
20 | KOLATA D R, HUFF W D, BERGSTRÖM S M. Ordovician K-bentonites of eastern North America[M]. Boulder: Geological Society of America, 1996: 1-84. |
21 | HUFF W D, BERGSTRÖM S M, KOLATA D R, et al. The Lower Silurian Osmundsberg K-bentonite. Part II: Mineralogy, geochemistry, chemostratigraphy and tectonomagmatic significance[J]. Geological Magazine, 1998, 135(1): 15-26. |
22 | SELL B K, SAMSON S D. Apatite phenocryst compositions demonstrate a miscorrelation between the Millbrig and Kinnekulle K-bentonites of North America and Scandinavia[J]. Geology, 2011, 39(4): 303-306. |
23 | DAI Shifeng, WARD C R, GRAHAM I T, et al. Altered volcanic ashes in coal and coal-bearing sequences: A review of their nature and significance[J]. Earth-Science Reviews, 2017, 175: 44-74. |
24 | YANG Shengchao, HU Wenxuan, WANG Xiaolin, et al. Duration, evolution, and implications of volcanic activity across the Ordovician-Silurian transition in the Lower Yangtze region, South China[J]. Earth and Planetary Science Letters, 2019, 518: 13-25. |
25 | KOEHLER M C, STÜEKEN E E, HILLIER S, et al. Limitation of fixed nitrogen and deepening of the carbonate-compensation depth through the Hirnantian at Dob’ s Linn, Scotland[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 534: 109321. |
26 | 张瑞. 鄂尔多斯盆地中生代波动沉积响应及对烃源岩的控制[D]. 青岛: 中国石油大学(华东), 2020. |
ZHANG Rui. Sedimentary response to the Mesozoic Ordos Basin’s wave rhythms and its implications for source rocks[D]. Qingdao: China University of Petroleum(East China), 2020. | |
27 | 李森, 朱如凯, 崔景伟, 等. 鄂尔多斯盆地长7段细粒沉积岩特征与古环境——以铜川地区瑶页1井为例[J]. 沉积学报, 2020, 38(3): 554-570. |
LI Sen, ZHU Rukai, CUI Jingwei, et al. Sedimentary characteristics of fine-grained sedimentary rock and paleo-environment of Chang 7 member in the Ordos Basin: A case study from Well Yaoye 1 in Tongchuan[J]. Acta Sedimentologica Sinica, 2020, 38(3): 554-570. | |
28 | DELANO J W, TICE S J, MITCHELL C E, et al. Rhyolitic glass in Ordovician K-bentonites: A new stratigraphic tool[J]. Geology, 1994, 22(2): 115-118. |
29 | MITCHELL C E, GOLDMAN D, DELANO J W, et al. Temporal and spatial distribution of biozones and facies relative to geochemically correlated K-bentonites in the Middle Ordovician Taconic foredeep[J]. Geology, 1994, 22(8): 715-718. |
30 | PLUNKETT G, PILCHER J R. Defining the potential source region of volcanic ash in northwest Europe during the Mid-to Late Holocene[J]. Earth-Science Reviews, 2018, 179: 20-37. |
31 | FISHER R V, SCHMINCKE H U. Pyroclastic rocks[M]. Berlin: Springer, 1984. |
32 | HUFF W D. K-bentonites: A review[J]. American Mineralogist, 2016, 101(1): 43-70. |
33 | HONG Hanlie, ALGEO T J, FANG Qian, et al. Facies dependence of the mineralogy and geochemistry of altered volcanic ash beds: An example from Permian-Triassic transition strata in southwestern China[J]. Earth-Science Reviews, 2019, 190: 58-88. |
34 | HONG Hanlie, ZHAO Lulu, FANG Qian, et al. Volcanic sources and diagenetic alteration of Permian-Triassic boundary K-bentonites in Guizhou Province, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519: 141-153. |
35 | HUFF W D, TÜRKMENOGLU A G. Chemical characteristics and origin of Ordovician K-bentonites along the Cincinnati arch[J]. Clays and Clay Minerals, 1981, 29(2): 113-123. |
36 | CHRISTIDIS G E, HUFF W D. Geological aspects and genesis of bentonites[J]. Elements, 2009, 5(2): 93-98. |
37 | ALTANER S P, HOWER J, WHITNEY G, et al. Model for K-bentonite formation: Evidence from zoned K-bentonites in the disturbed belt, Montana[J]. Geology, 1984, 12(7): 412-415. |
38 | ALGEO T J, KUWAHARA K, SANO H, et al. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(1/2): 65-83. |
39 | LIN Senhu, HOU Lianhua, LUO Xia, et al. A millimeter-scale insight into formation mechanism of lacustrine black shale in tephra deposition background[J]. Scientific Reports, 2022, 12(1): 11511. |
40 | 刘全有, 李鹏, 金之钧, 等. 湖相泥页岩层系富有机质形成与烃类富集——以长7为例[J]. 中国科学:地球科学, 2022, 52(2): 270-290. |
LIU Quanyou, LI Peng, JIN Zhijun, et al. Organic rich formation and hydrocarbon enrichment of lacustrine shale rock series: A case study of Chang 7[J]. Science China Earth Sciences, 2022, 52(2): 270-290. | |
41 | MORFORD J L, EMERSON S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1735-1750. |
42 | ZHENG Yan, ANDERSON R F, VAN GEEN A, et al. Preservation of particulate non-lithogenic uranium in marine sediments[J]. Geochimica et Cosmochimica Acta, 2002, 66(17): 3085-3092. |
43 | MORFORD J L, EMERSON S R, BRECKEL E J, et al. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin[J]. Geochimica et Cosmochimica Acta, 2005, 69(21): 5021-5032. |
44 | HELZ G R, MILLER C V, CHARNOCK J M, et al. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence[J]. Geochimica et Cosmochimica Acta, 1996, 60(19): 3631-3642. |
45 | ZHENG Yan, ANDERSON R F, VAN GEEN A, et al. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin[J]. Geochimica et Cosmochimica Acta, 2000, 64(24): 4165-4178. |
46 | LYONS T W, SEVERMANN S. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins[J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5698-5722. |
47 | POULTON S W, RAISWELL R. The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition[J]. American Journal of Science, 2002, 302(9): 774-805. |
48 | RAISWELL R, CANFIELD D E. Sources of iron for pyrite formation in marine sediments[J]. American Journal of Science, 1998, 298(3): 219-245. |
49 | POULTON S W, FRALICK P W, CANFIELD D E. The transition to a sulphidic ocean ~1.84 billion years ago[J]. Nature, 2004, 431(7005): 173-177. |
50 | ANDERSON T F, RAISWELL R. Sources and mechanisms for the enrichment of highly reactive iron in euxinic Black Sea sediments[J]. American Journal of Science, 2004, 304(3): 203-233. |
51 | MÄRZ C, POULTON S W, BECKMANN B, et al. Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters[J]. Geochimica et Cosmochimica Acta, 2008, 72(15): 3703-3717. |
52 | CANFIELD D E, LYONS T W, RAISWELL R. A model for iron deposition to euxinic Black Sea sediments[J]. American Journal of Science, 1996, 296(7): 818-834. |
53 | BREWER P G, SPENCER D W. Distribution of some trace elements in Black Sea and their flux between dissolved and particulate phases[M]//DEGENS E T, ROSS D A. The Black Sea-Geology, Chemistry, and Biology. Tulsa: American Association of Petroleum Geologists, 1974: 137-143. |
54 | LEWIS B L, LANDING W M. The biogeochemistry of manganese and iron in the Black Sea[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38(): S773-S803. |
55 | YUAN Wei, LIU Guangdi, BULSECO A, et al. Iron speciation in organic-rich shales from the Upper Triassic Yanchang Formation, Ordos Basin, Northern China: Implications for depositional environment[J]. Journal of Asian Earth Sciences, 2021, 220: 104917. |
56 | 刘晓宁, 姜在兴, 袁晓冬, 等. 滦平盆地白垩系细粒火山物质对页岩油气形成的影响[J]. 石油与天然气地质, 2022, 43(2): 390-406. |
LIU Xiaoning, JIANG Zaixing, YUAN Xiaodong, et al. Influence of the Cretaceous fine-grained volcanic materials on oil/gas, Luanping Basin [J]. Oil & Gas Geology, 2022, 43(2): 390-406. |
[1] | 吴伟涛, 冯炎松, 费世祥, 王一妃, 吴和源, 杨旭东. 鄂尔多斯盆地神木气田二叠系石千峰组5段致密气富集因素及有利区预测[J]. 石油与天然气地质, 2024, 45(3): 739-751. |
[2] | 刘成林, 丁振刚, 范立勇, 康锐, 洪思婕, 朱玉新, 陈践发, 王海东, 许诺. 鄂尔多斯盆地含氦天然气地球化学特征与富集影响因素[J]. 石油与天然气地质, 2024, 45(2): 384-392. |
[3] | 万俊雨, 朱建辉, 姚素平, 张毅, 李春堂, 张威, 姜海健, 王杰. 鄂尔多斯盆地中、东部奥陶系马家沟组成烃生物及烃源岩地球生物学评价[J]. 石油与天然气地质, 2024, 45(2): 393-405. |
[4] | 杨丽华, 刘池洋, 黄雷, 周义军, 刘永涛, 秦阳. 鄂尔多斯盆地古峰庄地区疑似侵入岩体的发现及其地质意义[J]. 石油与天然气地质, 2024, 45(1): 142-156. |
[5] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[6] | 曹江骏, 王继平, 张道锋, 王龙, 李笑天, 李娅, 张园园, 夏辉, 于占海. 深层致密砂岩储层成岩演化对含气性的影响[J]. 石油与天然气地质, 2024, 45(1): 169-184. |
[7] | 胡宗全, 王濡岳, 路菁, 冯动军, 刘粤蛟, 申宝剑, 刘忠宝, 王冠平, 何建华. 陆相页岩及其夹层储集特征对比与差异演化模式[J]. 石油与天然气地质, 2023, 44(6): 1393-1404. |
[8] | 刘成林, 丁振刚, 陈践发, 范立勇, 康锐, 王海东, 洪思婕, 田安琦, 陈学勇. 鄂尔多斯盆地氦源岩特征及生氦潜力[J]. 石油与天然气地质, 2023, 44(6): 1546-1554. |
[9] | 李勇, 朱治同, 吴鹏, 申陈州, 高计县. 鄂尔多斯盆地东缘上古生界致密储层含气系统压力演化[J]. 石油与天然气地质, 2023, 44(6): 1568-1581. |
[10] | 曾溅辉, 张亚雄, 张在振, 乔俊程, 王茂云, 陈冬霞, 姚泾利, 丁景辰, 熊亮, 刘亚洲, 赵伟波, 任克博. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067-1083. |
[11] | 梁岳立, 赵晓明, 张喜, 李树新, 葛家旺, 聂志宏, 张廷山, 祝海华. 轨道周期约束下海-陆过渡相页岩层系高精度层序界面识别及其地质意义[J]. 石油与天然气地质, 2023, 44(5): 1231-1242. |
[12] | 李涵, 付金华, 季汉成, 张雷, 佘钰蔚, 官伟, 井向辉, 王红伟, 曹茜, 刘刚, 魏嘉怡. 鄂尔多斯盆地西南部上古生界风化壳型铝土岩系发育过程及优势储层分布规律[J]. 石油与天然气地质, 2023, 44(5): 1243-1255. |
[13] | 李晓, 郭鹏, 胡彦智, 李士祥, 杨伟伟. 陆相页岩压裂试验与数值模拟[J]. 石油与天然气地质, 2023, 44(4): 1009-1019. |
[14] | 白斌, 戴朝成, 侯秀林, 杨亮, 王瑞, 王岚, 孟思炜, 董若婧, 刘羽汐. 松辽盆地白垩系青山口组页岩层系非均质地质特征与页岩油甜点评价[J]. 石油与天然气地质, 2023, 44(4): 846-856. |
[15] | 王梓毅, 付金华, 刘显阳, 李士祥, 张昌虎, 梁新平, 董琳. 鄂尔多斯盆地上三叠统延长组7段埋藏期热液活动对页岩油储层的影响[J]. 石油与天然气地质, 2023, 44(4): 899-909. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||