石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (4): 946-961.doi: 10.11743/ogg20230412
印森林1(), 陈旭2, 杨毅3, 章彤4, 程皇辉4, 姜涛4, 熊亭5, 刘娟霞3, 何理鹏5, 杨小江5
收稿日期:
2023-02-02
修回日期:
2023-05-20
出版日期:
2023-08-01
发布日期:
2023-08-09
第一作者简介:
印森林(1983—), 男, 副教授、博士生导师, 油气田开发地质。E-mail:基金项目:
Senlin YIN1(), Xu CHEN2, Yi YANG3, Tong ZHANG4, Huanghui CHENG4, Tao JIANG4, Ting XIONG5, Juanxia LIU3, Lipeng HE5, Xiaojiang YANG5
Received:
2023-02-02
Revised:
2023-05-20
Online:
2023-08-01
Published:
2023-08-09
摘要:
细粒沉积岩已成为非常规油气勘探的重要目标,普遍发育了低电阻率油气层。利用测井、录井、地震和薄片电镜测试等资料,结合相控储层参数分布技术,揭示了细粒沉积岩典型低阻油层成因机制,并提出了3类基于低阻成因的甜点分布规律。研究表明:①低阻油层成因主要包括大比表面积、高含量伊/蒙混层矿物、发达的微孔隙网络及其内部束缚水、高矿化度水以及高含量导电矿物等5个方面。②识别出了3类细粒沉积岩低阻类型,包括高泥质含量致密型低阻油层(致密低阻型)、高含量导电矿物型低阻油层(导电矿物低阻型)和疏松砂岩强连通水网型低阻油层(强连通水网导电低阻型),并在此基础上进行了成因分析。③明确了低阻隐蔽油层的甜点分布特征。致密型低阻油层甜点主要发育在电阻率相对较高的储层中,导电矿物型低阻油层甜点主要发育在白云质粉砂岩基质溶蚀段与白云质泥/页岩裂缝发育段,而强连通水网导电型低阻油层甜点主要发育在具有双模态孔隙结构的极细粒岩性中。研究结果对于指导下一步细粒沉积岩储层油气勘探意义重大。
中图分类号:
图4
准噶尔盆地台60井三叠系黄山街组致密低阻型岩心与薄片显微照片a. 含炭屑粉砂质泥岩,岩心,埋深3 182.86 m;b. 小型沙纹交错层理粉砂岩和块状粉砂质泥岩互层,岩心,埋深3 189.46 m;c.含炭屑粉砂质泥岩与粉砂岩薄层互层,岩心,埋深3 236.86 m;d. 高岭石与伊利石发育,扫描电镜,埋深3 166.25 m;e. 高岭石大量发育,扫描电镜,,埋深3 250.05 m;f. 伊/蒙混层,扫描电镜,埋深3 252.17 m;g. 粒间孔不发育,铸体薄片,埋深3 186.23 m;h.少量粒间孔发育,铸体薄片,埋深3 186.23 m;i.粒内溶蚀孔发育,铸体薄片,埋深3 188.00 mK. 高岭石;I. 伊利石;I/S. 伊/蒙混层"
图5
准噶尔盆地东部火烧山油田二叠系平地泉组H2947井H5段导电矿物低阻型岩心照片a.白云质粉砂岩,大量发育黄铁矿,呈裂缝充填集块状与溶蚀孔分散状,埋深1 712.22 m;b. 白云质粉砂岩,溶蚀孔洞发育与集块状黄铁矿伴生,埋深1 712.22 m;c.层理缝与高角度裂缝构成裂缝网络体系,埋深1 712.22 m;d. 低有机质灰绿色泥岩,埋深1 748.68 m;e.含泥白云质粉砂岩,溶蚀孔洞发育,埋深1 721.47 m;f.白云质细砂岩,层面缝合线富含油,埋深1 730.56 m;g. 溶蚀孔洞网络状黄铁矿,埋深1 797.61 m;h. 溶蚀孔洞网络状黄铁矿层面,埋深1 797.91 m;i. 裂缝与溶蚀孔洞形成网络状黄铁矿,埋深1 807.32 m"
表3
中国主要盆地细粒沉积岩储层低电阻率特征(据文献[1-3,8-9]修改)"
盆地 | 凹陷 | 地层 | 典型井 | 岩性类型 | 微相类型 | 电阻率/ (Ω·m) | 甜点电阻率/ (Ω·m) | 低阻 类型 |
---|---|---|---|---|---|---|---|---|
渤海湾盆地 | 东营凹陷 | 始新统沙三下亚段、 沙四上亚段 | 牛页1井 | 灰质泥岩、灰质页岩 | 浅湖-半深湖 | 90 ~ 110 | 100 | 相对 低阻 |
沾化凹陷 | 始新统沙三下亚段 | 罗69井 | 灰质泥岩、泥灰岩、 藻灰岩、重结晶灰岩 | 咸水湖泊 | 30 ~ 240 | 30或90 | 相对 低阻 | |
束鹿凹陷 | 始新统沙三下亚段 | ST1H井 | 灰质泥岩、粉砂岩 | 咸水湖泊 | 10 ~ 200 | 20 ~ 100 | 相对 低阻 | |
沧东凹陷 | 始新统孔二段 | 官东14井 | 长英质页岩、混合质页岩、 白云质页岩 | 半深湖-深湖 | 3 ~ 10 | 5 ~ 8 | 绝对 低阻 | |
松辽盆地 | 古龙凹陷 | 上白垩统青山口组 | 古页8HC井 | 泥页岩,夹含薄层砂岩 | 深湖 | 6 ~ 18 | 8 ~ 10 | 绝对 低阻 |
鄂尔多斯盆地 | — | 上三叠统延长组7段 | Ch89井 | 页岩、泥岩,夹粉-细砂岩、 凝灰岩 | 半深湖-深湖 | 10 ~ 100 | 10 ~ 40 | 相对 低阻 |
南襄盆地 | 泌阳凹陷 | 渐新统核桃园组三段 | HF1井 | 页岩、泥质粉砂岩、灰质页岩、白云质页岩、泥质云岩 | 半深湖-深湖 | 50 ~5 000 | 50 ~ 500 | 相对 低阻 |
滦平盆地 | — | 下白垩统西瓜园组 | 滦探1井 | 泥页岩、白云岩、碳酸盐岩混合细粒岩、长英质混合细粒岩 | 半深湖-深湖 | 50 ~ 1 000 | 150 | 相对 低阻 |
江汉盆地 | 潜江凹陷 | 始新统潜江组三段 | W99井 | 泥岩、膏质泥岩、盐岩, 夹含粉砂岩 | 咸水湖泊 | 0.8 ~ 2 000 | 1.8 ~ 6 | 相对 低阻 |
准噶尔盆地 | 玛湖凹陷 | 中二叠统风城组 | 风南1井 | 白云质泥岩、白云质粉砂岩、 泥质白云岩、泥质粉砂岩 | 咸水湖泊 | 10 ~ 1 000 | 100 ~ 200 | 相对 低阻 |
吉木萨尔凹陷 | 中二叠统芦草沟组 | J10024井 | 白云质泥岩、白云质粉砂岩、 泥质白云岩、泥质粉砂岩 | 咸水湖泊 | 2 ~ 2 000 | 2 ~ 10 | 相对 低阻 | |
沙账凸起 | 中二叠统平地泉组 | HD2947井 | 白云质泥岩、白云质粉砂岩、 泥质白云岩、泥质粉砂岩 | 咸水湖泊 | 1 ~ 1 000 | 1 ~ 8 | 相对 低阻 | |
阜康凹陷 | 中三叠统黄山街组 | 台60井 | 泥质粉砂岩、粉砂质泥岩、 粉砂岩 | 浅湖-半深湖、浅湖沙坝 | 3 ~ 15 | 4 ~ 7 | 绝对 低阻 | |
珠江口盆地 | 阳江凹陷 | 新近系韩江组、 珠江组 | A1井 | 极细砂岩、粉砂岩、泥质 粉砂岩、粉砂质泥岩 | 三角洲外前缘 | 0.8 ~ 6 | 1 ~ 3 | 绝对 低阻 |
1 | 姜在兴, 梁超, 吴靖, 等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报, 2013, 34(6): 1031-1039. |
JIANG Zaixing, LIANG Chao, WU Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039. | |
2 | 姜在兴, 孔祥鑫, 杨叶芃, 等. 陆相碳酸盐质细粒沉积岩及油气甜点多源成因[J]. 石油勘探与开发, 2021, 48(1): 26-37. |
JIANG Zaixing, KONG Xiangxin, YANG Yepeng, et al. Multi-source genesis of continental carbonate-rich fine-grained sedimentary rocks and hydrocarbon sweet spots[J]. Petroleum Exploration and Development, 2021, 48(1): 26-37. | |
3 | 袁晓冬, 姜在兴, 张元福, 等. 滦平盆地白垩系陆相页岩油储层特征[J]. 石油学报, 2020, 41(10): 1197-1208. |
YUAN Xiaodong, JIANG Zaixing, ZHANG Yuanfu, et al. Characteristics of the Cretaceous continental shale oil reservoirs in Luanping Basin[J]. Acta Petrolei Sinica, 2020, 41(10): 1197-1208. | |
4 | 吴靖, 姜在兴, 梁超. 东营凹陷沙河街组四段上亚段细粒沉积岩岩相特征及与沉积环境的关系[J]. 石油学报, 2017, 38(10): 1110-1122. |
WU Jing, JIANG Zaixing, LIANG Chao. Lithofacies characteristics of fine-grained sedimentary rocks in the Upper submember of member 4 of Shahejie Formation, Dongying Sag and their relationship with sedimentary environment[J]. Acta Petrolei Sinica, 2017, 38(10): 1110-1122. | |
5 | 杜学斌, 刘晓峰, 陆永潮, 等. 陆相细粒混合沉积分类、特征及发育模式——以东营凹陷为例[J]. 石油学报, 2020, 41(11): 1324-1333. |
DU Xuebin, LIU Xiaofeng, LU Yongchao, et al. Classification, characteristics and development models of continental fine-grained mixed sedimentation: A case study of Dongying Sag[J]. Acta Petrolei Sinica, 2020, 41(11): 1324-1333. | |
6 | 周立宏, 蒲秀刚, 陈长伟, 等. 陆相湖盆细粒岩油气的概念、特征及勘探意义: 以渤海湾盆地沧东凹陷孔二段为例[J]. 地球科学, 2018, 43(10): 3625-3639. |
ZHOU Lihong, PU Xiugang, CHEN Changwei, et al. Concept, characteristics and prospecting significance of fine-grained sedimentary oil gas in terrestrial lake basin: A case from the second member of Paleogene Kongdian Formation of Cangdong Sag, Bohai Bay Basin[J]. Earth Science, 2018, 43(10): 3625-3639. | |
7 | 朱如凯, 李梦莹, 杨静儒, 等. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质, 2022, 43(2): 251-264. |
ZHU Rukai, LI Mengying, YANG Jingru, et al. Advances and trends of fine-grained sedimentology[J]. Oil & Gas Geology, 2022, 43(2): 251-264. | |
8 | 张建国, 姜在兴, 刘鹏, 等. 陆相超细粒页岩油储层沉积机制与地质评价[J]. 石油学报, 2022, 43(2): 234-249. |
ZHANG Jianguo, JIANG Zaixing, LIU Peng, et al. Deposition mechanism and geological assessment of continental ultrafine-grained shale oil reservoirs[J]. Acta Petrolei Sinica, 2022, 43(2): 234-249. | |
9 | 姜在兴, 王运增, 王力, 等. 陆相细粒沉积岩物质来源、搬运-沉积机制及多源油气甜点[J]. 石油与天然气地质, 2022, 43(5): 1039-1048. |
JIANG Zaixing, WANG Yunzeng, WANG Li, et al. Review on provenance, transport-sedimentation dynamics and multi-source hydrocarbon sweet spots of continental fine-grained sedimentary rocks[J]. Oil & Gas Geology, 2022, 43(5): 1039-1048. | |
10 | 付金华, 李士祥, 牛小兵, 等. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践[J]. 石油勘探与开发, 2020, 47(5): 870-883. |
FU Jinhua, LI Shixiang, NIU Xiaobing, et al. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(5): 870-883. | |
11 | 胡素云, 赵文智, 侯连华, 等. 中国陆相页岩油发展潜力与技术对策[J]. 石油勘探与开发, 2020, 47(4): 819-828. |
HU Suyun, ZHAO Wenzhi, HOU Lianhua, et al. Development potential and technical strategy of continental shale oil in China[J]. Petroleum Exploration and Development, 2020, 47(4): 819-828. | |
12 | 葸克来, 李克, 操应长, 等. 鄂尔多斯盆地三叠系延长组长73亚段富有机质页岩纹层组合与页岩油富集模式[J]. 石油勘探与开发, 2020, 47(6): 1244-1255. |
XI Kelai, LI Ke, CAO Yingchang, et al. Laminae combination and shale oil enrichment patterns of Chang 73 sub-member organic-rich shales in the Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1244-1255. | |
13 | 柳波, 孙嘉慧, 张永清, 等. 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式[J]. 石油勘探与开发, 2021, 48(3): 521-535. |
LIU Bo, SUN Jiahui, ZHANG Yongqing, et al. Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 521-535. | |
14 | 印森林, 谢建勇, 程乐利, 等. 陆相页岩油研究进展及开发地质面临的问题[J]. 沉积学报, 2022, 40(4): 979-995. |
YIN Senlin, XIE Jianyong, CHENG Leli, et al. Advances in continental shale oil research and problems of reservoir geology[J]. Acta Sedimentologica Sinica, 2022, 40(4): 979-995. | |
15 | 管耀, 冯进, 刘君毅, 等. 低对比度砂岩油层岩石组分核磁与常规测井联合反演方法[J]. 中国海上油气, 2020, 32(4): 71-77. |
GUAN Yao, FENG Jin, LIU Junyi, et al. Joint inversion method of nuclear magnetic resonance and conventional logging for the rock components of low-contrast sandstone reservoirs[J]. China Offshore Oil and Gas, 2020, 32(4): 71-77. | |
16 | 程相志. 低阻油气层识别评价技术及分布规律研究[D]. 青岛: 中国石油大学, 2008. |
CHENG Xiangzhi. Study of recognition technology and distribution law on low-resistivity oil reservoir[D]. Qingdao: China University of Petroleum, 2008. | |
17 | 白泽, 谭茂金, 石玉江, 等. 致密砂岩低阻油层成因与测井流体识别方法研究——以陇东西部地区长8组为例[J]. 石油物探, 2022, 61(4): 750-760. |
BAI Ze, TAN Maojin, SHI Yujiang, et al. Genesis of low-resistivity oil pays and a fluid identification method for tight sandstone reservoirs: A case study of the Chang 8 Formation in the Longdong west area, Ordos Basin[J]. Geophysical Prospecting for Petroleum, 2022, 61(4): 750-760. | |
18 | 李早红, 程小岛, 姜虹, 等. 尼日尔Termit盆地低阻油层成因机理及综合识别技术[J]. 地学前缘, 2018, 25(2): 99-111. |
LI Zaohong, CHENG Xiaodao, JIANG Hong, et al. Genetic mechanism of low-resistivity oil zones and comprehensive identification technology for well logging in the Termit Basin, Niger[J]. Earth Science Frontiers, 2018, 25(2): 99-111. | |
19 | 甘军, 张迎朝, 邓广君, 等. 琼海凸起新近系低幅-低阻油藏形成条件及成藏模式[J]. 石油与天然气地质, 2014, 35(3): 311-316, 349. |
GAN Jun, ZHANG Yingzhao, DENG Guangjun, et al. Forming conditions and hydrocarbon accumulation patterns of the Neogene low resistivity reservoirs in low-amplitude structure of Qionghai salient[J]. Oil & Gas Geology, 2014, 35(3): 311-316, 349. | |
20 | 李建云. 大庆油田东部葡萄花低阻油层成因机理研究[D]. 杭州: 浙江大学, 2010. |
LI Jianyun. Research on the genetic mechanism of Putaohua low resistance reservoir in the East of Daqing Oilfield[D]. Hangzhou: Zhejiang University, 2010. | |
21 | 韩如冰, 田昌炳, 马思, 等. 苏丹穆格拉德盆地福拉凹陷AG1层低阻油层形成机制及其控制因素[J]. 中国石油大学学报(自然科学版), 2018, 42(3): 31-40. |
HAN Rubing, TIAN Changbing, MA Si, et al. Formation mechanisms and controlling factors of low resistivity pays of AG1 layer in Fula Sag, Muglad Basin, Sudan[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(3): 31-40. | |
22 | 陆云龙, 崔云江, 张建升, 等. 渤海新近系高束缚水低阻油层饱和度计算方法[J]. 石油地质与工程, 2022, 36(1): 72-77. |
LU Yunlong, CUI Yunjiang, ZHANG Jiansheng, et al. Calculation method of saturation of Neogene reservoirs with high irreducible water and low resistivity in Bohai Sea[J]. Petroleum Geology and Engineering, 2022, 36(1): 72-77. | |
23 | 赵贤正, 蒲秀刚, 韩文中, 等. 细粒沉积岩性识别新方法与储集层甜点分析——以渤海湾盆地沧东凹陷孔店组二段为例[J]. 石油勘探与开发, 2017, 44(4): 492-502. |
ZHAO Xianzheng, PU Xiugang, HAN Wenzhong, et al. A new method for lithology identification of fine grained deposits and reservoir sweet spot analysis: A case study of Kong 2 Member in Cangdong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2017, 44(4): 492-502. | |
24 | 邹才能, 潘松圻, 荆振华, 等. 页岩油气革命及影响[J]. 石油学报, 2020, 41(1): 1-12. |
ZOU Caineng, PAN Songqi, JING Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1-12. | |
25 | 印森林, 陈恭洋, 许长福, 等. 陆相混积细粒储集岩岩相构型及其对甜点的控制作用——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组页岩油为例[J]. 石油与天然气地质, 2022, 43(5): 1180-1193. |
YIN Senlin, CHEN Gongyang, XU Changfu, et al. Lithofacies architecture of lacustrine fine-grained mixed reservoirs and its control over sweet spot: A case study of Permian Lucaogou Formation shale oil reservoir in the Jimsar Sag, Juggar Basin[J]. Oil & Gas Geology, 2022, 43(5): 1180-1193. | |
26 | GALVIS H, BECERRA D, SLATT R. Lithofacies and stratigraphy of a complete Woodford Shale outcrop section in South Central Oklahoma: Geologic considerations for the evaluation of unconventional shale reservoirs[J]. Interpretation, 2018, 6(1): SC15-SC27. |
27 | ZEMANEK J. Low-resistivity hydrocarbon-bearing sand reservoirs[J]. SPE Formation Evaluation, 1989, 4(4): 515-521. |
28 | 曾文冲. 油气藏储集层测井评价技术[M]. 北京: 石油工业出版社, 1991. |
ZENG Wenchong. Logging evaluation technology for oil and gas reservoir[M]. Beijing: Petroleum Industry Press, 1991. | |
29 | 赵文杰, 白全胜, 金秀珍, 等. 低电阻率油气层的测井解释[J]. 测井技术, 1998, 22(S1): 33-36. |
ZHAO Wenjie, BAI Quansheng, JIN Xiuzhen, et al. Log interpretation of low resistivity pay zone[J]. Well Logging Technology, 1998, 22(S1): 33-36. | |
30 | 孙建孟, 陈钢花, 杨玉征, 等. 低阻油气层评价方法[J]. 石油学报, 1998, 19(3): 83-88. |
SUN Jianmeng, CHEN Ganghua, YANG Yuzheng, et al. Low contrast resistivity reservoir evaluation method[J]. Acta Petrolei Sinica, 1998, 19(3): 83-88. | |
31 | 赵发展. 准噶尔盆地低阻油藏实验研究及储层评价方法[D]. 北京: 中国科学院地质与地球物理研究所, 2005. |
ZHAO Fazhan. Experimental study and reservoir evaluation methods for Dzungar Basin low resistivity reservoirs[D]. Beijing: Institute of Geology and Geophysics, 2005. | |
32 | 王飞腾, 侯东梅, 李彦来, 等. 渤海海域C油田孔隙结构特征及其对油层电阻率的影响[J]. 西安石油大学学报(自然科学版), 2022, 37(6): 32-37. |
WANG Feiteng, HOU Dongmei, LI Yanlai, et al. Pore structure characteristics of C oilfield in Bohai Sea and its influence on reservoir resistivity[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2022, 37(6): 32-37. | |
33 | 尤丽, 李才, 刘景环, 等. 琼海凸起珠江组一段低电阻率油层的微观成因机理分析[J]. 世界地质, 2011, 30(1): 65-70. |
YOU Li, LI Cai, LIU Jinghuan, et al. Analysis on micro-geological causes of low-resistivity oil layers from Member 1 of Zhujiang Formation in Qionghai uplift[J]. Global Geology, 2011, 30(1): 65-70. | |
34 | 吴俊军, 游利萍, 杨和山. 准噶尔盆地阜康断裂带构造演化与油气成藏[J]. 新疆石油地质, 2013, 34(1): 36-40. |
WU Junjun, YOU Liping, YANG Heshan. Structural evolution and hydrocarbon accumulation of Fukang fault zone in Junggar Basin[J]. Xinjiang Petroleum Geology, 2013, 34(1): 36-40. | |
35 | 张丽霞, 柳益群, 向辉, 等. 凝灰岩型含油层系特征与成因分析——以准噶尔盆地火烧山油田二叠系平地泉组为例[J]. 沉积学报, 2018, 36(4): 768-776. |
ZHANG Lixia, LIU Yiqun, XIANG Hui, et al. Characteristics and origin of tuffaceous tight oil: Based on a reference of tight oil in Permian Pingdiquan Formation in Huoshaoshan oil field, Junggar Basin[J]. Acta Sedimentologica Sinica, 2018, 36(4): 768-776. | |
36 | 涂彬, 丁祖鹏, 刘月田. 火烧山油田H3层裂缝发育特征与剩余油分布关系[J]. 石油与天然气地质, 2011, 32(2): 229-235. |
TU Bin, DING Zupeng, LIU Yuetian. Correlation of remaining oil distribution and fracture development in H3 reservoir of Huoshaoshan Oilfield[J]. Oil & Gas Geology, 2011, 32(2): 229-235. | |
37 | 文鑫, 朱义东, 王华, 等. 恩平凹陷D区块韩江组沉积亚相特征分析[J]. 矿产勘查, 2021, 12(12): 2325-2331. |
WEN Xin, ZHU Yidong, WANG Hua, et al. Characteristics of sedimentary subfacies of Hanjiang Formation in Block D of Enping Depression[J]. Mineral Exploration, 2021, 12(12): 2325-2331. | |
38 | 杜文波, 孙桂华, 舒誉. 珠江口盆地恩平凹陷古近系恩平组地震沉积学研究[J]. 地质科技情报, 2015, 34(3): 220-229. |
DU Wenbo, SUN Guihua, SHU Yu. Seismic sedimentology of Paleogene Enping Formation in Enping Sag, Pearl River Mouth Basin[J]. Geological Science and Technology Information, 2015, 34(3): 220-229. | |
39 | 梁卫, 闫正和, 杨勇, 等. 南海东部西江油田低阻油层识别及主控因素研究[J]. 特种油气藏, 2022, 29(1): 10-14. |
LIANG Wei, YAN Zhenghe, YANG Yong, et al. Study on identification and main controlling factors of low-resistivity oil reservoirs in Xijiang Oilfield, eastern South China Sea[J]. Special Oil & Gas Reservoirs, 2022, 29(1): 10-14. | |
40 | 印森林, 陈恭洋, 陈玉琨, 等. 砂砾岩储层孔隙结构模态控制下的剩余油分布——以克拉玛依油田七东1区克下组为例[J]. 岩性油气藏, 2018, 30(5): 91-102. |
YIN Senlin, CHEN Gongyang, CHEN Yukun, et al. Control effect of pore structure modality on remaining oil in glutenite reservoir: A case from Lower Karamay Formation in Block Qidong 1 of Karamay Oilfield[J]. Lithologic Reservoirs, 2018, 30(5): 91-102. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[4] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[5] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[6] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[7] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[8] | 柳波, 蒙启安, 付晓飞, 林铁锋, 白云风, 田善思, 张金友, 姚瑶, 程心阳, 刘召. 松辽盆地白垩系青山口组一段页岩生、排烃组分特征及页岩油相态演化[J]. 石油与天然气地质, 2024, 45(2): 406-419. |
[9] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[10] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[11] | 曾联波, 巩磊, 宿晓岑, 毛哲. 深层-超深层致密储层天然裂缝分布特征及发育规律[J]. 石油与天然气地质, 2024, 45(1): 1-14. |
[12] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[13] | 张益, 张斌, 刘帮华, 柳洁, 魏千盛, 张歧, 陆红军, 朱鹏宇, 王瑞. 页岩气储层吸附渗流研究现状及发展趋势[J]. 石油与天然气地质, 2024, 45(1): 256-280. |
[14] | 郭旭升, 马晓潇, 黎茂稳, 钱门辉, 胡宗全. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
[15] | 孙龙德, 王小军, 冯子辉, 邵红梅, 曾花森, 高波, 江航. 松辽盆地古龙页岩纳米孔缝形成机制与页岩油富集特征[J]. 石油与天然气地质, 2023, 44(6): 1350-1365. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||