石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (6): 1333-1349.doi: 10.11743/ogg20230601
郭旭升1,2(), 马晓潇1,2, 黎茂稳1,2, 钱门辉1,2, 胡宗全1,2
收稿日期:
2023-03-07
修回日期:
2023-08-28
出版日期:
2023-12-01
发布日期:
2023-12-20
第一作者简介:
郭旭升(1965—),男,博士、教授级高级工程师、中国工程院院士,石油天然气地质和勘探。E-mail:基金项目:
Xusheng GUO1,2(), Xiaoxiao MA1,2, Maowen LI1,2, Menhui QIAN1,2, Zongquan HU1,2
Received:
2023-03-07
Revised:
2023-08-28
Online:
2023-12-01
Published:
2023-12-20
摘要:
通过对中国陆相湖盆富有机质页岩形成的构造和沉积环境分析,明确不同湖盆类型陆相优质烃源岩发育条件存在巨大差异性,淡水湖盆形成的泥页岩层系以长英质-黏土质页岩为主要岩相,松辽盆地上白垩统青一段和鄂尔多斯盆地三叠系长7段为典型代表;而咸水湖盆陆相页岩以富碳酸盐-蒸发岩类岩相为主,济阳坳陷古近系沙河街组是典型的实例。中国陆相页岩层系具有互层/夹层、混积页岩和黏土质页岩等3种主要岩相组合类型,它们控制了陆相富有机质泥页岩的源-储耦合特征、烃类差异演化和流体性质多样性。互层/夹层型页岩源-储分离、近源运移;混积页岩宏观上源-储一体,微观上源-储分离;黏土质页岩源-储一体,整体含油。多重证据揭示,无机孔是中-低成熟陆相页岩油最有利的储集空间类型,它们与多类型、多级次微裂缝耦合形成有效的孔缝网络系统,自封闭作用有利于页岩油气原位或近源保存。在典型盆地陆相页岩层系对比分析的基础上,提出良好的源-储耦合关系、适宜的热演化程度和自封闭性是陆相页岩油富集的主控因素,初步建立了中国陆相页岩油差异富集模式。断陷湖盆陆相页岩油勘探应重视缓坡带中-低成熟纹层状页岩和深洼区中-高成熟富黏土质页岩层系,而互层/夹层型和中-高成熟黏土质页岩是坳陷湖盆陆相页岩油突破的关键。
中图分类号:
表1
中国陆相富有机质页岩岩相组合类型及源-储耦合特征"
岩相组合类型 | 典型实例 | 源-储耦合特征 | 盆地分布 |
---|---|---|---|
互层/夹层型 | 鄂尔多斯长71-2亚段 | 源-储分离、近源运移,薄层砂岩或灰岩有利于储集层近源捕获石油形成甜点 | 淡水湖盆:鄂尔多斯、松辽、四川 |
混积页岩纹层型 | 渤海湾东营-沾化凹陷沙四段-沙三段, 苏北阜二段,沧东孔二段 | 源-储共存或一体,页岩层系整体含油,多源供烃,混积岩自身与相邻页岩向混积岩储集甜点供油 | 咸化湖盆:江汉、渤海湾、准噶尔、三塘湖、柴达木 |
长英质-黏土质 页岩型 | 松辽湖盆中部青一段、四川侏罗系、 鄂尔多斯长73亚段 | 源-储一体,长英质-黏土质黑色页岩整体含油,富有机质纹层和砂质、钙质纹层均可原地滞留石油形成“甜点”,高TOC、高演化、地层超压、物性甜点控制富集 | 淡水湖盆:松辽、四川 |
表2
中国陆相代表性页岩油储层基本地质参数"
构造/地区 | 地层 | 埋藏深度/m | 成熟度(Ro)/% | 原油密度/(g/cm3) | 气/油比/(m3/m3) | 地层压力系数 |
---|---|---|---|---|---|---|
济阳坳陷 | 沙河街组 | 3 000 ~ 4 200 | 0.70 ~ 1.00 | 0.83 ~ 0.88 | 60 ~ 1 200 | 1.20 ~ 1.80 |
鄂尔多斯盆地 | 长7段 | 1 500 ~ 2 900 | 0.75 ~ 1.20 | 0.80 ~ 0.86 | 60 ~ 120 | 0.77 ~ 0.84 |
吉木萨尔凹陷 | 芦草沟组 | 2 300 ~ 4 500 | 0.66 ~ 1.63 | 0.88~0.90 (主产区) | < 200 | 1.27 (吉171井) |
大庆古龙凹陷 | 青山口组 | 2 000 ~ 2 700 | 1.20 ~ 1.70 | 0.77 ~ 0.83 | 50 ~ 2 000 | 1.20 ~ 1.60 |
四川复兴地区 | 侏罗系 | 2 000 ~ 3 000 | 1.20 ~ 1.70 | 0.75 ~ 0.79 | 1 303 ~ 2 124 | 1.20 ~ 1.90 |
1 | 郭旭升, 黎茂稳, 赵梦云. 页岩油开发利用及在能源中的作用[J]. 中国科学院院刊, 2023, 38(1): 38-47. |
GUO Xusheng, LI Maowen, ZHAO Mengyun. Shale oil development and utilization and its role in energy industry[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(1): 38-47. | |
2 | 黎茂稳, 马晓潇, 蒋启贵, 等. 北美海相页岩油形成条件、富集特征与启示[J]. 油气地质与采收率, 2019, 26(1): 13-28. |
LI Maowen, MA Xiaoxiao, JIANG Qigui, et al. Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 13-28. | |
3 | Energy Information Administration U.S.. Annual energy outlook 2022[EB/OL]. . |
4 | 宋明水. 济阳坳陷页岩油勘探实践与现状[J]. 油气地质与采收率, 2019, 26(1): 1-12. |
SONG Mingshui. Practice and current status of shale oil exploration in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 1-12. | |
5 | 刘惠民. 济阳坳陷古近系页岩油地质特殊性及勘探实践——以沙河街组四段上亚段—沙河街组三段下亚段为例[J]. 石油学报, 2022, 43(5): 581-594. |
LIU Huimin. Geological particularity and exploration practice of Paleogene shale oil in Jiyang depression: A case study of the upper submember of member 4 to the lower submember of member 3 of Shahejie Formation[J]. Acta Petrolei Sinica, 2022, 43(5): 581-594. | |
6 | 付锁堂, 付金华, 牛小兵, 等. 庆城油田成藏条件及勘探开发关键技术[J]. 石油学报, 2020, 41(7): 777-795. |
FU Suotang, FU Jinhua, NIU Xiaobing, et al. Accumulation conditions and key exploration and development technologies in Qingcheng Oilfield[J]. Acta Petrolei Sinica, 2020, 41(7): 777-795. | |
7 | 付金华, 牛小兵, 李明瑞, 等. 鄂尔多斯盆地延长组7段3亚段页岩油风险勘探突破与意义[J]. 石油学报, 2022, 43(6): 760-769, 787. |
FU Jinhua, NIU Xiaobing, LI Mingrui, et al. Breakthrough and significance of risk exploration in the 3rd sub-member, 7th member of Yanchang Formation in Ordos Basin[J]. Acta Petrolei Sinica, 2022, 43(6): 760-769, 787. | |
8 | 支东明, 唐勇, 杨智峰, 等. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质, 2019, 40(3): 524-534. |
ZHI Dongming, TANG Yong, YANG Zhifeng, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer Sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 524-534. | |
9 | 杨智峰, 唐勇, 郭旭光, 等. 准噶尔盆地玛湖凹陷二叠系风城组页岩油赋存特征与影响因素[J]. 石油实验地质, 2021, 43(5): 784-796. |
YANG Zhifeng, TANG Yong, GUO Xuguang, et al. Occurrence states and potential influencing factors of shale oil in the Permian Fengcheng Formation of Mahu Sag, Junggar Basin[J]. Petroleum Geology and Experiment, 2021, 43(5): 784-796. | |
10 | 何文渊, 柳波, 张金友, 等. 松辽盆地古龙页岩油地质特征及关键科学问题探索[J]. 地球科学, 2023, 48(1): 49-62. |
HE Wenyuan, LIU Bo, ZHANG Jinyou, et al. Geological characteristics and key scientific and technological problems of Gulong shale oil in Songliao Basin[J]. Earth Science, 2023, 48(1): 49-62. | |
11 | 姚红生, 昝灵, 高玉巧, 等. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油富集高产主控因素与勘探重大突破[J]. 石油实验地质, 2021, 43(5): 776-783. |
YAO Hongsheng, ZAN Ling, GAO Yuqiao, et al. Main controlling factors for the enrichment of shale oil and significant discovery in second member of Paleogene Funing Formation, Qintong Sag, Subei Basin[J]. Petroleum Geology and Experiment, 2021, 43(5): 776-783. | |
12 | 赵贤正, 周立宏, 蒲秀刚, 等. 陆相湖盆页岩层系基本地质特征与页岩油勘探突破——以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例[J]. 石油勘探与开发, 2018, 45(3): 361-372. |
ZHAO Xianzheng, ZHOU Lihong, PU Xiugang, et al. Geological characteristics of shale rock system and shale oil exploration in a lacustrine basin: A case study from the Paleogene 1st sub-member of Kong 2 Member in Cangdong sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2018, 45(3): 361-372. | |
13 | 赵贤正, 周立宏, 蒲秀刚, 等. 歧口凹陷歧北次凹沙河街组三段页岩油地质特征与勘探突破[J]. 石油学报, 2020, 41(6): 643-657. |
ZHAO Xianzheng, ZHOU Lihong, PU Xiugang, et al. Geological characteristics and exploration breakthrough of shale oil in Member 3 of Shahejie Formation of Qibei subsag, Qikou Sag[J]. Acta Petrolei Sinica, 2020, 41(6): 643-657. | |
14 | 蒲秀刚, 时战楠, 韩文中, 等. 陆相湖盆细粒沉积区页岩层系石油地质特征与油气发现——以黄骅坳陷沧东凹陷孔二段为例[J]. 油气地质与采收率, 2019, 26(1): 46-58. |
PU Xiugang, SHI Zhannan, HAN Wenzhong, et al. Petroleum geological characteristics and hydrocarbon discovery of shale system in fine-grained sedimentary area of lacustrine basin: A case study of Kong 2 Member in Cangdong Sag, Huanghua Depression[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 46-58. | |
15 | 胡东风, 魏志红, 刘若冰, 等. 湖相页岩油气富集主控因素与勘探潜力——以四川盆地涪陵地区侏罗系为例[J]. 天然气工业, 2021, 41(8): 113-120. |
HU Dongfeng, WEI Zhihong, LIU Ruobing, et al. Enrichment control factors and exploration potential of lacustrine shale oil and gas: A case study of Jurassic in the Fuling area of the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(8): 113-120. | |
16 | BREYER J A. Shale reservoirs—giant resources for the 21st century[M]. Tulsa: American Association of Petroleum Geologists, 2012. |
17 | WOOD L J. Shale tectonics[M]. Tulsa: American Association of Petroleum Geologists, 2011. |
18 | APLIN A C, MACQUAKER J H S. Getting started #20: shales[M]. Tulsa: AAPG/Datapages, 2010. |
19 | CAMP W K, DIAZ E, WAWAK B. Electron microscopy of shale hydrocarbon reservoirs[M]. Tulsa: American Association of Petroleum Geologists, 2013. |
20 | PITMAN III W C. Relationship between eustacy and stratigraphic sequences of passive margins[J]. GSA Bulletin, 1978, 89(9): 1389-1403. |
21 | TALBOT M R. The origins of lacustrine oil source rocks: evidence from the lakes of tropical Africa[J]. Geological Society, London, Special Publications, 1988, 40(1): 29-43. |
22 | KATZ B, LIN Fang. Lacustrine basin unconventional resource plays: Key differences[J]. Marine and Petroleum Geology, 2014, 56: 255-265. |
23 | 周书欣, 赖特, 普拉特, 等. 湖泊沉积体系与油气[M]. 北京: 科学出版社, 1991. |
ZHOU Shuxin, WRIGHT V P, PRATT N H, et al. Lake sedimentary system and oil & gas[M]. Beijing: Science Press, 1991. | |
24 | 黎茂稳, 马晓潇, 金之钧, 等. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义[J]. 石油与天然气地质, 2022, 43(1): 1-25. |
LI Maowen, MA Xiaoxiao, JIN Zhijun, et al. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China[J]. Oil & Gas Geology, 2022, 43(1): 1-25. | |
25 | 滕建彬, 刘惠民, 邱隆伟, 等. 东营凹陷古近系湖相细粒混积岩沉积成岩特征[J]. 地球科学, 2020, 45(10): 3808-3826. |
TENG Jianbin, LIU Huimin, QIU Longwei, et al. Sedimentary and diagenetic characteristics of lacustrine fine-grained hybrid rock in paleogene formation in dongying sag[J]. Earth Science, 2020, 45(10): 3808-3826. | |
26 | TYSON R V, PEARSON T H. Modern and ancient continental shelf anoxia: an overview[J]. Geological Society, London, Special Publications, 1991, 58(1): 1-24. |
27 | 陈安清, 陈洪德, 侯明才, 等. 鄂尔多斯盆地中—晚三叠世事件沉积对印支运动Ⅰ幕的指示[J]. 地质学报, 2011, 85(10): 1681-1690. |
CHEN Anqing, CHEN Hongde, HOU Mingcai, et al. The Middle-Late Triassic event sediments in ordos basin: Indicators for episode I of the indosinian movement[J]. Acta Geologica Sinica, 2011, 85(10): 1681-1690. | |
28 | 杨华, 李士祥, 刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1): 1-11. |
YANG Hua, LI Shixiang, LIU Xianyang. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1-11. | |
29 | 付金华, 李士祥, 徐黎明, 等. 鄂尔多斯盆地三叠系延长组长7段古沉积环境恢复及意义[J]. 石油勘探与开发, 2018, 45(6): 936-946. |
FU Jinhua, LI Shixiang, XU Liming, et al. Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(6): 936-946. | |
30 | 刘显阳, 李士祥, 郭芪恒, 等. 鄂尔多斯盆地延长组长73亚段泥页岩层系岩石类型特征及勘探意义[J]. 天然气地球科学, 2021, 32(8): 1177-1189. |
LIU Xianyang, LI Shixiang, GUO Qiheng, et al. Characteristics of rock types and exploration significance of the shale strata in the Chang 73 sub-member of Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(8): 1177-1189. | |
31 | 付金华, 李士祥, 郭芪恒, 等. 鄂尔多斯盆地陆相页岩油富集条件及有利区优选[J]. 石油学报, 2022, 43(12): 1702-1716. |
FU Jinhua, LI Shixiang, GUO Qiheng, et al. Enrichment conditions and favorable area optimization of continental shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2022, 43(12): 1702-1716. | |
32 | 唐勇, 郑孟林, 王霞田, 等. 准噶尔盆地玛湖凹陷风城组烃源岩沉积古环境[J]. 天然气地球科学, 2022, 33(5): 677-692. |
TANG Yong, ZHENG Menglin, WANG Xiatian, et al. Sedimentary paleoenvironment of source rocks of Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Natural Gas Geoscience, 2022, 33(5): 677-692. | |
33 | 宋永, 杨智峰, 何文军, 等. 准噶尔盆地玛湖凹陷二叠系风城组碱湖型页岩油勘探进展[J]. 中国石油勘探, 2022, 27(1): 60-72. |
SONG Yong, YANG Zhifeng, HE Wenjun, et al. Exploration progress of alkaline lake type shale oil of the Permian Fengcheng Formation in Mahu Sag, Junggar Basin[J]. China Petroleum Exploration, 2022, 27(1): 60-72. | |
34 | 支东明, 宋永, 何文军, 等. 准噶尔盆地中—下二叠统页岩油地质特征、资源潜力及勘探方向[J]. 新疆石油地质, 2019, 40(4): 389-401. |
ZHI Dongming, SONG Yong, HE Wenjun, et al. Geological characteristics, resource potential and exploration direction of shale oil in Middle-Lower permian, Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(4): 389-401. | |
35 | 邵雨, 杨勇强, 万敏, 等. 吉木萨尔凹陷二叠系芦草沟组沉积特征及沉积相演化[J]. 新疆石油地质, 2015, 36(6): 635-641. |
SHAO Yu, YANG Yongqiang, WAN Min, et al. Sedimentary characteristic and facies evolution of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2015, 36(6): 635-641. | |
36 | 张元元, 李威, 唐文斌. 玛湖凹陷风城组碱湖烃源岩发育的构造背景和形成环境[J]. 新疆石油地质, 2018, 39(1): 48-54. |
ZHANG Yuanyuan, LI Wei, TANG Wenbin. Tectonic setting and environment of alkaline lacustrine source rocks in the Lower Permian Fengcheng Formation of Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1): 48-54. | |
37 | 张林晔, 李钜源, 李政, 等. 陆相盆地页岩油气地质研究与实践[M]. 北京: 石油工业出版社, 2017: 146-154. |
ZHANG Linye, LI Juyuan, LI Zheng, et al. Geological research and practice of shale oil and gas in continental basin[M]. Beijing: Petroleum Industry Press, 2017: 146-154. | |
38 | 王勇, 刘惠民, 宋国奇, 等. 湖相泥页岩中碳酸盐成因及页岩油气地质意义——以东营凹陷沙河街组四段上亚段—沙河街组三段下亚段烃源岩为例[J]. 石油学报, 2017, 38(12): 1390-1400. |
WANG Yong, LIU Huimin, SONG Guoqi, et al. Carbonate genesis and geological significance of shale hydrocarbon in lacustrine facies mud shale: A case study of source rocks in the upper submember of Member 4 and lower submember of Member 3 of Shahejie Formation, Dongying Sag[J]. Acta Petrolei Sinica, 2017, 38(12): 1390-1400. | |
39 | SHEPARD F P. Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Petrology, 1954, 24(3): 151-158. |
40 | FOLK R L. Petrology of sedimentary rocks[M]. Austin: Hemphill Publishing Company, 1980. |
41 | PICKERING K, STOW D, WATSON M, et al. Deep-water facies, processes and models: A review and classification scheme for modern and ancient sediments[J]. Earth-Science Reviews, 1986, 23(2): 75-174. |
42 | FLEMMING B W. A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams[J]. Continental Shelf Research, 2000, 20(10/11): 1125-1137. |
43 | MACQUAKER J H S, ADAMS A E. Maximizing information from fine-grained sedimentary rocks: An inclusive nomenclature for mudstones[J]. Journal of Sedimentary Research, 2003, 73(5): 735-744. |
44 | LOUCKS R G, RUPPEL S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601. |
45 | 刘忠宝, 刘光祥, 胡宗全, 等. 陆相页岩层系岩相类型、组合特征及其油气勘探意义——以四川盆地中下侏罗统为例[J]. 天然气工业, 2019, 39(12): 10-21. |
LIU Zhongbao, LIU Guangxiang, HU Zongquan, et al. Lithofacies types and assemblage features of continental shale strata and their significance for shale gas exploration: A case study of the Middle and Lower Jurassic strata in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(12): 10-21. | |
46 | DONOVAN A D, STAERKER T S, GARDNER R, et al. Findings from the Eagle Ford outcrops of west Texas and implications to the subsurface of South Texas[M]//BREYER J. The Eagle Ford Shale: A Renaissance in U.S. Oil Production. Tulsa: American Association of Petroleum Geologists, 2016: 301-336. |
47 | Bureau of Economic Geology. Integrated synthesis of the Permian basin: Data and models for recovering existing and undiscovered oil resources from the largest oil-bearing basin in the United States: DE-FC26-04NT15509[R]. Austin: Universityof Texas at Austin, 2008. |
48 | POLLASTRO R M, ROBERTS L N R, COOK T A. Geologic model for the assessment of technically recoverable oil in the Devonian-Mississippian Bakken Formation, Williston Basin[M]//BREYER J A. Shale Reservoirs—Giant Resources for the 21st Century. Tulsa: American Association of Petroleum Geologists, 2012: 205-257. |
49 | EVENICK J C, MCCLAIN T. Method for characterizing source rock organofacies using bulk rock composition[M]//CHATELLIER J Y, JARVIE D M. Critical Assessment of Shale Resource Plays. Tulsa: American Association of Petroleum Geologists, 2013: 71-80. |
50 | ZAGORSKI W A, WRIGHTSTONE G R, BOWMAN D C. The Appalachian Basin Marcellus gas play: Its history of development, geologic controls on production, and future potential as a world-class reservoir[M]//BREYER J A. Shale Reservoirs—Giant Resources for the 21st Century. Tulsa: American Association of Petroleum Geologists, 2012: 172-200. |
51 | 付金华, 李士祥, 侯雨庭, 等. 鄂尔多斯盆地延长组7段Ⅱ类页岩油风险勘探突破及其意义[J]. 中国石油勘探, 2020, 25(1): 78-92. |
FU Jinhua, LI Shixiang, HOU Yuting, et al. Breakthrough of risk exploration of Class Ⅱ shale oil in Chang 7 member of Yanchang Formation in the Ordos Basin and its significance[J]. China Petroleum Exploration, 2020, 25(1): 78-92. | |
52 | 冯子辉, 柳波, 邵红梅, 等. 松辽盆地古龙地区青山口组泥页岩成岩演化与储集性能[J]. 大庆石油地质与开发, 2020, 39(3): 72-85. |
FENG Zihui, LIU Bo, SHAO Hongmei, et al. The diagenesis evolution and accumulating performance of the mud shale in Qingshankou Formation in Gulong area, Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 72-85. | |
53 | 霍秋立, 曾花森, 张晓畅, 等. 松辽盆地古龙页岩有机质特征与页岩油形成演化[J]. 大庆石油地质与开发, 2020, 39(3): 86-96. |
HUO Qiuli, ZENG Huasen, ZHANG Xiaochang, et al. Organic matter characteristics and shale oil formation of Gulong shale in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 86-96. | |
54 | 何文渊. 松辽盆地古龙凹陷页岩油储层中的纳孔纳缝及其原位成藏理论初探[J]. 地学前缘, 2023, 30(1): 156-173. |
HE Wenyuan. Preliminary study on nanopores, nanofissures, and in situ accumulation of Gulong shale oil[J]. Earth Science Frontiers, 2023, 30(1): 156-173. | |
55 | 王小军, 梁利喜, 赵龙, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组含油页岩岩石力学特性及可压裂性评价[J]. 石油与天然气地质, 2019, 40(3): 661-668. |
WANG Xiaojun, LIANG Lixi, ZHAO Long, et al. Rock mechanics and fracability evaluation of the Lucaogou Formation oil shales in Jimusaer Sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 661-668. | |
56 | 黄振凯, 郝运轻, 沃玉进, 等. 鄂尔多斯盆地长7段泥页岩层系储层特征及其页岩油意义[J]. 科学技术与工程, 2020, 20(3): 1009-1017. |
HUANG Zhenkai, HAO Yunqing, Yujin WO, et al. Reservoir characteristics and shale oil significance of the shale strata in the Chang 7 Member of the Ordos Basin[J]. Science Technology and Engineering, 2020, 20(3): 1009-1017. | |
57 | 张宸嘉, 曹剑, 王俞策, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油富集规律[J]. 石油学报, 2022, 43(9): 1253-1268. |
ZHANG Chenjia, CAO Jian, WANG Yuce, et al. Enrichment law of shale oil of Lucaogou Formation in Jimusar Sag, Junggar Basin[J]. Acta Petrolei Sinica, 2022, 43(9): 1253-1268. | |
58 | 张安达, 王继平, 王永超, 等. 松辽盆地古龙页岩储集空间类型及油赋存状态[J]. 大庆石油地质与开发, 2021, 40(5): 68-77. |
ZHANG Anda, WANG Jiping, WANG Yongchao, et al. Reservoir space types and oil occurrence of Gulong shale in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5): 68-77. | |
59 | 何文渊, 崔宝文, 王凤兰, 等. 松辽盆地古龙凹陷白垩系青山口组储集空间与油态研究[J]. 地质论评, 2022, 68(2): 693-741. |
HE Wenyuan, CUI Baowen, WANG Fenglan, et al. Study on reservoir spaces and oil states of the Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin[J]. Geological Review, 2022, 68(2): 693-741. | |
60 | MUKHOPADHYAY P K, HAGEMANN H W, GORMLY J R. Characterization of kerogens as seen under the aspect of maturation and hydrocarbon generation[J]. Erdoel Und Kohle, Erdgas, Petrochemie Vereinigt Mit Brennstoff-Chemie, 1985, 38: 7-18. |
61 | MUKHOPADHYAY P K, WADE J A. Organic facies and maturation of sediments from three Scotian Shelf wells[J]. Bulletin of Canadian Petroleum Geology, 1990, 38(4): 407-425. |
62 | 张文正, 杨华, 解丽琴, 等. 鄂尔多斯盆地延长组长7优质烃源岩中超微化石的发现及意义[J]. 古生物学报, 2011, 50(1): 109-117. |
ZHANG Wenzheng, YANG Hua, XIE Liqin, et al. Discovery of micro- and nannofossils in high grade hydrocarbon source rocks of the Triassic Yanchang Formation Chang 7 member in Ordos Basin and its scientific significance[J]. Acta Palaeontologica Sinica, 2011, 50(1): 109-117. | |
63 | BASKIN D K, PETERS K E. Early generation characteristics of a sulfur-rich monterey kerogen[J]. AAPG Bulletin, 1992, 76(1): 1-13. |
64 | LEWAN M D, HENRY M E, HIGLEY D K, et al. Abstract: Material-balance approach to petroleum systems: New Albany shale/chesterian of the Illinois Basin[C]//1998 AAPG Annual Convention and Exhibition. Tulsa: American Association of Petroleum Geologists, 1998: 90937. |
65 | LEWAN M D, RUBLE T E. Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis[J]. Organic Geochemistry, 2002, 33(12): 1457-1475. |
66 | 张林晔, 宋一涛, 王广利, 等. 济阳坳陷湖相烃源岩有机质化学组成特征及其石油地质意义[J]. 科学通报, 2005, 50(21): 2392-2402. |
ZHANG Linye, SONG Yitao, WANG Guangli, et al. Chemical composition characteristics of organic matter of lacustrine source rocks in Jiyang Depression and its petroleum geological significance[J]. Chinese Science Bulletin, 2005, 50(21): 2392-2402. | |
67 | LI Maowen, CHEN Zhuoheng, MA Xiaoxiao, et al. Shale oil resource potential and oil mobility characteristics of the Eocene-Oligocene Shahejie Formation, Jiyang Super-Depression, Bohai Bay Basin of China[J]. International Journal of Coal Geology, 2019, 204: 130-143. |
68 | 王铁冠, 钟宁宁, 侯读杰, 等. 陆相湖盆生物类脂物早期生烃机制研究[J]. 中国科学(D辑: 地球科学), 1996, 26(6): 518-524. |
WANG Tieguan, ZHONG Ningning, HOU Dujie, et al. Study on early hydrocarbon generation mechanism of biological lipids in continental lake basin[J]. Science China Earth Sciences, 1996, 26(6): 518-524. | |
69 | SCHMOKER J. Continuous hydrocarbon reservoirs: Selected issues in the USGS energy resource surveys program[R]. Reston: U.S. Geological Survey, 1995. |
70 | GAUTIER D L, DOLTON G L, TAKAHASHI K I, et al. 1995 National assessment of United States oil and gas resources: Results, methodology, and supporting data: ds30[R]. Reston: U.S. Geological Survey, 1996. |
71 | 贾承造, 庞雄奇, 宋岩. 论非常规油气成藏机理:油气自封闭作用与分子间作用力[J]. 石油勘探与开发, 2021, 48(3): 437-452. |
JIA Chengzao, PANG Xiongqi, SONG Yan. The mechanism of unconventional hydrocarbon formation: Hydrocarbon self-containment and intermolecular forces[J]. Petroleum Exploration and Development, 2021, 48(3): 437-452. | |
72 | 王江涛, 李育. 沉积盆地异常高压形成机制综述[J]. 石油化工应用, 2014, 33(1): 5-9, 13. |
WANG Jiangtao, LI Yu. Review on the formation mechanism of abnormal high pressure in sedimentary basins[J]. Petrochemical Industry Application, 2014, 33(1): 5-9, 13. | |
73 | 何文渊. 松辽盆地古龙页岩油储层黏土中纳米孔和纳米缝的发现及其意义[J]. 大庆石油地质与开发, 2022, 41(3): 1-13. |
HE Wenyuan. Discovery and significance of nano pores and nano fractures of clay in Gulong shale oil reservoir in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(3): 1-13. | |
74 | 何文渊, 蒙启安, 张金友. 松辽盆地古龙页岩油富集主控因素及分类评价[J]. 大庆石油地质与开发, 2021, 40(5): 1-12. |
HE Wenyuan, MENG Qi’an, ZHANG Jinyou. Controlling factors and their classification-evaluation of Gulong shale oil enrichment in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5): 1-12. | |
75 | 向才富, 冯志强, 吴河勇, 等. 松辽盆地异常压力系统及其形成原因探讨[J]. 地质学报, 2006, 80(11): 1752-1759. |
XIANG Caifu, FENG Zhiqiang, WU Heyong, et al. Three abnormal pressure systems developed in the Songliao Basin, northeast China and their genesis[J]. Acta Geologica Sinica, 2006, 80(11): 1752-1759. | |
76 | CHAPMAN R E. Clays with abnormal interstitial fluid pressures[J]. AAPG Bulletin, 1972, 56(4): 790-795. |
77 | 王勇. 岩性油藏成藏机理及运聚模式——以牛庄洼陷为例[J]. 特种油气藏, 2012, 19(3): 18-21, 62. |
WANG Yong. Formation mechanism and accumulation model of lithologic reservoirs: A case study with Niuzhuang subsag[J]. Special Oil & Gas Reservoirs, 2012, 19(3): 18-21, 62. | |
78 | 王勇, 刘惠民, 宋国奇, 等. 济阳坳陷页岩油富集要素与富集模式研究[J]. 高校地质学报, 2017, 23(2): 268-276. |
WANG Yong, LIU Huimin, SONG Guoqi, et al. Enrichment controls and models of shale oil in the Jiyang Depression, Bohai Bay Basin[J]. Geological Journal of China Universities, 2017, 23(2): 268-276. | |
79 | 杨智, 付金华, 郭秋麟, 等. 鄂尔多斯盆地三叠系延长组陆相致密油发现、特征及潜力[J]. 中国石油勘探, 2017, 22(6): 9-15. |
YANG Zhi, FU Jinhua, GUO Qiulin, et al. Discovery, characteristics and resource potential of continental tight oil in Triassic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2017, 22(6): 9-15. | |
80 | 白国平, 邱海华, 邓舟舟, 等. 美国页岩油资源分布特征与主控因素研究[J]. 石油实验地质, 2020, 42(4): 524-532. |
BAI Guoping, QIU Haihua, DENG Zhouzhou, et al. Distribution and main controls for shale oil resources in USA[J]. Petroleum Geology and Experiment, 2020, 42(4): 524-532. |
[1] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[2] | 李明, 王民, 张金友, 张宇辰, 刘召, 雒斌, 卞从胜, 李进步, 王鑫, 赵信斌, 董尚德. 中国典型盆地陆相页岩油组分评价及意义[J]. 石油与天然气地质, 2023, 44(6): 1479-1498. |
[3] | 金之钧, 张谦, 朱如凯, 董琳, 付金华, 刘惠民, 云露, 刘国勇, 黎茂稳, 赵贤正, 王小军, 胡素云, 唐勇, 白振瑞, 孙冬胜, 李晓光. 中国陆相页岩油分类及其意义[J]. 石油与天然气地质, 2023, 44(4): 801-819. |
[4] | 马克, 侯加根, 董虎, 吴国强, 闫林, 张丽薇. 页岩油储层混合细粒沉积孔喉特征及其对物性的控制作用[J]. 石油与天然气地质, 2022, 43(5): 1194-1205. |
[5] | 祝海华, 陈琳, 曹正林, 王明磊, 洪海涛, 李育聪, 张芮, 张少敏, 朱光仪, 曾旭, 杨巍. 川中地区侏罗系自流井组大安寨段黑色页岩孔隙微观特征及主控因素[J]. 石油与天然气地质, 2022, 43(5): 1115-1126. |
[6] | 沈云琦, 金之钧, 苏建政, 李志明, 牛骏. 中国陆相页岩油储层水平渗透率与垂直渗透率特征[J]. 石油与天然气地质, 2022, 43(2): 378-389. |
[7] | 黎茂稳, 马晓潇, 金之钧, 李志明, 蒋启贵, 吴世强, 李政, 徐祖新. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义[J]. 石油与天然气地质, 2022, 43(1): 1-25. |
[8] | 丁江辉, 张金川, 石刚, 申宝剑, 唐玄, 杨振恒, 李兴起, 李楚雄. 皖南地区上二叠统大隆组页岩沉积环境与有机质富集机理[J]. 石油与天然气地质, 2021, 42(1): 158-172. |
[9] | 孙莎莎, 董大忠, 李育聪, 王红岩, 施振生, 黄世伟, 昌燕, 拜文华. 四川盆地侏罗系自流井组大安寨段陆相页岩油气地质特征及成藏控制因素[J]. 石油与天然气地质, 2021, 42(1): 124-135. |
[10] | 李士祥, 牛小兵, 柳广弟, 李继宏, 孙明亮, 游富粮, 何昊楠. 鄂尔多斯盆地延长组长7段页岩油形成富集机理[J]. 石油与天然气地质, 2020, 41(4): 719-729. |
[11] | 支东明, 唐勇, 杨智峰, 郭旭光, 郑孟林, 万敏, 黄立良. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质, 2019, 40(3): 524-534. |
[12] | 刘喜武, 刘宇巍, 刘志远, 宋亮, 刘炯, 霍志周, 张金强, 钱恪然, 张颖燕. 陆相页岩油甜点地球物理表征研究进展[J]. 石油与天然气地质, 2019, 40(3): 504-511. |
[13] | 陈祥,王敏,严永新,章新文,罗曦,张永华. 泌阳凹陷陆相页岩油气成藏条件[J]. 石油与天然气地质, 2011, 32(4): 568-576. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||