石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (1): 1-14.doi: 10.11743/ogg20240101
收稿日期:
2023-08-17
修回日期:
2023-12-10
出版日期:
2024-02-01
发布日期:
2024-02-29
第一作者简介:
曾联波(1967—),男,博士、教授,裂缝性储层与非常规油气储层形成、分布及预测技术研究。E-mail: lbzeng@cup.edu.cn。
基金项目:
Lianbo ZENG1(), Lei GONG2, Xiaocen SU2, Zhe MAO1
Received:
2023-08-17
Revised:
2023-12-10
Online:
2024-02-01
Published:
2024-02-29
摘要:
天然裂缝是深层-超深层致密储层的有效储集空间和主要渗流通道,影响着致密储层油气的运移、富集、单井产能、开发方式及开发效果。通过对近年来致密储层裂缝研究成果总结和文献综述,分析了深层-超深层致密储层天然裂缝分布特征及发育规律。将致密储层天然裂缝分为大尺度裂缝、中尺度裂缝、小尺度裂缝和微尺度裂缝4个级别。不同尺度裂缝分布具有幂律分布的特点,裂缝尺度越大,数量越少;裂缝尺度越小,数量越多。大、中尺度裂缝主要起渗流作用,小尺度裂缝主要起渗流和储集作用,而微尺度裂缝主要起储集作用。在地层埋藏过程中的应力体制演化决定了不同时期天然裂缝的类型、产状及其力学性质;构造应力大小、岩石力学层的力学性质和厚度差异控制了多尺度裂缝的形成分布及其发育程度。构造变形导致不同构造部位的局部应力和应变分布产生差异,增强了裂缝发育的非均质性。逆冲断层通过控制其上盘地层变形控制了“裂缝域”的分布规律;走滑断层的组合样式、活动方式和岩石力学层共同控制了相关裂缝的三维空间展布。裂缝形成演化过程中的开启-闭合规律决定了裂缝的储集空间,记录了裂缝有效性的演化历史。
中图分类号:
表1
不同尺度裂缝分布特征(据曾联波等[6]修改)"
裂缝尺度 | 分布特征 | 裂缝类型 | 延伸长度 | 开度 | 贡献 |
---|---|---|---|---|---|
微尺度裂缝 | 受纹层或矿物颗粒控制,裂缝规模小,密度大,需借助微观分析 | 穿粒缝、粒内缝、粒缘缝 | 毫米级 | < 40 μm | 储集空间 |
小尺度裂缝 | 在单一岩石力学层内发育,裂缝延伸受岩石力学界面限制 | 层控裂缝 | 厘米-分米级 | 40 ~ 100 μm | 渗流通道、储集空间 |
中尺度裂缝 | 在多套岩石力学层内发育,可跨越多套岩石力学层性质差异较小的岩石力学层,裂缝延伸受泥岩夹层限制 | 穿层裂缝 | 米-数十米级 | 百微米级 | 渗流通道 |
大尺度裂缝 | 在多套岩石力学层内发育,表现为断层型裂缝,两侧地层具有明显的位移,甚至发育有小型断层核 | 小断层 | 数十米级-百米级 | 毫米-厘米级 | 渗流通道 |
1 | 汪如军, 赵力彬, 张永灵. 基于最小耗能原理的库车坳陷超深致密砂岩裂缝定量预测[J]. 中国石油大学学报(自然科学版), 2022, 46(5): 23-35. |
WANG Rujun, ZHAO Libin, ZHANG Yongling. Quantitative fracture prediction of ultra-deep tight sandstone in Kuqa Depression based on principle of minimum energy consumption[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(5): 23-35. | |
2 | 杨斌, 张浩, 刘其明, 等. 超深层裂缝性碳酸盐岩力学特性及其主控机制[J]. 天然气工业, 2021, 41(7): 107-114. |
YANG Bin, ZHANG Hao, LIU Qiming, et al. Mechanical property and main control mechanism of ultra-deep fractured carbonate rocks[J]. Natural Gas Industry, 2021, 41(7): 107-114. | |
3 | 张月, 韩登林, 杨铖晔, 等. 超深层碎屑岩储层裂缝充填流体迁移规律——以库车坳陷克深井区白垩系巴什基奇克组为例[J]. 石油学报, 2020, 41(3): 292-300. |
ZHANG Yue, HAN Denglin, YANG Chengye, et al. Migration law of fracture filling fluid in ultra-deep clastic reservoirs: A case study of the Cretaceous Bashijiqike Formation in Keshen well block, Kuqa Depression[J]. Acta Petrolei Sinica, 2020, 41(3): 292-300. | |
4 | 高帅, 巩磊, 刘小波, 等. 松辽盆地北部深层致密火山岩气藏天然裂缝分布特征及控制因素[J]. 石油与天然气地质, 2020, 41(3): 503-512. |
GAO Shuai, GONG Lei, LIU Xiaobo, et al. Distribution and controlling factors of natural fractures in deep tight volcanic gas reservoirs in Xujiaweizi area, northern Songliao Basin[J]. Oil & Gas Geology, 2020, 41(3): 503-512. | |
5 | 吕文雅, 曾联波, 陈双全, 等. 致密低渗透砂岩储层多尺度天然裂缝表征方法[J]. 地质论评, 2021, 67(2): 543-556. |
Wenya LYU, ZENG Lianbo, CHEN Shuangquan, et al. Characterization methods of multi-scale natural fractures in tight and low-permeability sandstone reservoirs[J]. Geological Review, 2021, 67(2): 543-556. | |
6 | 曾联波, 吕鹏, 屈雪峰, 等. 致密低渗透储层多尺度裂缝及其形成地质条件[J]. 石油与天然气地质, 2020, 41(3): 449-454. |
ZENG Lianbo, Peng LYU, QU Xuefeng, et al. Multi-scale fractures in tight sandstone reservoirs with low permeability and geological conditions of their development[J]. Oil & Gas Geology, 2020, 41(3): 449-454. | |
7 | 巩磊, 程宇琪, 高帅, 等. 库车前陆盆地东部下侏罗统致密砂岩储层裂缝连通性表征及其主控因素[J]. 地球科学, 2023, 48(7): 2475-2488. |
GONG Lei, CHENG Yuqi, GAO Shuai, et al. Fracture connectivity characterization and its controlling factors in Lower Jurassic tight sandstone reservoirs of eastern Kuqa foreland basin[J]. Earth Science, 2023, 48(7): 2475-2488. | |
8 | GONG Lei, LIU Kouqi, JU Wei. Editorial: Advances in the study of natural fractures in deep and unconventional reservoirs[J]. Frontiers in Earth Science, 2023, 10: 1096643. |
9 | LIU Guoping, ZENG Lianbo, ZHU Rukai, et al. Effective fractures and their contribution to the reservoirs in deep tight sandstones in the Kuqa Depression, Tarim Basin, China[J]. Marine and Petroleum Geology, 2021, 124: 104824. |
10 | ZENG Lianbo, SU Hui, TANG Xiaomei, et al. Fractured tight sandstone oil and gas reservoirs: A new play type in the Dongpu Depression, Bohai Bay Basin, China[J]. AAPG Bulletin, 2013, 97(3): 363-377. |
11 | GONG Lei, LIU Bo, FU Xiaofei, et al. Quantitative prediction of sub-seismic faults and their impact on waterflood performance: Bozhong 34 oilfield case study[J]. Journal of Petroleum Science and Engineering, 2019, 172: 60-69. |
12 | LOHR T, KRAWCZYK C M, TANNER D C, et al. Prediction of subseismic faults and fractures: Integration of three-dimensional seismic data, three-dimensional retrodeformation, and well data on an example of deformation around an inverted fault[J]. AAPG Bulletin, 2008, 92(4): 473-485. |
13 | GALE J F W, LAUBACH S E, OLSON J E, et al. Natural fractures in shale: A review and new observations[J]. AAPG Bulletin, 2014, 98(11): 2165-2216. |
14 | FU Yingkun, DEHGHANPOUR H. How far can hydraulic fractures go? A comparative analysis of water flowback, tracer, and microseismic data from the Horn River Basin[J]. Marine and Petroleum Geology, 2020, 115: 104259. |
15 | 巩磊, 高铭泽, 曾联波, 等. 影响致密砂岩储层裂缝分布的主控因素分析——以库车前陆盆地侏罗系—新近系为例[J]. 天然气地球科学, 2017, 28(2): 199-208. |
GONG Lei, GAO Mingze, ZENG Lianbo, et al. Controlling factors on fracture development in the tight sandstone reservoirs: A case study of Jurassic-Neogene in the Kuqa foreland basin[J]. Natural Gas Geoscience, 2017, 28(2): 199-208. | |
16 | LEE H P, OLSON J E, SCHULTZ R A. Interaction analysis of propagating opening mode fractures with veins using the Discrete Element Method[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 275-288. |
17 | ZENG Lianbo, GONG Lei, GUAN Cong, et al. Natural fractures and their contribution to tight gas conglomerate reservoirs: A case study in the northwestern Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2022, 210: 110028. |
18 | 宿晓岑, 巩磊, 付晓飞, 等. 鄂尔多斯盆地三边地区延长组7段致密砂岩储层裂缝分布特征及有效性评价[J]. 地球科学, 2023, 48(7): 2601-2613. |
SU Xiaocen, GONG Lei, FU Xiaofei, et al. Fracture distribution characteristics and effectiveness evaluation of tight sandstone reservoir of Chang 7 member in Sanbian area, Ordos Basin[J]. Earth Science, 2023, 48(7): 2601-2613. | |
19 | Wenya LYU, ZENG Lianbo, ZHOU Sibin, et al. Natural fractures in tight-oil sandstones: A case study of the Upper Triassic Yanchang Formation in the southwestern Ordos Basin, China[J]. AAPG Bulletin, 2019, 103(10): 2343-2367. |
20 | 吴安彬, 罗群, 代兵, 等. 海相高演化页岩裂缝方解石脉成因机制及指示意义[J]. 中国石油大学学报(自然科学版), 2022, 46(3): 25-35. |
WU Anbin, LUO Qun, DAI Bing, et al. Genetic mechanism and indicative significance of fracture calcite veins in marine high-evolution shale[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(3): 25-35. | |
21 | 丁文龙, 王兴华, 胡秋嘉, 等. 致密砂岩储层裂缝研究进展[J]. 地球科学进展, 2015, 30(7): 737-750. |
DING Wenlong, WANG Xinghua, HU Qiujia, et al. Progress in tight sandstone reservoir fractures research[J]. Advances in Earth Science, 2015, 30(7): 737-750. | |
22 | 吕文雅, 苗凤彬, 张本键, 等. 四川盆地剑阁地区须家河组致密砾岩储层裂缝特征及对天然气产能的影响[J]. 石油与天然气地质, 2020, 41(3): 484-491, 557. |
Wenya LYU, MIAO Fengbin, ZHANG Benjian, et al. Fracture characteristics and their influence on natural gas production: A case study of the tight conglomerate reservoir in the Upper Triassic Xujiahe Formation in Jian’ge area, Sichuan Basin[J]. Oil & Gas Geology, 2020, 41(3): 484-491, 557. | |
23 | 巩磊, 曾联波, 李娟, 等. 南襄盆地安棚浅、中层系特低渗储层裂缝特征及其与深层系裂缝对比[J]. 石油与天然气地质, 2012, 33(5): 778-784. |
GONG Lei, ZENG Lianbo, LI Juan, et al. Features of fractures in shallow-to mid-depth reservoirs with ultra-low permeability and their comparison with those in deep reservoirs in Anpeng oilfield, the Nanxiang Basin[J]. Oil & Gas Geology, 2012, 33(5): 778-784. | |
24 | 赵向原, 游瑜春, 胡向阳, 等. 基于成因机理及主控因素约束的多尺度裂缝 “分级-分期-分组” 建模方法——以四川盆地元坝地区上二叠统长兴组生物礁相碳酸盐岩储层为例[J]. 石油与天然气地质, 2023, 44(1): 213-225. |
ZHAO Xiangyuan, YOU Yuchun, HU Xiangyang, et al. Classified-staged-grouped 3D modeling of multi-scale fractures constrained by genetic mechanisms and main controlling factors: A case study on biohermal carbonate reservoir of the Upper Permian Changxing Fm. in Yuanba area, Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(1): 213-225. | |
25 | 司学强, 彭博, 庞志超, 等. 储集层多尺度裂缝特征及控制因素——以准噶尔盆地南缘侏罗系—白垩系为例[J]. 中国矿业大学学报, 2022, 51(4): 731-741. |
SI Xueqiang, PENG Bo, PANG Zhichao, et al. Characteristics and controlling factors of multi-scale fractures in reservoir: A Jurassic-Cretaceous case from the southern margin of Junggar Basin[J]. Journal of China University of Mining & Technology, 2022, 51(4): 731-741. | |
26 | 刘俊州, 韩磊, 时磊, 等. 致密砂岩储层多尺度裂缝地震预测技术——以川西XC地区为例[J]. 石油与天然气地质, 2021, 42(3): 747-754. |
LIU Junzhou, HAN Lei, SHI Lei, et al. Seismic prediction of tight sandstone reservoir fractures in XC area, western Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(3): 747-754. | |
27 | 董少群, 吕文雅, 夏东领, 等. 致密砂岩储层多尺度裂缝三维地质建模方法[J]. 石油与天然气地质, 2020, 41(3): 627-637. |
DONG Shaoqun, Wenya LYU, XIA Dongling, et al. An approach to 3D geological modeling of multi-scaled fractures in tight sandstone reservoirs[J]. Oil & Gas Geology, 2020, 41(3): 627-637. | |
28 | JU Wei, ZHONG Yu, LIANG Yan, et al. Factors influencing fault-propagation folding in the Kuqa Depression: Insights from geomechanical models[J]. Journal of Structural Geology, 2023, 168: 104826. |
29 | HANSBERRY R L, KING R C, HOLFORD S P, et al. How wide is a fault damage zone? Using network topology to examine how fault-damage zones overprint regional fracture networks[J]. Journal of Structural Geology, 2021, 146: 104327. |
30 | LAO Haigang, WANG Yongshi, MENG Ningning, et al. Architectural characteristics and evolution sequences of different types of faults in extensional basins—evidence collected from cores in the Dongying Depression[J]. Marine and Petroleum Geology, 2021, 132: 105199. |
31 | ZENG Lianbo, TANG Xiaomei, WANG Tiecheng, et al. The influence of fracture cements in tight Paleogene saline lacustrine carbonate reservoirs, western Qaidam Basin, northwest China[J]. AAPG Bulletin, 2012, 96(11): 2003-2017. |
32 | LAUBACH S E, LANDER R H, CRISCENTI L J, et al. The role of chemistry in fracture pattern development and opportunities to advance interpretations of geological materials[J]. Reviews of Geophysics, 2019, 57(3): 1065-1111. |
33 | 巩磊, 曾联波, 杜宜静, 等. 构造成岩作用对裂缝有效性的影响——以库车前陆盆地白垩系致密砂岩储层为例[J]. 中国矿业大学学报, 2015, 44(3): 514-519. |
GONG Lei, ZENG Lianbo, DU Yijing, et al. Influences of structural diagenesis on fracture effectiveness: A case study of the Cretaceous tight sandstone reservoirs of Kuqa foreland basin[J]. Journal of China University of Mining & Technology, 2015, 44(3): 514-519. | |
34 | MI Lijun, FAN Hongjun, FAN Tingen, et al. Development characteristics of multi-scale fracture network systems in metamorphic buried hills[J]. Frontiers in Earth Science, 2023, 10: 1108032. |
35 | 徐翔. 四川盆地东南部海相页岩多尺度裂缝及对含气性影响研究[D]. 北京: 中国石油大学(北京), 2021. |
XU Xiang. Research on multi-scale fractures and their influences on gas-bearing properties in marine shales in the southeastern Sichuan Basin[D]. Beijing: China University of Petroleum(Beijing), 2021. | |
36 | FERRILL D A, SMART K J, CAWOOD A J, et al. The fold-thrust belt stress cycle: Superposition of normal, strike-slip, and thrust faulting deformation regimes[J]. Journal of Structural Geology, 2021, 148: 104362. |
37 | 鞠玮, 牛小兵, 冯胜斌, 等. 页岩油储层现今地应力场与裂缝有效性评价——以鄂尔多斯盆地延长组长7油层组为例[J]. 中国矿业大学学报, 2020, 49(5): 931-940. |
JU Wei, NIU Xiaobing, FENG Shengbin, et al. The present-day in-situ stress state and fracture effectiveness evaluation in shale oil reservoir: A case study of the Yanchang Formation Chang 7 oil-bearing layer in the Ordos Basin[J]. Journal of China University of Mining & Technology, 2020, 49(5): 931-940. | |
38 | ZENG Lianbo. Microfracturing in the Upper Triassic Sichuan Basin tight-gas sandstones: Tectonic, overpressure, and diagenetic origins[J]. AAPG Bulletin, 2010, 94(12): 1811-1825. |
39 | FU Xiaofei, GONG Lei, SU Xiaocen, et al. Characteristics and controlling factors of natural fractures in continental tight-oil shale reservoir[J]. Minerals, 2022, 12(12): 1616. |
40 | GONG Lei, WANG Jie, GAO Shuai, et al. Characterization, controlling factors and evolution of fracture effectiveness in shale oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 203: 108655. |
41 | BONS P D, ELBURG M A, GOMEZ-RIVAS E. A review of the formation of tectonic veins and their microstructures[J]. Journal of Structural Geology, 2012, 43: 33-62. |
42 | 毛哲. 塔里木盆地北部逆冲构造和走滑构造相关裂缝发育模式[D]. 北京: 中国石油大学(北京), 2022. |
MAO Zhe. Development model of fractures related to thrust and strike-slip structures in the northern Tarim Basin[D]. Beijing: China University of Petroleum(Beijing), 2022. | |
43 | PEACOCK D C P, DIMMEN V, ROTEVATN A, et al. A broader classification of damage zones[J]. Journal of Structural Geology, 2017, 102: 179-192. |
44 | KIM Y S, PEACOCK D C P, SANDERSON D J. Fault damage zones[J]. Journal of Structural Geology, 2004, 26(3): 503-517. |
45 | KIM Y S, SANDERSON D J. The relationship between displacement and length of faults: A review[J]. Earth-Science Reviews, 2005, 68(3/4): 317-334. |
46 | PEACOCK D C P, SANDERSON D J, ROTEVATN A. Relationships between fractures[J]. Journal of Structural Geology, 2018, 106: 41-53. |
47 | JOHRI M, DUNHAM E M, ZOBACK M D, et al. Predicting fault damage zones by modeling dynamic rupture propagation and comparison with field observations[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(2): 1251-1272. |
48 | CHOI J H, EDWARDS P, KO K, et al. Definition and classification of fault damage zones: A review and a new methodological approach[J]. Earth-Science Reviews, 2016, 152: 70-87. |
49 | FAULKNER D R, JACKSON C A L, LUNN R J, et al. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones[J]. Journal of Structural Geology, 2010, 32(11): 1557-1575. |
50 | 祖克威, 曾联波, 巩磊. 断层相关褶皱概念模型中的裂缝域[J]. 地质科学, 2013, 48(4): 1140-1147. |
ZU Kewei, ZENG Lianbo, GONG Lei. Fractures domains in conceptual models of fault-related folds[J]. Chinese Journal of Geology, 2013, 48(4): 1140-1147. | |
51 | MAO Zhe, ZENG Lianbo, LIU Guangdi, et al. Controls of fault-bend fold on natural fractures: Insight from discrete element simulation and outcrops in the southern margin of the Junggar Basin, Western China[J]. Marine and Petroleum Geology, 2022, 138: 105541. |
52 | 冯建伟, 孙建芳, 张亚军, 等. 塔里木盆地库车坳陷断层相关褶皱对裂缝发育的控制[J]. 石油与天然气地质, 2020, 41(3): 543-557. |
FENG Jianwei, SUN Jianfang, ZHANG Yajun, et al. Control of fault-related folds on fracture development in Kuqa Depression, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(3): 543-557. | |
53 | 冯军. 走滑断层形成演化主控因素物理模拟研究及应用[D]. 大庆: 东北石油大学, 2022. |
FENG Jun. Physical analog modeling of main controlling factors of Strike-Slip fault formation and evolution and its application[D]. Daqing: Northeast Petroleum University, 2022. | |
54 | 韩剑发, 苏洲, 陈利新, 等. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力[J]. 石油学报, 2019, 40(11): 1296-1310. |
HAN Jianfa, SU Zhou, CHEN Lixin, et al. Reservoir-controlling and accumulation-controlling of strike-slip faults and exploration potential in the platform of Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(11): 1296-1310. | |
55 | LAUBACH S E, EICHHUBL P, HILGERS C, et al. Structural diagenesis[J]. Journal of Structural Geology, 2010, 32(12): 1866-1872. |
56 | BECKER S P, EICHHUBL P, LAUBACH S E, et al. A 48 m.y. history of fracture opening, temperature, and fluid pressure: Cretaceous Travis Peak Formation, East Texas Basin[J]. GSA Bulletin, 2010, 122(7/8): 1081-1093. |
57 | LANDER R H, LAUBACH S E. Insights into rates of fracture growth and sealing from a model for quartz cementation in fractured sandstones[J]. GSA Bulletin, 2015, 127(3/4): 516-538. |
[1] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[2] | 王光付, 李凤霞, 王海波, 周彤, 张亚雄, 王濡岳, 李宁, 陈昱辛, 熊晓菲. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. |
[3] | 刘惠民, 张关龙, 范婕, 曾治平, 郭瑞超, 宫亚军. 准噶尔盆地腹部征沙村地区征10井的勘探发现与启示[J]. 石油与天然气地质, 2023, 44(5): 1118-1128. |
[4] | 李军亮, 王鑫, 王伟庆, 李博, 曾溅辉, 贾昆昆, 乔俊程, 王康亭. 致密砂岩砂-泥结构发育特征及其对储集空间的控制作用[J]. 石油与天然气地质, 2023, 44(5): 1173-1187. |
[5] | 印森林, 陈旭, 杨毅, 章彤, 程皇辉, 姜涛, 熊亭, 刘娟霞, 何理鹏, 杨小江. 细粒沉积岩典型低阻油层成因及甜点分布[J]. 石油与天然气地质, 2023, 44(4): 946-961. |
[6] | 孙靖, 尤新才, 薛晶晶, 曹元婷, 常秋生, 陈超. 准噶尔盆地异常压力特征及其对深层-超深层致密储层的影响[J]. 石油与天然气地质, 2023, 44(2): 350-365. |
[7] | 史今雄, 赵向原, 潘仁芳, 曾联波, 朱正平. 川中地区震旦系灯影组碳酸盐岩天然裂缝特征及其对气井产能影响[J]. 石油与天然气地质, 2023, 44(2): 393-405. |
[8] | 何治亮, 赵向原, 张文彪, 吕心瑞, 朱东亚, 赵峦啸, 胡松, 郑文波, 刘彦锋, 丁茜, 段太忠, 胡向阳, 孙建芳, 耿建华. 深层-超深层碳酸盐岩储层精细地质建模技术进展与攻关方向[J]. 石油与天然气地质, 2023, 44(1): 16-33. |
[9] | 赵向原, 游瑜春, 胡向阳, 黎静容, 李毓. 基于成因机理及主控因素约束的多尺度裂缝“分级-分期-分组”建模方法[J]. 石油与天然气地质, 2023, 44(1): 213-225. |
[10] | 李文浩, 卢双舫, 王民, 周能武, 程泽虎. 基于扫描电镜大视域拼接技术定量表征致密储层微观非均质性[J]. 石油与天然气地质, 2022, 43(6): 1497-1504. |
[11] | 王光付, 李凤霞, 王海波, 李军, 张宏, 周彤, 商晓飞, 潘林华, 沈云琦. 四川盆地非常规气藏地质-工程一体化压裂实践与认识[J]. 石油与天然气地质, 2022, 43(5): 1221-1237. |
[12] | 施振生, 朱筱敏, 张亚雄, 金惠. 四川盆地上三叠统沉积储层研究进展与热点分析[J]. 石油与天然气地质, 2021, 42(4): 784-800. |
[13] | 何治亮, 马永生, 朱东亚, 段太忠, 耿建华, 张军涛, 丁茜, 钱一雄, 沃玉进, 高志前. 深层-超深层碳酸盐岩储层理论技术进展与攻关方向[J]. 石油与天然气地质, 2021, 42(3): 533-546. |
[14] | 刘俊州, 韩磊, 时磊, 陈双全, 吕文雅. 致密砂岩储层多尺度裂缝地震预测技术——以川西XC地区为例[J]. 石油与天然气地质, 2021, 42(3): 747-754. |
[15] | 田方磊, 彭妙, 韩俊, 陈槚俊, 马德波, 毛丹凤. 塔里木盆地中部深层-超深层地震波组特征及其地质意义[J]. 石油与天然气地质, 2021, 42(2): 354-369. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||