石油与天然气地质 ›› 2023, Vol. 44 ›› Issue (1): 16-33.doi: 10.11743/ogg20230102

• 油气地质 • 上一篇    下一篇

深层-超深层碳酸盐岩储层精细地质建模技术进展与攻关方向

何治亮1(), 赵向原2, 张文彪2, 吕心瑞2, 朱东亚2, 赵峦啸3, 胡松2, 郑文波2, 刘彦锋2, 丁茜2, 段太忠2, 胡向阳2, 孙建芳2, 耿建华3   

  1. 1.中国石油化工股份有限公司, 北京 100728
    2.中国石化 石油勘探开发研究院, 北京 102206
    3.同济大学 海洋与地球科学学院, 上海 200092
  • 收稿日期:2022-09-26 修回日期:2022-11-20 出版日期:2023-02-01 发布日期:2023-01-13
  • 第一作者简介:何治亮(1963—),男,博士、教授级高级工程师,石油地质。E?mail: hezhiliang@sinopec.com
  • 基金项目:
    中国科学院A类先导科技专项(XDA14010200);中国石化科技部项目(P21038)

Progress and direction of geological modeling for deep and ultra-deep carbonate reservoirs

Zhiliang HE1(), Xiangyuan ZHAO2, Wenbiao ZHANG2, Xinrui LYV2, Dongya ZHU2, Luanxiao ZHAO3, Song HU2, Wenbo ZHENG2, Yanfeng LIU2, Qian DING2, Taizhong DUAN2, Xiangyang HU2, Jianfang SUN2, Jianhua GENG3   

  1. 1.SINOPEC,Beijing 100728,China
    2.Petroleum Exploration and Production Research Institute,SINOPEC,Beijing,100083,China
    3.School of Ocean and Earth Science,Tongji University,Shanghai 200092,China
  • Received:2022-09-26 Revised:2022-11-20 Online:2023-02-01 Published:2023-01-13

摘要:

深层-超深层碳酸盐岩油气是业界普遍关注的热点和重点领域。如何精准刻画深层-超深层碳酸盐岩储集体空间展布及储集参数分布特征,是高效勘探开发面临的重大技术问题。在对储层地质分析、测井评价、地震预测、地质建模等相关技术发展现状分析的基础上,针对深层-超深层碳酸盐岩储层研究面临资料少、品质差、精度低,加之储层非均质性强等难题,深入开展了深层碳酸盐岩优质储层发育机理与分布规律研究,研发集成了深层碳酸盐岩储层描述与建模的关键技术系列,包括:①多尺度、多属性深层碳酸盐岩储层知识库构建技术;②地质分析新技术——从宏观到微观的储层地质观测分析技术,储层微区原位沉积、成岩环境定性-定量分析技术,储层发育机理与过程实验和数值模拟分析技术;③深层碳酸盐岩储层测井解释新技术——基于全域测井仿真的储层类型识别与参数定量评价技术,基于机器学习的沉积微相识别技术;④深层碳酸盐岩储层地震预测新技术——深层碳酸盐岩地震岩石物理建模技术,岩石物理引导的机器学习储层参数预测与不确定性评价技术;⑤深层碳酸盐岩地质建模新技术——多点地质统计学新算法,地质过程模拟技术,人工智能地质建模技术。分别建立了面控、断控、相控型碳酸盐岩储层地质建模技术流程,并选择塔里木盆地塔河、顺北油气田和四川盆地元坝气田进行了有效应用,为勘探开发部署提供了科学依据。最后,提出了深层-超深层碳酸盐岩储层地质建模未来攻关方向:①升级储层地质知识库,提高对建模的支撑力度;②扩充基于地质过程的建模技术,完善应用研究;③发展基于人工智能的地球物理解释、预测技术,提升复杂储层刻画能力;④研发基于人工智能的建模新方法,不断提高储层表征精度和模型的可靠性;⑤创建深层储层地质模型的快速更新技术,不断提高模型更新效率和精度。

关键词: 地质知识库, 储层地质分析, 储层测井评价, 储层地震预测, 人工智能建模, 精细地质建模, 碳酸盐岩储层, 深层-超深层

Abstract:

Exploration and development of deep and ultra-deep carbonate reservoirs have been a hot and key research topic in the industry. Accurately depicting the spatial distribution and physical property parameters of the reservoirs has been a major challenge for an efficient oil and gas exploration and development. Based on an analysis of current development of reservoir geological analysis, logging evaluation, seismic prediction, geological modeling and other related technologies, this study is focused on figuring out the development mechanisms and distribution patterns of high-quality deep carbonate reservoirs by overcoming the data issues (scarcity, low quality and inaccuracy) and the high heterogeneity nature of the reservoir. A series of key technologies for characterization and modelling of the deep carbonate reservoirs have been developed, including technologies for construction of multi-scale and multi-attribute deep carbonate reservoir knowledge base; new technologies for geological analysis such as macroscopic to microscopic geological observation, in-situ micro-area qualitative and quantitative analysis for reservoir sedimentation and diagenetic environment, experiment and numerical simulation technologies for mechanism and process of reservoir development; new logging interpretation technologies, such as reservoir type identification and quantitative parameter evaluation based on global logging simulation, and sedimentary microfacies identification based on machine learning; new seismic prediction methods, such as seismic petrophysical modeling, machine learning technologies for rock physics guided reservoir parameter prediction and uncertainty evaluation; new geological modeling technologies such as new algorithm of multipoint geostatistics, geological process simulation, and geological modeling based on artificial intelligence. The technological processes of geological modeling of carbonate reservoirs under the control of karst unconformity, fault and sedimentary facies have been established respectively and applied to oil and gas reservoirs in Tahe, Shunbei and Yuanba blocks in the Tarim Basin and the Sichuan Basin, providing scientific basis for exploration and development deployment. The future research direction of geological modeling for deep and ultra-deep carbonate reservoirs is also predicted: updating geological knowledge base to support geological modeling; expanding the modeling technology based on geological process and improving its application; developing geophysical interpretation and prediction technologies based on artificial intelligence to improve the ability to depict complex reservoirs; developing new modeling methods based on artificial intelligence to continuously improve the accuracy of reservoir characterization and the reliability of models; and establishing rapid updating technology of geological models for deep reservoirs to continuously improve the efficiency and accuracy of model updating.

Key words: geological knowledge base, reservoir geological analysis, reservoir logging evaluation, reservoir seismic prediction, artificial intelligence geological modeling, fine geological modeling, carbonate reservoir, deep and ultra-deep reservoir

中图分类号: