石油与天然气地质 ›› 2024, Vol. 45 ›› Issue (2): 406-419.doi: 10.11743/ogg20240208
柳波1(), 蒙启安2, 付晓飞1, 林铁锋2, 白云风2,3(), 田善思1,3, 张金友2,3, 姚瑶1,3, 程心阳2, 刘召2
收稿日期:
2023-11-28
修回日期:
2024-03-16
出版日期:
2024-04-30
发布日期:
2024-04-30
通讯作者:
白云风
E-mail:liubo@nepu.edu.cn;byf198407@163.com
第一作者简介:
柳波(1983—),男,教授、博士生导师,非常规油气地质与多资源协同。E-mail:liubo@nepu.edu.cn。
基金项目:
Bo LIU1(), Qi’an MENG2, Xiaofei FU1, Tiefeng LIN2, Yunfeng BAI2,3(), Shansi TIAN1,3, Jinyou ZHANG2,3, Yao YAO1,3, Xinyang CHENG2, Zhao LIU2
Received:
2023-11-28
Revised:
2024-03-16
Online:
2024-04-30
Published:
2024-04-30
Contact:
Yunfeng BAI
E-mail:liubo@nepu.edu.cn;byf198407@163.com
摘要:
松辽盆地白垩系青山口组一段(青一段)页岩有机质热演化程度跨度大、烃类流动性差异强。页岩油相态分析预测是页岩油勘探开发的重要难题。用低成熟页岩样品开展封闭体系及半封闭体系有机质热解实验,根据生、排烃组分特征对滞留烃的轻烃散失进行补偿校正,研究了页岩油组分演化特征。结合中央坳陷区主要生油凹陷典型井埋藏史、热演化史,研究了页岩油相态演化规律,提出了轻质页岩油勘探有利区和开发压力保护条件。研究结果表明:地质条件下随着有机质成熟度的升高,页岩油组分中轻质组分比例不断增加、气体逐渐增多,相包络线从高露点温度、低泡点压力依次向低露点温度、高泡点压力演化。齐家-古龙凹陷青一段页岩油在嫩江组中期油藏向挥发油油藏转化,长岭凹陷青一段页岩油从嫩江组末期开始油藏向挥发油油藏转化,三肇凹陷青一段页岩油则始终为黑油油藏。无论是黑油油藏还是挥发油油藏,均为单一液相。松辽盆地中央坳陷区青一段页岩油挥发油油藏主要分布在齐家-古龙凹陷中心和长岭凹陷北部有机质成熟度(镜质体反射率Ro)为1.3 % ~ 1.6 %、地层压力为12.2 ~ 22.4 MPa的区域。
中图分类号:
1 | NIKOLAEV M Y, KAZAK A V. Liquid saturation evaluation in organic-rich unconventional reservoirs: A comprehensive review[J]. Earth-Science Reviews, 2019, 194: 327-349. |
2 | 金之钧, 张谦, 朱如凯, 等. 中国陆相页岩油分类及其意义[J]. 石油与天然气地质, 2023, 44(4): 801-819. |
JIN Zhijun, ZHANG Qian, ZHU Rukai, et al. Classification of lacustrine shale oil reservoirs in China and its significance[J]. Oil & Gas Geology, 2023, 44(4): 801-819. | |
3 | CLARKE P, PORTIS D, BARZOLA G, et al. Assessing well performance in a prolific liquids-rich shale play—An Eagle Ford case stud[M]//BREYER J. The Eagle Ford Shale: A Renaissance in U.S. Oil Production. Tulsa: American Association of Petroleum Geologists, 2016: 213-240. |
4 | KUHN P P, DI PRIMIO R, HILL R, et al. Three-dimensional modeling study of the low-permeability petroleum system of the Bakken Formation[J]. AAPG Bulletin, 2012, 96(10): 1867-1897. |
5 | CHEN Chengsheng, WANG Yunpeng, BEAGLE J R, et al. Reconstruction of the evolution of deep fluids in light oil reservoirs in the Central Tarim Basin by using PVT simulation and basin modeling[J]. Marine and Petroleum Geology, 2019, 107: 116-126. |
6 | 陈承声, 邓瑞, 张海祖, 等. 塔里木盆地轮探1井下寒武统超深层油气相态演化定量模拟[J]. 天然气地球科学, 2023, 34(1): 96-110. |
CHEN Chengsheng, DENG Rui, ZHANG Haizu, et al. Quantitative simulation of phase evolution for ultra-deep oil and gas from Lower Cambrian strata of Well Luntan-1 in the Tarim Basin[J]. Natural Gas Geoscience, 2023, 34(1): 96-110. | |
7 | KUSKE S, HORSFIELD B, JWEDA J, et al. Geochemical factors controlling the phase behavior of Eagle Ford Shale petroleum fluids[J]. AAPG Bulletin, 2019, 103(4): 835-870. |
8 | YANG S, HORSFIELD B, MAHLSTEDT N, et al. On the primary and secondary petroleum generating characteristics of the Bowland Shale, northern England[J]. Journal of the Geological Society, 2015, 173(2): 292-305. |
9 | 金之钧, 朱如凯, 梁新平, 等. 当前陆相页岩油勘探开发值得关注的几个问题[J]. 石油勘探与开发, 2021, 48(6): 1276-1287. |
JIN Zhijun, ZHU Rukai, LIANG Xinping, et al. Several issues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development, 2021, 48(6): 1276-1287. | |
10 | 柳波, 孙嘉慧, 张永清, 等. 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式[J]. 石油勘探与开发, 2021, 48(3): 521-535. |
LIU Bo, SUN Jiahui, ZHANG Yongqing, et al. Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 521-535. | |
11 | 孙龙德, 王小军, 冯子辉, 等. 松辽盆地古龙页岩纳米孔缝形成机制与页岩油富集特征[J]. 石油与天然气地质, 2023, 44(6): 1350-1365. |
SUN Longde, WANG Xiaojun, FENG Zihui, et al. Formation mechanisms of nano-scale pores/fissures and shale oil enrichment characteristics for Gulong shale, Songliao Basin[J]. Oil & Gas Geology, 2023, 44(6): 1350-1365. | |
12 | 何文渊, 柳波, 张金友, 等. 松辽盆地古龙页岩油地质特征及关键科学问题探索[J]. 地球科学, 2023, 48(1): 49-62. |
HE Wenyuan, LIU Bo, ZHANG Jinyou, et al. Geological characteristics and key scientific and technological problems of Gulong shale oil in Songliao Basin[J]. Earth Science, 2023, 48(1): 49-62. | |
13 | 付晓飞, 石海东, 蒙启安, 等. 构造和沉积对页岩油富集的控制作用——以松辽盆地中央坳陷区青一段为例[J]. 大庆石油地质与开发, 2020, 39(3): 56-71. |
FU Xiaofei, SHI Haidong, MENG Qi’an, et al. Controlling effects of the structure and deposition on the shale oil enrichment: Taking Formation Qn1 in the central depression of Songliao Basin as an instance[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 56-71. | |
14 | 李君, 黄志龙, 刘宝柱, 等. 伸展构造与反转构造对油气分布的控制作用——以松辽盆地东南隆起区为例[J]. 新疆石油地质, 2008, 29(1): 19-21. |
LI Jun, HUANG Zhilong, LIU Baozhu, et al. Control effects of spreading structure and reversal structure on hydrocarbon distribution——An example from Dongnan uplift in Songliao Basin[J]. Xinjiang Petroleum Geology, 2008, 29(1): 19-21. | |
15 | LIU Bo, WANG Haoli, FU Xiaofei, et al. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong Sag, northern Songliao Basin, northeast China[J]. AAPG Bulletin, 2019, 103(2): 405-432. |
16 | 付丽, 梁江平, 白雪峰, 等. 松辽盆地北部中浅层石油地质条件、资源潜力及勘探方向[J]. 海相油气地质, 2019, 24(2): 23-32. |
FU Li, LIANG Jiangping, BAI Xuefeng, et al. The geological conditions, resource potential, and exploration direction of oil of middle-shallow layers in the northern Songliao Basin[J]. Marine Origin Petroleum Geology, 2019, 24(2): 23-32. | |
17 | 冯子辉, 柳波, 邵红梅, 等. 松辽盆地古龙地区青山口组泥页岩成岩演化与储集性能[J]. 大庆石油地质与开发, 2020, 39(3): 72-85. |
FENG Zihui, LIU Bo, SHAO Hongmei, et al. The diagenesis evolution and accumulating performance of the mud shale in Qingshankou Formation in Gulong area, Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 72-85. | |
18 | 白龙辉, 柳波, 迟亚奥, 等. 二维核磁共振技术表征页岩所含流体特征的应用——以松辽盆地青山口组富有机质页岩为例[J]. 石油与天然气地质, 2021, 42(6): 1389-1400. |
BAI Longhui, LIU Bo, CHI Yaao, et al. 2D NMR studies of fluids in organic-rich shale from the Qingshankou Formation, Songliao Basin[J]. Oil & Gas Geology, 2021, 42(6): 1389-1400. | |
19 | 侯读杰. 热模拟实验技术简介[J]. 国外地质勘探技术, 1990(10): 39-40. |
HOU Dujie. Introduction to thermal simulation experimental technology[J]. Foreign Geoexploration Technology, 1990(10): 39-40. | |
20 | LEWAN M D. Experiments on the role of water in petroleum formation[J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3691-3723. |
21 | CARR A D, SNAPE C E, MEREDITH W, et al. The effect of water pressure on hydrocarbon generation reactions: Some inferences from laboratory experiments[J]. Petroleum Geoscience, 2009, 15(1): 17-26. |
22 | 李志明, 郑伦举, 蒋启贵, 等. 湖相富有机质泥质白云岩生排烃模拟及其对页岩油勘探的启示[J]. 地球科学, 2018, 43(2): 566-576. |
LI Zhiming, ZHENG Lunju, JIANG Qigui, et al. Simulation of hydrocarbon generation and expulsion for lacustrine organic-rich argillaceous dolomite and its implications for shale oil exploration[J]. Earth Science, 2018, 43(2): 566-576. | |
23 | 黄越义, 廖玉宏, 刘卫民, 等. 黄金管封闭体系热模拟实验中两种液态烃收集方法对比及其对相态特征的影响[J]. 地球化学, 2020, 49(5): 528-538. |
HUANG Yueyi, LIAO Yuhong, LIU Weimin, et al. Comparison of two liquid hydrocarbon collection methods in gold tube pyrolysis and their influence on hydrocarbon phase state characteristics[J]. Geochimica, 2020, 49(5): 528-538. | |
24 | 薛海涛, 田善思, 王伟明, 等. 页岩油资源评价关键参数——含油率的校正[J]. 石油与天然气地质, 2016, 37(1): 15-22. |
XUE Haitao, TIAN Shansi, WANG Weiming, et al. Correction of oil content—one key parameter in shale oil resource assessment[J]. Oil & Gas Geology, 2016, 37(1): 15-22. | |
25 | 梅海燕, 张茂林, 李闽, 等. 组成变化对原油体系相态的影响[J]. 石油与天然气化工, 2003, 32(3): 167-169. |
MEI Haiyan, ZHANG Maolin, LI Min, et al. The influence of variation of composition on phase behavior for an oil system[J]. Chemical Engineering of Oil & Gas, 2003, 32(3): 167-169. | |
26 | ESPITALIE J. Use of Tmax as a maturation index for different types of organic matter. Comparison with vitrinite reflectance[M]//BURRUS J. Thermal Modeling in Sedimentary Basins. Paris: Institut Français du Pétrole, 1986: 475-496. |
27 | LIU Bo, GAO Shuo, MOHAMMADIAN E, et al. Comprehensive outlook into critical roles of pressure, volume, and temperature (PVT) and phase behavior on the exploration and development of shale oil[J]. Energy & Fuels, 2022, 36(24): 14534-14553. |
28 | HORSFIELD B, DISKO U, LEISTNER F. The micro-scale simulation of maturation: outline of a new technique and its potential applications[J]. Geologische Rundschau, 1989, 78(1): 361-373. |
29 | DI PRIMIO R, DIECKMANN V, MILLS N. PVT and phase behaviour analysis in petroleum exploration[J]. Organic Geochemistry, 1998, 29(1/3): 207-222. |
30 | DI PRIMIO R, HORSFIELD B. From petroleum-type organofacies to hydrocarbon phase prediction[J]. AAPG Bulletin, 2006, 90(7): 1031-1058. |
31 | DI PRIMIO R, HORSFIELD B. Predicting the generation of heavy oils in carbonate/evaporitic environments using pyrolysis methods[J]. Organic Geochemistry, 1996, 24(10/11): 999-1016. |
32 | HORSFIELD B, DI PRIMIO R. Fluid compositional prediction in conventional and unconventional petroleum systems[C]//SPE Unconventional Resources Conference, the Woodlands, 2014. Red Hook: Curran Associates, Inc., 2014: SPE-169016-MS. |
33 | MAHLSTEDT N, HORSFIELD B, KARG H, et al. Vaca Muerta unconventional oil study-insights from organic geochemistry[C]//Unconventional Resources Technology Conference, Denver, 2019. Houston: Society of Exploration Geophysicists, 2019: 2411-2430. |
34 | XU Qiuchen, QIU Nansheng, LIU Wen, et al. Thermal evolution and maturation of Sinian and Cambrian source rocks in the central Sichuan Basin, Southwest China[J]. Journal of Asian Earth Sciences, 2018, 164: 143-158. |
35 | ZHU Chuanqing, HU Shengbiao, QIU Nansheng, et al. Geothermal constraints on Emeishan mantle plume magmatism: Paleotemperature reconstruction of the Sichuan Basin, SW China[J]. International Journal of Earth Sciences, 2018, 107(1): 71-88. |
36 | QIU Nansheng, CHANG Jian, ZUO Yinhui, et al. Thermal evolution and maturation of Lower Paleozoic source rocks in the Tarim Basin, northwest China[J]. AAPG Bulletin, 2012, 96(5): 789-821. |
37 | 郭巍, 于文祥, 刘招君, 等. 松辽盆地南部埋藏史[J]. 吉林大学学报(地球科学版), 2009, 39(3): 353-360. |
GUO Wei, YU Wenxiang, LIU Zhaojun, et al. The burial history of the southern Songliao Basin[J]. Journal of Jilin University(Earth Science Edition), 2009, 39(3): 353-360. | |
38 | LIU Yuchen, LIU Bo, CHENG Lijuan, et al. Modeling of tectonic-thermal evolution of Cretaceous Qingshankou shale in the Changling Sag, southern Songliao Basin, NE China[J]. Frontiers in Earth Science, 2021, 9: 694906. |
39 | 刘雨晨, 柳波, 朱焕来, 等. 松辽盆地现今地温场分布特征及主控因素[J]. 地质学报, 2023, 97(8): 2715-2727. |
LIU Yuchen, LIU Bo, ZHU Huanlai, et al. The distribution characteristics and main controlling factors of present-day geothermal regime of the Songliao Basin[J]. Acta Geologica Sinica, 2023, 97(8): 2715-2727. | |
40 | 邱楠生. 古压力恢复与天然气成藏关系——以昌潍坳陷潍北凹陷为例[J]. 天然气工业, 2006, 26(10): 12-14. |
QIU Nansheng. Reconstruction of paleopressure and its relation to gas reservoiring: Taking Weibei Sag in Changwei Depression as an example[J]. Natural Gas Industry, 2006, 26(10): 12-14. | |
41 | LIU Wen, QIU Nansheng, XU Qiuchen, et al. The evolution of pore-fluid pressure and its causes in the Sinian-Cambrian deep carbonate gas reservoirs in central Sichuan Basin, southwestern China[J]. Journal of Petroleum Science and Engineering, 2018, 169: 96-109. |
42 | LIU Yifeng, QIU Nansheng, XIE Zengye, et al. Overpressure compartments in the central paleo-uplift, Sichuan Basin, southwest China[J]. AAPG Bulletin, 2016, 100(5): 867-888. |
43 | 蔡来星, 卢双舫, 黄文彪, 等. 上覆优质源岩对上生下储式致密油成藏的控制作用——以松南中央坳陷区青一段泥岩为例[J]. 中国矿业大学学报, 2016, 45(2): 280-292. |
CAI Laixing, LU Shuangfang, HUANG Wenbiao, et al. Controlling function of overlying high-quality source rocks on above-generation and below-storage tight oil reservoir: Taking mudstone in Qn1 Formation at central depression in southern Songliao Basin as an instance[J]. Journal of China University of Mining & Technology, 2016, 45(2): 280-292. |
[1] | 刘惠民, 包友书, 黎茂稳, 李政, 吴连波, 朱日房, 王大洋, 王鑫. 页岩油富集可动性地球化学评价参数探讨[J]. 石油与天然气地质, 2024, 45(3): 622-636. |
[2] | 蒲秀刚, 董姜畅, 柴公权, 宋舜尧, 时战楠, 韩文中, 张伟, 解德录. 渤海湾盆地沧东凹陷古近系孔店组二段页岩高丰度有机质富集模式[J]. 石油与天然气地质, 2024, 45(3): 696-709. |
[3] | 方锐, 蒋裕强, 杨长城, 邓海波, 蒋婵, 洪海涛, 唐松, 谷一凡, 朱讯, 孙莎莎, 蔡光银. 四川盆地侏罗系凉高山组不同岩性组合页岩油赋存状态及可动性[J]. 石油与天然气地质, 2024, 45(3): 752-769. |
[4] | 李宁, 李瑞磊, 苗贺, 曹开芳, 田军. 松辽盆地深层中-基性火山岩有利相带及储层“甜点”逐级识别[J]. 石油与天然气地质, 2024, 45(3): 801-815. |
[5] | 李军, 邹友龙, 路菁. 陆相页岩油储层可动油含量测井评价方法[J]. 石油与天然气地质, 2024, 45(3): 816-826. |
[6] | 杜晓宇, 金之钧, 曾联波, 刘国平, 杨森, 梁新平, 陆国青. 基于成像测井的深层陆相页岩油储层天然裂缝有效性评价[J]. 石油与天然气地质, 2024, 45(3): 852-865. |
[7] | 邹才能, 董大忠, 熊伟, 傅国友, 赵群, 刘雯, 孔维亮, 张琴, 蔡光银, 王玉满, 梁峰, 刘翰林, 邱振. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[8] | 赵喆, 白斌, 刘畅, 王岚, 周海燕, 刘羽汐. 中国石油陆上中-高成熟度页岩油勘探现状、进展与未来思考[J]. 石油与天然气地质, 2024, 45(2): 327-340. |
[9] | 何骁, 郑马嘉, 刘勇, 赵群, 石学文, 姜振学, 吴伟, 伍亚, 宁诗坦, 唐相路, 刘达东. 四川盆地“槽-隆”控制下的寒武系筇竹寺组页岩储层特征及其差异性成因[J]. 石油与天然气地质, 2024, 45(2): 420-439. |
[10] | 高和群, 高玉巧, 何希鹏, 聂军. 苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J]. 石油与天然气地质, 2024, 45(2): 502-515. |
[11] | 师良, 范柏江, 李忠厚, 余紫巍, 蔺子瑾, 戴欣洋. 鄂尔多斯盆地中部三叠系延长组7段烃组分的运移分异作用[J]. 石油与天然气地质, 2024, 45(1): 157-168. |
[12] | 张益, 张斌, 刘帮华, 柳洁, 魏千盛, 张歧, 陆红军, 朱鹏宇, 王瑞. 页岩气储层吸附渗流研究现状及发展趋势[J]. 石油与天然气地质, 2024, 45(1): 256-280. |
[13] | 郭旭升, 马晓潇, 黎茂稳, 钱门辉, 胡宗全. 陆相页岩油富集机理探讨[J]. 石油与天然气地质, 2023, 44(6): 1333-1349. |
[14] | 孙龙德, 王小军, 冯子辉, 邵红梅, 曾花森, 高波, 江航. 松辽盆地古龙页岩纳米孔缝形成机制与页岩油富集特征[J]. 石油与天然气地质, 2023, 44(6): 1350-1365. |
[15] | 米立军, 徐建永, 李威. 渤海海域页岩油资源潜力[J]. 石油与天然气地质, 2023, 44(6): 1366-1377. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||